Article
Effect of straw length, stubble height and rotary speed on residue incorporation by rotary tillage in intensive rice–wheat rotation system
Registro en:
10.3390/agriculture12020222
Autor
Gaoming Xu
Yixuan Xie
Matin, Md.A.
Ruiyin He
Qishuo Ding
Resumen
High-yielding agriculture in an intensive rice–wheat rotation system leads to plenty of residues left in the field after harvest, which is detrimental to seeding operation, seed germination, and early plant growth. Some residue thus needs to be incorporated into the soil. Providing the relationship between tillage operations and residue incorporation and establishing a mathematical model play important roles in residue management and the design of tillage machinery. In order to obtain detailed data on the interaction between residue incorporation and tillage operations, a multifunctional field-testing bench with precise parameter control was developed to assess residue incorporation characteristics of rotary tillage, and we investigated the effects of straw length, stubble height and rotary speed on residue incorporation. Three experimental factors affecting residue incorporation performance were studied, i.e., six lengths of straw (30–150 mm), four heights of stubble (50–200 mm), and three rotary speeds (240–320 rpm). Chopped straw and stubble with certain sizes were prepared for the test, and we measured the burying rate and distribution uniformity of residue after rotary tillage. The results indicated that straw length, stubble height, and rotary speed all impact residue incorporation quality. The burying rate and distribution uniformity of residue decreased with the increase in straw length and stubble height; a lower rotary speed parameter buried less residue and distributed it with worse uniformity than a higher one. It is suggested that farmers determine the straw length and stubble height at the stage of harvest according to the required burying rate and distribution uniformity of residue.