Book Chapter
Chapter 7. Linear phenotypic eigen selection index methods
Registro en:
978-3-319-91222-6 (Print)
978-3-319-91223-3 (Online)
10.1007/978-3-319-91223-3_7
Autor
Ceron Rojas, J.J.
Crossa, J.
Resumen
Based on the canonical correlation, on the singular value decomposition (SVD), and on the linear phenotypic selection indices theory, we describe the eigen selection index method (ESIM), the restricted ESIM (RESIM), and the predetermined proportional gain ESIM (PPG-ESIM), which use only phenotypic information to predict the net genetic merit. The ESIM is an unrestricted linear selection index, but the RESIM and PPG-ESIM are linear selection indices that allow null and predetermined restrictions respectively to be imposed on the expected genetic gains of some traits, whereas the rest remain without any restrictions. The aims of the three indices are to predict the unobservable net genetic merit values of the candidates for selection, maximize the selection response, and the accuracy, and provide the breeder with an objective rule for evaluating and selecting several traits simultaneously. Their main characteristics are: they do not require the economic weights to be known, the first multi-trait heritability eigenvector is used as its vector of coefficients; and because of the properties associated with eigen analysis, it is possible to use the theory of similar matrices to change the direction and proportion of the expected genetic gain values without affecting the accuracy. We describe the foregoing three indices and validate their theoretical results using real and simulated data. 149-176