Article
Application of a bias-corrected meta-frontier approach and an endogenous switching regression to analyze the technical efficiency of conservation tillage for wheat in South Asia
Registro en:
0895-562X (Paper) 1573-0441 (Online)
10.1007/s11123-018-0525-y
Autor
Aravindakshan, S.
Rossi, F.J.
Amjath Babu, T.S.
Veettil, P.C.
Krupnik, T.J.
Resumen
Conservation tillage (CT) options are among the most rapidly spreading land preparation and crop establishment techniques globally. In South Asia, CT has spread dramatically over the last decade, a result of strong policy support and increasing availability of appropriate machinery. Although many studies have analyzed the yield and profitability of CT systems, the technical efficiency impacts accrued by farmers utilizing CT have received considerably less attention. Employing a DEA framework, we isolated bias-corrected meta-frontier technical efficiencies and meta-technology ratios of three CT options adopted by wheat farmers in Bangladesh, including bed planting (BP), power tiller operated seeding (PTOS), and strip tillage (ST), compared to a control group of farmers practicing traditional tillage (TT). Endogenous switching regression was subsequently employed to overcome potential self-selection bias in the choice of CT, in order to robustly estimate efficiency factors. Among the tillage options studied, PTOS was the most technically efficient, with an average meta-technology ratio of 0.90, followed by BP (0.88), ST (0.83), and TT (0.67). The average predicted meta-frontier technical efficiency for the CT non-adopters under a counterfactual scenario (0.80) was significantly greater (P = 0.00) than current TE scores (0.65), indicating the potential for sizeable profitability increases with CT adoption. Conversely, the counterfactual TE of non-adopters was 23% greater than their DEA efficiency, also indicating efficiency gains from CT adoption. Our results provide backing for agricultural development programs in South Asia that aim to increase smallholder farmers’ income through the application of CT as a pathway towards poverty reduction. 153–171