Articulo
Anderson localization in Euclidean random matrices
Registro en:
issn:1098-0121
issn:1550-235X
Autor
Ciliberti, Stefano
Grigera, Tomás Sebastián
Martín Mayor, V.
Parisi, Giorgio
Verrocchio, P.
Institución
Resumen
We study the spectra and localization properties of Euclidean random matrices defined on a random graph. We introduce a powerful method to find the density of states and the localization threshold in topologically disordered (off-lattice) systems. We solve numerically an equation (exact on the random graph) for the probability distribution function of the diagonal elements of the resolvent matrix, with a population dynamics algorithm (PDA). We show that the localization threshold can be estimated by studying the stability of a population of real resolvents under the PDA. An application is given in the context of the instantaneous normal modes of a liquid. Facultad de Ciencias Exactas Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas