dc.contributorGrosche, Ch., Institut f�r Theoretische Physik, Universit�t Hamburg, Luruper Chaussee 149, Hamburg 22761, Germany; Pogosyan, G.S., Laboratory of Theoretical Physics, Joint Institute for Nuclear Research (Dubna), Dubna, Moscow oblast 141980, Russian Federation, Departamento de Matematicas CUCEI, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico; Sissakian, A.N., Laboratory of Theoretical Physics, Joint Institute for Nuclear Research (Dubna), Dubna, Moscow oblast 141980, Russian Federation
dc.creatorGrosche Ch.
dc.creatorPogosyan, G.S.
dc.creatorSissakian, A.N.
dc.date.accessioned2015-09-15T18:36:23Z
dc.date.accessioned2023-07-04T04:11:11Z
dc.date.available2015-09-15T18:36:23Z
dc.date.available2023-07-04T04:11:11Z
dc.date.created2015-09-15T18:36:23Z
dc.date.issued2007
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-35148889845&partnerID=40&md5=e08ace211c52df0aec230124dd948756
dc.identifierhttp://hdl.handle.net/20.500.12104/43499
dc.identifier10.1134/S1063779607050012
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7268719
dc.description.abstractThis is the second paper on the path integral approach of superintegrable systems on Darboux spaces, spaces of non-constant curvature. We analyze five and four superintegrable potentials in the spaces D III and D IV, respectively; these potentials were first given by Kalnins et al. We are able to evaluate the path integral in most of the separating coordinate systems, leading to expressions for the Green's functions, the discrete and continuous wavefunctions, and the discrete energy spectra. In some cases, however, the discrete spectrum cannot be stated explicitly because it is determined by a higher-order polynomial equation. We also show that the free motion in a Darboux space of type III can contain bound states, provided the boundary conditions are appropriate. We can state the corresponding energy spectrum and the wavefunctions. � 2007 Pleiades Publishing, Ltd.
dc.relationScopus
dc.relationWOS
dc.relationPhysics of Particles and Nuclei
dc.relation38
dc.relation5
dc.relation525
dc.relation563
dc.titlePath integral approach for superintegrable potentials on spaces of non-constant curvature: II. Darboux spaces DIII and DIV
dc.typeArticle


Este ítem pertenece a la siguiente institución