dc.contributorEspinoza-Jurado, J., Department of Electronics Engineering, CUCEI, University of Guadalajara, 44430 Guadalajara, Mexico; Rivera, J., Department of Electronics Engineering, CUCEI, University of Guadalajara, 44430 Guadalajara, Mexico; Loukianov, A., Department of Electrical Engineering, CINVESTAV Guadalajara, 45019 Guadalajara, Mexico
dc.creatorEspinoza-Jurado, J.
dc.creatorRivera, J.
dc.creatorLoukianov, A.
dc.date.accessioned2015-11-19T18:50:13Z
dc.date.accessioned2023-07-04T03:08:26Z
dc.date.available2015-11-19T18:50:13Z
dc.date.available2023-07-04T03:08:26Z
dc.date.created2015-11-19T18:50:13Z
dc.date.issued2014
dc.identifierhttp://hdl.handle.net/20.500.12104/65290
dc.identifier10.1109/VSS.2014.6881112
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84906818906&partnerID=40&md5=14db65397ed28c5da7e6168118f42977
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7264477
dc.description.abstractIn this work one presents a novel nonlinear control strategy for the normalized air to fuel ratio (represented by λ variable) for spark ignition engines. The control method is based on the high order sliding mode methodology that results to be robust to matched perturbations and alleviates the chattering problem. The dynamics for λ depends on the time derivative of the input control, i.e., the injected fuel mass flow fi. This term is estimated by means of a well known robust sliding mode differentiator. Then, based on time delayed measurements given by an UEGO sensor, a high order sliding mode observer is proposed where the equivalent injected signal contains actual values. Finally, simulations based on a mean value engine model demonstrate the good performance of the proposed control method. © 2014 IEEE.
dc.relationProceedings of IEEE Workshop on Applications of Computer Vision
dc.relationScopus
dc.titleHigher order sliding mode air-to-fuel ratio in SI engines
dc.typeConference Paper


Este ítem pertenece a la siguiente institución