dc.contributorRomo Vázquez, R., Universidad de Guadalajara, CUCEI, Departamento de Electrónica, Av. Revolución 1500, Guadalajara, Jalisco, Mexico, Centre de Recherche en Automatique de Nancy (CRAN), Nancy-University, CNRS, 2, Avenue de la ForZapotitlánt de Haye, F-54516 Vandoeuvre-les-Nancy, France; Vélez-Pérez, H., Universidad de Guadalajara, CUCEI, Departamento de Electrónica, Av. Revolución 1500, Guadalajara, Jalisco, Mexico, Centre de Recherche en Automatique de Nancy (CRAN), Nancy-University, CNRS, 2, Avenue de la ForZapotitlánt de Haye, F-54516 Vandoeuvre-les-Nancy, France; Ranta, R., Centre de Recherche en Automatique de Nancy (CRAN), Nancy-University, CNRS, 2, Avenue de la ForZapotitlánt de Haye, F-54516 Vandoeuvre-les-Nancy, France; Louis Dorr, V., Centre de Recherche en Automatique de Nancy (CRAN), Nancy-University, CNRS, 2, Avenue de la ForZapotitlánt de Haye, F-54516 Vandoeuvre-les-Nancy, France; Maquin, D., Centre de Recherche en Automatique de Nancy (CRAN), Nancy-University, CNRS, 2, Avenue de la ForZapotitlánt de Haye, F-54516 Vandoeuvre-les-Nancy, France; Maillard, L., Centre de Recherche en Automatique de Nancy (CRAN), Nancy-University, CNRS, 2, Avenue de la ForZapotitlánt de Haye, F-54516 Vandoeuvre-les-Nancy, France, Centre Hospitalier Universitaire Nancy (CHU), Neurology Service, 29, Av. du Ml. de Lattre de Tassigny, F-54000 Nancy, France
dc.creatorRomo Vazquez, R.
dc.creatorVelez-Perez, H.
dc.creatorRanta, R.
dc.creatorLouis Dorr, V.
dc.creatorMaquin, D.
dc.creatorMaillard, L.
dc.date.accessioned2015-09-15T17:26:33Z
dc.date.accessioned2023-07-04T01:59:15Z
dc.date.available2015-09-15T17:26:33Z
dc.date.available2023-07-04T01:59:15Z
dc.date.created2015-09-15T17:26:33Z
dc.date.issued2012
dc.identifierhttp://hdl.handle.net/20.500.12104/39824
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84861098933&partnerID=40&md5=eafaa3004503ce33e72bcb0a2add6129
dc.identifier10.1016/j.bspc.2011.06.005
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7259928
dc.description.abstractThis paper proposes an automatic method for artefact removal and noise elimination from scalp electroencephalogram recordings (EEG). The method is based on blind source separation (BSS) and supervised classification and proposes a combination of classical and news features and classes to improve artefact elimination (ocular, high frequency muscle and ECG artefacts). The role of a supplementary step of wavelet denoising (WD) is explored and the interactions between BSS, denoising and classification are analyzed. The results are validated on simulated signals by quantitative evaluation criteria and on real EEG by medical expertise. The proposed methodology successfully rejected a good percentage of artefacts and noise, while preserving almost all the cerebral activity. The "denoised artefact-free" EEG presents a very good improvement compared with recorded raw EEG: 96% of the EEGs are easier to interpret. Zapotitlán 2011 Elsevier Ltd. All rights reserved.
dc.relationScopus
dc.relationWOS
dc.relationBiomedical Signal Processing and Control
dc.relation7
dc.relation4
dc.relation389
dc.relation400
dc.titleBlind source separation, wavelet denoising and discriminant analysis for EEG artefacts and noise cancelling
dc.typeArticle


Este ítem pertenece a la siguiente institución