dc.contributorNesterov, A.I., Departamenlo de F�sica, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
dc.creatorNesterov, A.I.
dc.date.accessioned2015-09-15T18:51:28Z
dc.date.accessioned2023-07-04T01:47:23Z
dc.date.available2015-09-15T18:51:28Z
dc.date.available2023-07-04T01:47:23Z
dc.date.created2015-09-15T18:51:28Z
dc.date.issued1999
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0033248164&partnerID=40&md5=015cf00fb97b9618d355835f73794b06
dc.identifierhttp://hdl.handle.net/20.500.12104/44276
dc.identifier10.1088/0264-9381/16/2/011
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7259129
dc.description.abstractWe obtain the integral formulae for computing the tetrads and metric components in Riemann normal coordinates and the Fermi coordinate system of an observer in arbitrary motion. Our approach admits an essential enlarging of the range of validity of these coordinates. The results obtained are applied to the geodesic deviation in the field of a weak plane gravitational wave and the computation of the plane-wave metric in Fermi normal coordinates.
dc.relationScopus
dc.relationWOS
dc.relationClassical and Quantum Gravity
dc.relation16
dc.relation2
dc.relation465
dc.relation477
dc.titleRiemann normal coordinates, Fermi reference system and the geodesic deviation equation
dc.typeArticle


Este ítem pertenece a la siguiente institución