dc.contributorCalderón Ozuna, Martha Nancy
dc.contributorBioquímica y Biología Molecular de las Micobacterias
dc.contributorhttps://orcid.org/0000-0003-2579-9907
dc.creatorCruz Hernández, Claudia Lorena
dc.date.accessioned2023-02-15T16:56:47Z
dc.date.accessioned2023-06-07T00:27:00Z
dc.date.available2023-02-15T16:56:47Z
dc.date.available2023-06-07T00:27:00Z
dc.date.created2023-02-15T16:56:47Z
dc.date.issued2023-02-03
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/83486
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6651976
dc.description.abstractLa microbiota intestinal es la comunidad de microorganismos vivos del tracto gastrointestinal, la pérdida del equilibrio en ésta se ha relacionado con diabetes mellitus tipo 2 (DM2) y obesidad; dos enfermedades de alta comorbilidad en las últimas décadas. El objetivo fue estudiar perfiles filogenéticos de la microbiota intestinal en adultos colombianos entre 40 y 70 años. Se realizaron jornadas de salud para el reclutamiento de voluntarios; se realizó valoración clínica a 535 participantes, que incluyó medidas de composición corporal y antropometría. Se aplicó la escala de riesgo FINDRISC y se extrajo muestra sanguínea para análisis bioquímicos; se recibió una muestra de materia fecal, para la extracción del ADN de la microbiota intestinal. El 70% de la población enrolada presentó alteración en el índice de masa corporal (IMC), el 50% riesgo a desarrollar DM2 y el 66% presentó riesgo metabólico. Se seleccionaron 85 voluntarios para el estudio de microbiota intestinal, mediante secuenciación del gen 16S rRNA, utilizando la plataforma Ion Torrent de ThermoFisher. Los análisis bioinformáticos se realizaron sobre los resultados de 40 muestras discriminadas según IMC y el comportamiento glucémico, utilizando el Software QIIME 2TM, los análisis de biodiversidad y de biomarcadores microbianos se realizaron en el Software MicrobiomeAnalyst. Los filos bacterianos más abundantes fueron Firmicutes (49%), Bacteroidetes (39%) y Proteobacteria (7%); se observó que predominaron taxones microbianos asociados a un patrón de alimentación occidental. Se logró identificar catorce biomarcadores microbianos diferentes en cada subgrupo; se encontró relación estadística significativa entre familias, géneros y especies con diferentes parámetros clínicos asociados a disbiosis y de riesgo metabólico. (Texto tomado de la fuente)
dc.description.abstractThe gut microbiota is the community of living microorganisms of the gastrointestinal tract, the loss of balance in it has been related to type 2 diabetes mellitus (DM2) and obesity; two diseases with high comorbidity in recent decades. The objective was to study phylogenetic profiles of the intestinal microbiota in Colombian adults between 40 and 70 years old. Health sessions were held to recruit volunteers; A clinical assessment was performed on 535 participants, which included measurements of body composition and anthropometry. The FINDRISC risk scale was applied, and a blood sample was taken for biochemical analysis; a stool sample was received for DNA extraction from the intestinal microbiota. 70% of the enrolled population presented an alteration in the body mass index (BMI), 50% risk of developing DM2 and 66% presented metabolic risk. 85 volunteers were selected for the intestinal microbiota study, by sequencing the 16S rRNA gene, using ThermoFisher's Ion Torrent platform. The bioinformatic analyzes were carried out on the results of 40 samples discriminated according to BMI and glycemic behavior, using the QIIME 2TM Software, the biodiversity and microbial biomarker analyzes were carried out in the MicrobiomeAnalyst Software. The most abundant bacterial phyla were Firmicutes (49%), Bacteroidetes (39%) and Proteobacteria (7%); it was observed that microbial taxa associated with a western feeding pattern predominated. Fourteen different microbial biomarkers were identified in each subgroup; a significant statistical relationship was found between families, genera and species with different clinical parameters associated with dysbiosis and metabolic risk.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relation[1] M. E. Icaza-Chávez, “Microbiota intestinal en la salud y la enfermedad,” Rev. Gastroenterol. México, vol. 78, no. 4, pp. 240–248, 2013.
dc.relation[2] B. A. Methé et al., “A framework for human microbiome research,” Nature, vol. 486, no. 7402, pp. 215–221, 2012.
dc.relation[3] C. Huttenhower et al., “Structure, function and diversity of the healthy human microbiome,” Nature, vol. 486, no. 7402, pp. 207–214, 2012.
dc.relation[4] J. Qin et al., “Europe PMC Funders Group Europe PMC Funders Author Manuscripts A human gut microbial gene catalog established by metagenomic sequencing,” Nature, vol. 464, no. 7285, pp. 59–65, 2010
dc.relation[5] V. Lazar, L. Ditu, G. G. Pircalabioru, and A. Picu, “Gut Microbiota , Host Organism , and Diet Trialogue in Diabetes and Obesity,” vol. 6, no. March, 2019.
dc.relation[6] E. Z. Gomaa, “Human gut microbiota/microbiome in health and diseases: a review,” Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol., vol. 113, no. 12, pp. 2019–2040, 2020.
dc.relation[7] J. K. Nicholson et al., “Host-gut microbiota metabolic interactions,” Science (80-. )., vol. 336, no. 6086, pp. 1262–1267, 2012.
dc.relation[8] D. Rothschild et al., “Environment dominates over host genetics in shaping human gut microbiota,” Nature, vol. 555, no. 7695, pp. 210–215, 2018.
dc.relation[9] N. C. Wiley, T. G. Dinan, R. P. Ross, C. Stanton, G. Clarke, and J. F. Cryan, “The microbiota-gut-brain axis as a key regulator of neural function and the stress response: Implications for human and animal health,” J. Anim. Sci., vol. 95, no. 7, pp. 3225–3246, 2017.
dc.relation[10] P. Zheng et al., “Erratum: The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice (Science Advances DOI: 10.1126/sciadv.aau8317),” Sci. Adv., vol. 5, no. 6, pp. 1–11, 2019.
dc.relation[11] G. Tomasello et al., “Nutrition, oxidative stress and intestinal dysbiosis: Influence of diet on gut microbiota in inflammatory bowel diseases,” Biomed. Pap., vol. 160, no. 4, pp. 461–466, 2016.
dc.relation[12] G. Musso, R. Gambino, and M. Cassader, “Interactions Between Gut Microbiota and Host Metabolism Predisposing to Obesity and Diabetes,” Annu. Rev. Med., vol. 62, no. 1, pp. 361–380, 2011.
dc.relation[13] S. J. Hong, H. J. Kim, and S. H. Lee, “Antibiotics-induced dysbiosis of intestinal microbiota aggravates atopic dermatitis in mice by altered short-chain fatty acids,” Allergy, Asthma Immunol. Res., vol. 12, no. 1, pp. 137–148, 2020.
dc.relation[14] M. K. Salgaço, L. G. S. Oliveira, G. N. Costa, F. Bianchi, and K. Sivieri, “Relationship between gut microbiota, probiotics, and type 2 diabetes mellitus,” Appl. Microbiol. Biotechnol., no. Who 2016, 2019.
dc.relation[15] OMS, “WHO. Obesity: preventing and managing the global epidemic. Report of a WHO Consultation,” 2010.
dc.relation[16] M. de S. y P. S. C. MSPS, “Encuesta Nacional de la Situación Nutricional-ENSIN 2015.,” 2015.
dc.relation[17] Q. Zeng et al., “Discrepant gut microbiota markers for the classification of obesity-related metabolic abnormalities,” Sci. Rep., vol. 9, no. 1, pp. 1–10, 2019.
dc.relation[18] Y. Wu, Y. Ding, Y. Tanaka, and W. Zhang, “Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention,” Int. J. Med. Sci., vol. 11, no. 11, pp. 1185–1200, 2014.
dc.relation[19] E. Cipriani-Thorne and A. Quintanilla, “Diabetes mellitus tipo 2 y resistencia a la insulina,” Rev. Medica Hered., vol. 21, no. 3, pp. 160–170, 2011.
dc.relation[20] I. D. Federation, “IDF DIABETES ATLAS 10TH edition,” 2021.
dc.relation[21] S. Sangiovanni, J. Aguilar, and H. Asencio-santofimio, “Epidemiología de diabetes mellitus tipo 2 en la población colombiana y factores de riesgo que predisponen a la amputación de miembros inferiores. Revisión de la literatura,” Salut. Sci. Spiritus, vol. 4, no. 1, pp. 49–56, 2018.
dc.relation[22] G. Manuel Moreno, “Definición y clasificación de la obesidad,” Rev. Médica Clínica Las Condes, vol. 23, no. 2, pp. 124–128, 2012.
dc.relation[23] M. Laakso, “Biomarkers for type 2 diabetes,” Mol. Metab., vol. 27, pp. S139–S146, 2019.
dc.relation[24] C. J. Lee, C. L. Sears, and N. Maruthur, “Gut microbiome and its role in obesity and insulin resistance,” Ann. N. Y. Acad. Sci., pp. 1–16, 2019.
dc.relation[25] A. Adeshirlarijaney and A. T. Gewirtz, “Considering gut microbiota in treatment of type 2 diabetes mellitus,” Gut Microbes, vol. 11, no. 3, pp. 253–264, 2020.
dc.relation[26] G. Clarke, K. V. Sandhu, B. T. Griffin, T. G. Dinan, J. F. Cryan, and N. P. Hyland, “Gut reactions: Breaking down xenobiotic–microbiome interactions,” Pharmacol. Rev., vol. 71, no. 2, pp. 198–224, 2019.
dc.relation[27] Y. Wang, Y. Zhou, X. Xiao, J. Zheng, and H. Zhou, “Metaproteomics: A strategy to study the taxonomy and functionality of the gut microbiota,” J. Proteomics, vol. 219, no. March, p. 103737, 2020.
dc.relation[28] J. de la Cuesta-Zuluaga, V. Corrales-Agudelo, E. P. Velásquez-Mejía, J. A. Carmona, J. M. Abad, and J. S. Escobar, “Gut microbiota is associated with obesity and cardiometabolic disease in a population in the midst of Westernization,” Sci. Rep., vol. 8, no. 1, pp. 1–14, 2018.
dc.relation[29] V. De Preter and K. Verbeke, “Metabolomics as a diagnostic tool in gastroenterology,” World J. Gastrointest. Pharmacol. Ther., vol. 4, no. 4, p. 97, 2013.
dc.relation[30] I. Sekirov, S. L. Russell, L. Caetano M Antunes, and B. B. Finlay, “Gut microbiota in health and disease,” Physiol. Rev., vol. 90, no. 3, pp. 859–904, 2010.
dc.relation[31] S. Moossavi, M. C. Arrieta, A. Sanati-Nezhad, and F. Bishehsari, “Gut-on-chip for ecological and causal human gut microbiome research,” Trends Microbiol., pp. 1–12, 2022.
dc.relation[32] J. Álvarez et al., “Gut microbes and health,” Gastroenterol. Hepatol., vol. 44, no. 7, pp. 519–535, 2021.
dc.relation[33] B. Tungland, Gut Microbiota, Early Colonization and Factors in its Development that Influence Health. 2018.
dc.relation[34] B. Christian Milani, Sabrina Duranti, Francesca Bottacini et al., “The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota,” Microbiol. Mol. Biol. Rev., vol. 81, no. 4, pp. 1–67, 2017.
dc.relation[35] B. Verdu, E. F., Galipeau, H. J., & Jabri, “Novel players in coeliac disease pathogenesis: role of the gut microbiota,” Nat. Rev. Gastroenterol. Hepatol., vol. 12, no. 9, pp. 497–506, 2015.
dc.relation[36] M. Breban, “Gut microbiota and inflammatory joint diseases,” Jt. Bone Spine, vol. 83, no. 6, pp. 645–649, 2016.
dc.relation[37] B. Dam, A. Misra, and S. Banerjee, Role of gut microbiota in combating oxidative stress. 2019.
dc.relation[38] C. Binda, L. R. Lopetuso, G. Rizzatti, G. Gibiino, V. Cennamo, and A. Gasbarrini, “Actinobacteria: A relevant minority for the maintenance of gut homeostasis,” Dig. Liver Dis., vol. 50, no. 5, pp. 421–428, 2018.
dc.relation[39] A. M. O’Hara and F. Shanahan, “The gut flora as a forgotten organ,” EMBO Rep., vol. 7, no. 7, pp. 688–693, 2006.
dc.relation[40] M. G. Duque and F. Acero, “Composición Y Funciones De La Flora Bacteriana Intestinal,” Repert. Med. Y Cir., vol. 20, no. 2, pp. 74–82, 2011.
dc.relation[41] R. D. Hills, B. A. Pontefract, H. R. Mishcon, C. A. Black, S. C. Sutton, and C. R. Theberge, “Gut microbiome: Profound implications for diet and disease,” Nutrients, vol. 11, no. 7, pp. 1–40, 2019.
dc.relation[42] C. García-Montero et al., “Nutritional components in western diet versus mediterranean diet at the gut microbiota-immune system interplay. implications for health and disease,” Nutrients, vol. 13, no. 2, pp. 1–53, 2021.
dc.relation[43] E. Rinninella et al., “Food components and dietary habits: Keys for a healthy gut microbiota composition,” Nutrients, vol. 11, no. 10, pp. 1–23, 2019.
dc.relation[44] Y. A. Debnath N, Kumar R, Kumar A, Mehta PK, “Gut-microbiota derived bioactive metabolites and their functions in host physiology.,” Biotechnol Genet Eng Rev, 2021.
dc.relation[45] A. Adak and M. R. Khan, “An insight into gut microbiota and its functionalities,” Cell. Mol. Life Sci., vol. 76, no. 3, pp. 473–493, 2019.
dc.relation[46] D. R. Donohoe et al., “Microbiome, The Regulate, Butyrate Metabolism, Energy,” Cell Metab., vol. 13, no. 5, pp. 517–526, 2011.
dc.relation[47] D. J. Morrison and T. Preston, “Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism,” Gut Microbes, vol. 7, no. 3, pp. 189–200, 2016.
dc.relation[48] J. G. LeBlanc, C. Milani, G. S. de Giori, F. Sesma, D. van Sinderen, and M. Ventura, “Bacteria as vitamin suppliers to their host: A gut microbiota perspective,” Curr. Opin. Biotechnol., vol. 24, no. 2, pp. 160–168, 2013.
dc.relation[49] C. Castañeda, “Microbiota intestinal y salud infantil Intestinal microbiota and child health,” Rev. Cubana Pediatr., vol. 90, no. 1, pp. 94–110, 2018.
dc.relation[50] A. T. Soderholm and V. A. Pedicord, “Intestinal epithelial cells: at the interface of the microbiota and mucosal immunity,” Immunology, vol. 158, no. 4, pp. 267–280, 2019.
dc.relation[51] V. F. Del Coco, “Microorganisms conferring beneficial health effects,” Rev. Argent. Microbiol., vol. 47, no. 3, pp. 171–173, 2015.
dc.relation[52] P. P. Ahern and K. J. Maloy, “REVIEW SERIES : INTERACTIONS OF THE MICROBIOTA WITH THE MUCOSAL IMMUNE SYSTEM Understanding immune – microbiota interactions in the intestine,” Inmunology, pp. 1–11, 2019.
dc.relation[53] C. Gutiérrez-Rodelo, A. Roura-Guiberna, and J. A. Olivares-Reyes, “Mecanismos moleculares de la resistencia a la insulina: Una actualización,” Gac. Med. Mex., vol. 153, no. 2, pp. 214–228, 2017.
dc.relation[54] A. E. Brown and M. Walker, “Genetics of Insulin Resistance and the Metabolic Syndrome,” Curr. Cardiol. Rep., vol. 18, no. 8, 2016.
dc.relation[55] N. Rachdaoui, “Insulin: The friend and the foe in the development of type 2 diabetes mellitus,” Int. J. Mol. Sci., vol. 21, no. 5, pp. 1–21, 2020.
dc.relation[56] A. D. Association/ADA, “Standards of medical care in diabetes—2015 abridged for primary care providers,” Clin. Diabetes, vol. 33, no. 2, pp. 97–111, 2015.
dc.relation[57] P. López-Jaramillo, C. Calderón, J. Castillo, I. D. Escobar, E. Melgarejo, and G. A. Parra, “Prediabetes in Colombia: Expert Consensus,” Colomb. Med., vol. 48, no. 4, pp. 191–203, 2017.
dc.relation[58] A. J. Garber et al., “Consensus Statement By the American Association of Clinical Endocrinologists and American College of Endocrinology on the Comprehensive Type 2 Diabetes Management Algorithm - 2017 Executive Summary,” Endocr. Pract., vol. 23, no. 2, pp. 207–238, 2017.
dc.relation[59] J. Lindström and J. Tuomilehto, “The Diabetes Risk Score,” Diabetes Care, vol. 26, no. 3, pp. 725–731, 2003.
dc.relation[60] MSPS, “Guía de práctica clínica para el diagnóstico, tratamiento y seguimiento de la diabetes mellitus tipo 2 en la población mayor de 18 años.,” 2015.
dc.relation[61] L. Marseglia et al., “Oxidative stress in obesity: A critical component in human diseases,” Int. J. Mol. Sci., vol. 16, no. 1, pp. 378–400, 2015.
dc.relation[62] B. Caballero, “Humans against Obesity: Who Will Win?,” Adv. Nutr., vol. 10, pp. S4–S9, 2019.
dc.relation[63] F. X. Pi-Sunyer, “The obesity epidemic: Pathophysiology and consequences of obesity,” Obes. Res., vol. 10, no. SUPPL. 2, 2002.
dc.relation[64] F. Bäckhed et al., “The gut microbiota as an environmental factor that regulates fat storage,” Proc. Natl. Acad. Sci. U. S. A., vol. 101, no. 44, pp. 15718–15723, 2004.
dc.relation[65] S. F. Clarke et al., “The gut microbiota and its relationship to diet and obesity:New insights,” Gut Microbes, vol. 3, no. 3, pp. 1–17, 2012.
dc.relation[66] R. Fernández, “Modulación de la microbiota intestinal : efecto de los prebióticos y probióticos en la prevención y tratamiento del Síndrome metabólico,” 2013. [Online]. Available: https://pdfs.semanticscholar.org/22c6/aaec4234fccd42a4bf3b840ef5f1bdafbf55.pdf.
dc.relation[67] H. M. Boutagy NE, McMillan RP, Frisard MI, “Metabolic endotoxemia with obesity: Is it real and is it relevant?le,” Biochimie, 2016.
dc.relation[68] T. L. N. Cândido, J. Bressan, and R. de C. G. Alfenas, “Dysbiosis and metabolic endotoxemia induced by high-fat diet,” Nutr. Hosp., vol. 35, no. 6, pp. 1432–1440, 2018.
dc.relation[69] S. Croci, L. I. D’apolito, V. Gasperi, M. V. Catani, and I. Savini, “Dietary strategies for management of metabolic syndrome: Role of gut microbiota metabolites,” Nutrients, vol. 13, no. 5, 2021.
dc.relation[70] L. J. Sun, J. N. Li, and Y. Z. Nie, “Gut hormones in microbiota-gut-brain cross-talk,” Chin. Med. J. (Engl)., vol. 133, no. 7, pp. 826–833, 2020.
dc.relation[71] T. D. Müller et al., “Glucagon-like peptide 1 (GLP-1),” Mol. Metab., vol. 30, no. September, pp. 72–130, 2019.
dc.relation[72] G. Yang et al., “Role of the gut microbiota in type 2 diabetes and related diseases,” Metabolism., vol. 117, p. 154712, 2021.
dc.relation[73] P. Stahel, C. Xiao, X. Davis, P. Tso, and G. F. Lewis, “Glucose and GLP-2 (Glucagon-Like Peptide-2) Mobilize Intestinal Triglyceride by Distinct Mechanisms,” Arterioscler. Thromb. Vasc. Biol., vol. 39, no. 8, pp. 1565–1573, 2019.
dc.relation[74] Y. Yu, F. Raka, and K. Adeli, “The role of the gut microbiota in lipid and lipoprotein metabolism,” J. Clin. Med., vol. 8, no. 12, 2019.
dc.relation[75] S. Arango, “Biomarcadores para la evaluación de riesgo en la salud humana.,” Fax. Nac Salud Pública, vol. 30, no. 1, pp. 75–82, 2012.
dc.relation[76] A. Ahmad et al., “Analysis of gut microbiota of obese individuals with type 2 diabetes and healthy individuals,” PLoS One, vol. 14, no. 12, pp. 1–15, 2019.
dc.relation[77] C. O. Iatcu, A. Steen, and M. Covasa, “Gut microbiota and complications of type-2 diabetes,” Nutrients, vol. 14, no. 1, 2022.
dc.relation[78] M. Yassour et al., “Sub-clinical detection of gut microbial biomarkers of obesity and type 2 diabetes,” Genome Med., vol. 8, no. 1, pp. 1–14, 2016.
dc.relation[79] F. H. Karlsson et al., “Gut metagenome in European women with normal, impaired and diabetic glucose control,” Nature, vol. 498, no. 7452, pp. 99–103, 2013.
dc.relation[80] E. Le Chatelier et al., “Richness of human gut microbiome correlates with metabolic markers,” Nature, vol. 500, no. 7464, pp. 541–546, 2013.
dc.relation[81] H. Wu et al., “The Gut Microbiota in Prediabetes and Diabetes: A Population-Based Cross-Sectional Study,” Cell Metab., vol. 32, no. 3, pp. 379-390.e3, 2020.
dc.relation[82] R. B. Radilla-Vázquez, I. Parra-Rojas, N. E. Martínez-Hernández, Y. F. Márquez-Sandoval, B. Illades-Aguiar, and N. Castro-Alarcón, “Gut microbiota and metabolic endotoxemia in young obese mexican subjects,” Obes. Facts, vol. 9, no. 1, pp. 1–11, 2016.
dc.relation[83] A. N. Sarangi, A. Goel, and R. Aggarwal, “Methods for Studying Gut Microbiota: A Primer for Physicians,” J. Clin. Exp. Hepatol., vol. 9, no. 1, pp. 62–73, 2019.
dc.relation[84] M. H. Fraher, P. W. O’Toole, and E. M. M. Quigley, “Techniques used to characterize the gut microbiota: A guide for the clinician,” Nat. Rev. Gastroenterol. Hepatol., vol. 9, no. 6, pp. 312–322, 2012.
dc.relation[85] E. B. M. Daliri, F. K. Ofosu, R. Chelliah, B. H. Lee, and D. H. Oh, “Challenges and perspective in integrated multi‐omics in gut microbiota studies,” Biomolecules, vol. 11, no. 2, pp. 1–10, 2021.
dc.relation[86] J. E. Clarridge, “Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases,” Clin. Microbiol. Rev., vol. 17, no. 4, pp. 840–862, 2004.
dc.relation[87] T. Hu, N. Chitnis, D. Monos, and A. Dinh, “Next-generation sequencing technologies: An overview,” Hum. Immunol., vol. 82, no. 11, pp. 801–811, 2021.
dc.relation[88] E. R. Mardis, “Next-generation sequencing platforms,” Annu. Rev. Anal. Chem., vol. 6, no. March, pp. 287–303, 2013.
dc.relation[89] S. Rubio, R. A. Pacheco-Orozco, A. M. Gómez, S. Perdomo, and R. García-Robles, “Secuenciación de nueva generación (NGS) de ADN: presente y futuro en la práctica clínica,” Univ. Médica, vol. 61, no. 2, 2020.
dc.relation[90] S. J. Salipante et al., “Performance comparison of Illumina and Ion Torrent next-generation sequencing platforms for 16S rRNA-based bacterial community profiling,” Appl. Environ. Microbiol., vol. 80, no. 24, pp. 7583–7591, 2014.
dc.relation[91] L. Liu et al., “Comparison of next-generation sequencing systems,” J. Biomed. Biotechnol., vol. 2012, 2012.
dc.relation[92] L. E. Bautista, O. F. Herrán, and J. A. Pryer, “Development and simulated validation of a food-frequency questionnaire for the Colombian population,” Public Health Nutr., vol. 8, no. 2, pp. 181–188, 2005.
dc.relation[93] Friedewald, “Estimationof the Concentrationof Low-Density LipoproteinCholesterolin Plasma,Without Useof the PreparativeUltracentrifuge,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2013.
dc.relation[94] L. Technology, “16S rRNA Sequencing; An integrated research solution for bacterial identifcation using 16S rRNA sequencing on the Ion PGM System with Ion Reporter Software; application note.,” 2014.
dc.relation[95] E. Bolyen et al., “Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2,” Nat. Biotechnol., vol. 37, no. 8, pp. 852–857, 2019.
dc.relation[96] D. Peña, Daniel Peña Fundamentos de Estadística Alianza Editorial. 2014.
dc.relation[97] Ministerio de Salud y Protección Social-Colciencias, Guía de práctica clínica: Hipertensión arterial primaria (HTA), vol. 18, no. 18. 2013.
dc.relation[98] Y. Lu et al., “Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: A pooled analysis of 97 prospective cohorts with 1·8 million participants,” Lancet, vol. 383, no. 9921, pp. 970–983, 2014.
dc.relation[99] Y. Gil-Rojas et al., “Burden of Disease Attributable to Obesity and Overweight in Colombia,” Value Heal. Reg. Issues, vol. 20, no. 40, pp. 66–72, 2019.
dc.relation[100] O. F. Herrán, E. M. Gamboa-Delgado, and M. D. P. Zea, “Energy and protein intake in the Colombian population: results of the 2015 ENSIN population survey,” J. Nutr. Sci., pp. 1–10, 2021.
dc.relation[101] G. Seravalle and G. Grassi, “Obesity and hypertension,” Pharmacol. Res., vol. 122, pp. 1–7, 2017.
dc.relation[102] G. A. Bonneau, W. R. Pedrozo, and G. Berg, “Adiponectin and waist circumference as predictors of insulin-resistance in women,” Diabetes Metab. Syndr. Clin. Res. Rev., vol. 8, no. 1, pp. 3–7, 2014.
dc.relation[103] J. A. Gallo Villegas, J. E. Ochoa Múnera, J. K. Balparda Arias, and D. Aristizábal Ocampo, “Puntos de corte del perímetro de la cintura para identificar sujetos con resistencia a la insulina en una población colombiana,” Acta Médica Colomb., vol. 38, no. 3, pp. 118–126, 2013.
dc.relation[104] R. Buendía, M. Zambrano, Á. Díaz, A. Reino, J. Ramírez, and E. Espinosa, “Puntos de corte de perímetro de cintura para el diagnóstico de obesidad abdominal en población colombiana usando bioimpedanciometría como estándar de referencia,” Rev. Colomb. Cardiol., vol. 23, no. 1, pp. 19–25, 2014.
dc.relation[105] M. Stepień et al., “Waist circumference, ghrelin and selected adipose tissue-derived adipokines as predictors of insulin resistance in obese patients: Preliminary results,” Med. Sci. Monit., vol. 17, no. 11, pp. 13–18, 2011.
dc.relation[106] S. H. Kim and F. Abbasi, “Myths about insulin resistance: Tribute to Gerald Reaven,” Endocrinol. Metab., vol. 34, no. 1, pp. 47–52, 2019.
dc.relation[107] A. M. Nevill, M. J. Duncan, and T. Myers, “BMI is dead; long live waist-circumference indices: But which index should we choose to predict cardio-metabolic risk?,” Nutr. Metab. Cardiovasc. Dis., 2022.
dc.relation[108] M. A. Bredella, “Sex Differences in Body Composition. In: Mauvais-Jarvis F. (eds) Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity,” Adv. Exp. Med. Biol., vol. 1043, pp. 9–27, 2017.
dc.relation[109] M. C. Amato et al., “Visceral adiposity index: A reliable indicator of visceral fat function associated with cardiometabolic risk,” Diabetes Care, vol. 33, no. 4, pp. 920–922, 2010.
dc.relation[110] N. Sukkriang, W. Chanprasertpinyo, A. Wattanapisit, C. Punsawad, N. Thamrongrat, and S. Sangpoom, “Correlation of body visceral fat rating with serum lipid profile and fasting blood sugar in obese adults using a noninvasive machine,” Heliyon, vol. 7, no. 2, p. e06264, 2021.
dc.relation[111] D. Gallagher, S. B. Heymsfield, M. Heo, S. A. Jebb, P. R. Murgatroyd, and Y. Sakamoto, “Healthy percentage body fat ranges: An approach for developing guidelines based on body mass index,” Am. J. Clin. Nutr., vol. 72, no. 3, pp. 694–701, 2000.
dc.relation[112] A. . Polyzos, S.A., Margioris, “Sarcopenic Obesity,” vol. 7, no. 2, pp. 321–331, 2018.
dc.relation[113] G. Unger, S. F. Benozzi, F. Perruzza, and G. L. Pennacchiotti, “Índice triglicéridos y glucosa: Un indicador útil de insulinorresistencia,” Endocrinol. y Nutr., vol. 61, no. 10, pp. 533–540, 2014.
dc.relation[114] K. Rygiel, “Hypertriglyceridemia - common causes, prevention and treatment strategies On the crossroads of high TG and CV risk - a safe passage for our patients,” Curr. Cardiol. Rev., vol. 14, pp. 67–76, 2018.
dc.relation[115] D. S. Schade, L. Shey, and R. P. Eaton, “Cholesterol review: A metabolically important molecule,” Endocr. Pract., vol. 26, no. 12, pp. 1514–1523, 2020.
dc.relation[116] K. Gondres Legró, J. Calà Fernández, A. Salabert Revilla, Y. Paez Candelaria, and P. Alexei Bacardi Zapata, “Valores de LDL-colesterol en una población adulta de referencia,” Panor. Cuba y Salud, vol. 10, no. 1, pp. 18–23, 2015.
dc.relation[117] Ministerio de salud y proteccion social, “Guía de práctica clínica para la prevención y seguimiento de dislipidemias en población mayor de 18 años,” Inst. evaluaciones Tecnol. en salud, no. 27, 2014.
dc.relation[118] P. A. Camacho et al., “The spectrum of the dyslipidemia in Colombia: The PURE study,” Int. J. Cardiol., vol. 284, pp. 111–117, 2019.
dc.relation[119] H. E. Palmett-Ríos, “Estudio transversal sobre estilos de vida saludable y su relación con el colesterol HDL en la población adulta,” Rev. Colomb. Cardiol., vol. 24, no. 5, pp. 523–531, 2017.
dc.relation[120] Á. A. López González, Y. I. Rivero Ledo, M. T. Vicente Herrero, M. Gil Llinás, M. Tomás Salvá, and B. Riutord Fe, “Atherogenic indices in workers of different occupational sectors of the Spanish Mediterranean area,” Clin. e Investig. en Arterioscler., vol. 27, no. 3, pp. 118–128, 2015.
dc.relation[121] S. Francula-Zaninovic and I. A. Nola, “Management of Measurable Variable Cardiovascular Disease’ Risk Factors,” Curr. Cardiol. Rev., vol. 14, no. 3, pp. 153–163, 2018.
dc.relation[122] A. Poznyak, A. V. Grechko, P. Poggio, V. A. Myasoedova, V. Alfieri, and A. N. Orekhov, “The diabetes mellitus–atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation,” Int. J. Mol. Sci., vol. 21, no. 5, pp. 1–13, 2020.
dc.relation[123] K. De la Torre-Cisneros, Z. Acosta-Rodríguez, and V. Aragundi-Intriago, “Utilidad clínica de los índices aterogénicos para valoración de riesgo cardiovascular: un enfoque desde el laboratorio clínico,” Dominio las Ciencias, vol. 5, no. 3, p. 57, 2019.
dc.relation[124] M. Ashwell, P. Gunn, and S. Gibson, “Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: Systematic review and meta-analysis,” Obes. Rev., vol. 13, no. 3, pp. 275–286, 2012.
dc.relation[125] M. M. Corrêa, L. A. Facchini, E. Thumé, E. R. A. de Oliveira, and E. Tomasi, “The ability of waist-to-height ratio to identify health risk,” Rev. Saude Publica, vol. 53, pp. 1–12, 2019.
dc.relation[126] S. Anoop et al., “The waist-height ratio is a potential anthropometric index of insulin resistance: Observations based on oral glucose tolerance test in lean, normo-glycaemic, Asian Indian males from Southern India,” Clin. Epidemiol. Glob. Heal., vol. 11, no. May, p. 100762, 2021.
dc.relation[127] R. Gong, G. Luo, M. Wang, L. Ma, S. Sun, and X. Wei, “Associations between TG/HDL ratio and insulin resistance in the US population: a cross-sectional study,” Endocr. Connect., vol. 10, no. 11, pp. 1502–1512, 2021.
dc.relation[128] Y. Hernández-Vite, C. I. Elizalde-Barrera, M. G. Flores-Alcántar, G. Vargas-Ayala, and M. L. Loreto-Bernal, “Asociación entre el índice triglicéridos/colesterol HDL y la glucosa alterada en ayuno en pacientes normotensos con obesidad y sobrepeso,” Med. Interna Mex., vol. 31, no. 5, pp. 507–515, 2015.
dc.relation[129] J. C. Fernández-Macías, A. C. Ochoa-Martínez, J. A. Varela-Silva, and I. N. Pérez-Maldonado, “Atherogenic Index of Plasma: Novel Predictive Biomarker for Cardiovascular Illnesses,” Arch. Med. Res., vol. 50, no. 5, pp. 285–294, 2019.
dc.relation[130] A. García Muñoz et al., “Índices Aterogénicos Y Composición Corporal En Cadetes De Una Escuela De Formación Militar Colombiana,” Sanid. Mil., vol. 76, no. 1, pp. 13–18, 2020.
dc.relation[131] R. Du et al., “LDL-C/HDL-C ratio associated with carotid intima-media thickness and carotid plaques in male but not female patients with type 2 diabetes,” Clin. Chim. Acta, vol. 511, pp. 215–220, 2020.
dc.relation[132] M. Enomoto et al., “LDL-C/HDL-C Ratio Predicts Carotid Intima-Media Thickness Progression Better Than HDL-C or LDL-C Alone,” J. Lipids, vol. 2011, pp. 1–6, 2011.
dc.relation[133] E. L. Johnson, S. L. Heaver, W. A. Walters, and R. E. Ley, “Microbiome and metabolic disease: revisiting the bacterial phylum Bacteroidetes,” J. Mol. Med., vol. 95, no. 1, 2017.
dc.relation[134] G. M. Barlow, A. Yu, and R. Mathur, “Role of the gut microbiome in obesity and diabetes mellitus,” Nutr. Clin. Pract., vol. 30, no. 6, pp. 787–797, 2015.
dc.relation[135] T. E. Sweeney and J. M. Morton, “The human gut microbiome: A review of the effect of obesity and surgically induced weight loss,” JAMA Surg., vol. 148, no. 6, pp. 563–569, 2013.
dc.relation[136] A. Koliada et al., “Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population,” BMC Microbiol., vol. 17, no. 1, pp. 4–9, 2017.
dc.relation[137] A. Schwiertz et al., “Microbiota and SCFA in lean and overweight healthy subjects,” Obesity, vol. 18, no. 1, pp. 190–195, 2010.
dc.relation[138] S. Tims et al., “Microbiota conservation and BMI signatures in adult monozygotic twins,” ISME J., vol. 7, no. 4, pp. 707–717, 2013.
dc.relation[139] F. Magne et al., “The firmicutes/bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients?,” Nutrients, vol. 12, no. 5, 2020.
dc.relation[140] and G. D. W. Marie A. Hildebrandt, Christian Hoffman, Scott A. Sherrill-Mix, Sue A. Keilbaugh, Micah Hamady, Ying-Yu Chen, Rob Knight, Rexford S. Ahima, Frederic Bushman, “HFD-microbiome/NIH Public Access,” Gastroenterology, vol. 137, no. 1, pp. 24.e1-24.e2, 2009.
dc.relation[141] C. De Filippo et al., “Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa,” Proc. Natl. Acad. Sci. U. S. A., vol. 107, no. 33, pp. 14691–14696, 2010.
dc.relation[142] G. Mora-García, A. Trujillo, and V. García-Larsen, “Diet quality, general health and anthropometric outcomes in a Latin American population: Evidence from the Colombian National Nutritional Survey (ENSIN) 2010,” Public Health Nutr., vol. 24, no. 6, pp. 1385–1392, 2021.
dc.relation[143] B. Cornwell, E. Villamor, M. Mora-Plazas, C. Marin, C. A. Monteiro, and A. Baylin, “Processed and ultra-processed foods are associated with lower-quality nutrient profiles in children from Colombia,” Public Health Nutr., vol. 21, no. 1, pp. 142–147, 2018.
dc.relation[144] G. Rizzatti, L. R. Lopetuso, G. Gibiino, C. Binda, and A. Gasbarrini, “Proteobacteria: A common factor in human diseases,” Biomed Res. Int., vol. 2017, 2017.
dc.relation[145] N. R. Shin, T. W. Whon, and J. W. Bae, “Proteobacteria: Microbial signature of dysbiosis in gut microbiota,” Trends Biotechnol., vol. 33, no. 9, pp. 496–503, 2015.
dc.relation[146] L. Crovesy, D. Masterson, and E. L. Rosado, “Profile of the gut microbiota of adults with obesity: a systematic review,” Eur. J. Clin. Nutr., vol. 74, no. 9, pp. 1251–1262, 2020.
dc.relation[147] Y. Litvak, M. X. Byndloss, R. M. Tsolis, and A. J. Bäumler, “Dysbiotic Proteobacteria expansion: a microbial signature of epithelial dysfunction,” Curr. Opin. Microbiol., vol. 39, pp. 1–6, 2017.
dc.relation[148] W. S. Hughes ER, Winter MG, Duerkop BA, Spiga L, Furtado de Carvalho T, Zhu W, Gillis CC, Büttner L, Smoot MP, Behrendt CL, Cherry S, Santos RL, Hooper LV, “Microbial Respiration and Formate Oxidation as Metabolic Signatures of Inflammation-Associated Dysbiosis,” Cell Host Microbe, pp. 208–219, 2017.
dc.relation[149] M. X. Byndloss et al., “Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion,” Science (80-. )., vol. 357, no. 6351, pp. 570–575, 2017.
dc.relation[150] Y. Wang et al., “Phylogenomics of expanding uncultured environmental Tenericutes provides insights into their pathogenicity and evolutionary relationship with Bacilli,” BMC Genomics, vol. 21, no. 1, pp. 1–12, 2020.
dc.relation[151] M. A. K. Azad, M. Sarker, T. Li, and J. Yin, “Probiotic Species in the Modulation of Gut Microbiota: An Overview,” Biomed Res. Int., vol. 2018, 2018.
dc.relation[152] J. Jalanka et al., “The effect of psyllium husk on intestinal microbiota in constipated patients and healthy controls,” Int. J. Mol. Sci., vol. 20, no. 2, 2019.
dc.relation[153] P. Louis and H. J. Flint, “Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine,” FEMS Microbiol. Lett., vol. 294, no. 1, pp. 1–8, 2009.
dc.relation[154] G. M. Silvano, Henrique, Bioactive Food Components Activity in Mechanistic Approach. 2022.
dc.relation[155] Z. Tamanai-Shacoori et al., “Roseburia spp.: A marker of health?,” Future Microbiol., vol. 12, no. 2, pp. 157–170, 2017.
dc.relation[156] M. Gurung et al., “Role of gut microbiota in type 2 diabetes pathophysiology,” EBioMedicine, vol. 51, pp. 1–9, 2020.
dc.relation[157] A. Tomova et al., “The effects of vegetarian and vegan diets on gut microbiota,” Front. Nutr., vol. 6, no. April, 2019.
dc.relation[158] M. J. A. Saad, A. Santos, and P. O. Prada, “Linking gut microbiota and inflammation to obesity and insulin resistance,” Physiology, vol. 31, no. 4, pp. 283–293, 2016.
dc.relation[159] H. Yan et al., “Gut Microbiome Alterations in Patients With Visceral Obesity Based on Quantitative Computed Tomography,” Front. Cell. Infect. Microbiol., vol. 11, no. January, pp. 1–11, 2022.
dc.relation[160] S. Verhoog et al., “Dietary factors and modulation of bacteria strains of akkermansia muciniphila and faecalibacterium prausnitzii: A systematic review,” Nutrients, vol. 11, no. 7, pp. 1–20, 2019.
dc.relation[161] H. E. Leylabadlo et al., “The critical role of Faecalibacterium prausnitzii in human health: An overview,” Microb. Pathog., vol. 149, p. 104344, 2020.
dc.relation[162] M. Lopez-Siles, S. H. Duncan, L. J. Garcia-Gil, and M. Martinez-Medina, “Faecalibacterium prausnitzii: From microbiology to diagnostics and prognostics,” ISME J., vol. 11, no. 4, pp. 841–852, 2017.
dc.relation[163] L. B. Thingholm et al., “Obese individuals with and without type 2 diabetes show different gut microbial functional capacity and composition,” Cell Host Microbe, vol. 26, no. 2, pp. 252–264, 2020.
dc.relation[164] M. Arumugam et al., “Enterotypes in the landscape of gut microbial community composition,” Nature, vol. 473, no. 7346, pp. 174–180, 2011.
dc.relation[165] G. D. Wu et al., “Linking long-term dietary patterns with gut microbial enterotypes,” Science (80-. )., vol. 334, no. 6052, pp. 105–108, 2011.
dc.relation[166] A. Gorvitovskaia, S. P. Holmes, and S. M. Huse, “Interpreting prevotella and bacteroides as biomarkers of diet and lifestyle,” Microbiome, vol. 4, pp. 1–12, 2016.
dc.relation[167] P. Kovatcheva-Datchary et al., “Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella,” Cell Metab., vol. 22, no. 6, pp. 971–982, 2015.
dc.relation[168] H. Zafar and M. H. Saier, “Gut Bacteroides species in health and disease,” Gut Microbes, vol. 13, no. 1, pp. 1–20, 2021.
dc.relation[169] H. M. Wexler, “Bacteroides: The good, the bad, and the nitty-gritty,” Clin. Microbiol. Rev., vol. 20, no. 4, pp. 593–621, 2007.
dc.relation[170] R. C. Kaplan et al., “Erratum: Gut microbiome composition in the Hispanic Community Health Study/Study of Latinos is shaped by geographic relocation, environmental factors, and obesity (Genome Biology (2019) 20 (219) DOI: 10.1186/s13059-019-1831-z),” Genome Biol., vol. 21, no. 1, pp. 1–21, 2020.
dc.relation[171] J. De La Cuesta-Zuluaga et al., “Metformin is associated with higher relative abundance of mucin-degrading akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut,” Diabetes Care, vol. 40, no. 1, pp. 54–62, 2017.
dc.relation[172] S. Mills, C. Stanton, J. A. Lane, G. J. Smith, and R. P. Ross, “Precision nutrition and the microbiome, part I: Current state of the science,” Nutrients, vol. 11, no. 4, pp. 1–45, 2019.
dc.relation[173] J. C. Ezeji et al., “Parabacteroides distasonis: intriguing aerotolerant gut anaerobe with emerging antimicrobial resistance and pathogenic and probiotic roles in human health,” Gut Microbes, vol. 13, no. 1, pp. 1–27, 2021.
dc.relation[174] K. Wang et al., “Parabacteroides distasonis Alleviates Obesity and Metabolic Dysfunctions via Production of Succinate and Secondary Bile Acids,” Cell Rep., vol. 26, no. 1, pp. 222-235.e5, 2019.
dc.relation[175] L. Gallardo-Becerra et al., “Metatranscriptomic analysis to define the Secrebiome, and 16S rRNA profiling of the gut microbiome in obesity and metabolic syndrome of Mexican children,” Microb. Cell Fact., vol. 19, no. 1, pp. 1–18, 2020.
dc.relation[176] K. Hiippala, V. Kainulainen, M. Kalliomäki, P. Arkkila, and R. Satokari, “Mucosal prevalence and interactions with the epithelium indicate commensalism of Sutterella spp.,” Front. Microbiol., vol. 7, no. OCT, pp. 1–13, 2016.
dc.relation[177] D. Tecer et al., “Succinivibrionaceae is dominant family in fecal microbiota of Behçet’s Syndrome patients with uveitis,” PLoS One, vol. 15, no. 10 October, pp. 1–14, 2020.
dc.relation[178] K. Zhang et al., “Desulfovibrio desulfuricans aggravates atherosclerosis by enhancing intestinal permeability and endothelial TLR4/NF-κB pathway in Apoe−/− mice,” Genes Dis., no. xxxx, 2021.
dc.relation[179] A. Sroka-oleksiak et al., “Metagenomic analysis of duodenal microbiota reveals a potential biomarker of dysbiosis in the course of obesity and type 2 diabetes: A pilot study,” J. Clin. Med., vol. 9, no. 2, 2020.
dc.relation[180] M. Nuriel-Ohayon et al., “Progesterone Increases Bifidobacterium Relative Abundance during Late Pregnancy,” Cell Rep., vol. 27, no. 3, pp. 730-736.e3, 2019.
dc.relation[181] F. Turroni, D. van Sinderen, and M. Ventura, “Genomics and ecological overview of the genus Bifidobacterium,” Int. J. Food Microbiol., vol. 149, no. 1, pp. 37–44, 2011.
dc.relation[182] J. Guan et al., “Effect of Bifidobacterium longum subsp. longum on the proliferative and tight-junction activities of Human Fetal Colon Epithelial Cells,” J. Funct. Foods, vol. 86, 2021.
dc.relation[183] L. K. Stenman, A. Waget, C. Garret, P. Klopp, R. Burcelin, and S. Lahtinen, “Potential probiotic Bifidobacterium animalis ssp. lactis 420 prevents weight gain and glucose intolerance in diet-induced obese mice,” Benef. Microbes, vol. 5, no. 4, pp. 437–445, 2014.
dc.relation[184] Q. Zhai, S. Feng, N. Arjan, and W. Chen, “A next generation probiotic, Akkermansia muciniphila,” Crit. Rev. Food Sci. Nutr., vol. 59, no. 19, pp. 3227–3236, 2019.
dc.relation[185] P. Paone and P. D. Cani, “Mucus barrier, mucins and gut microbiota: The expected slimy partners?,” Gut, vol. 69, no. 12, pp. 2232–2243, 2020.
dc.relation[186] G. W. Brennan CA, “Fusobacterium nucleatum - symbiont, opportunist and oncobacterium.,” Nat Rev Microbiol., vol. 176, no. 5, pp. 156–166, 2019.
dc.relation[187] A. Heinken, M. T. Khan, G. Paglia, D. A. Rodionov, H. J. M. Harmsen, and I. Thiele, “Functional metabolic map of Faecalibacterium prausnitzii, a beneficial human gut microbe,” J. Bacteriol., vol. 196, no. 18, pp. 3289–3302, 2014.
dc.relation[188] T. U. Maioli et al., “Possible Benefits of Faecalibacterium prausnitzii for Obesity-Associated Gut Disorders,” Front. Pharmacol., vol. 12, no. December, pp. 1–13, 2021.
dc.relation[189] A. Mukherjee, C. Lordan, R. P. Ross, and P. D. Cotter, “Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health,” Gut Microbes, vol. 12, no. 1, pp. 1–28, 2020.
dc.relation[190] A. Tett et al., “The Prevotella copri Complex Comprises Four Distinct Clades Underrepresented in Westernized Populations,” Cell Host Microbe, vol. 26, no. 5, pp. 666-679.e7, 2019.
dc.relation[191] A. Z. Leite et al., “Detection of increased plasma interleukin-6 levels and prevalence of Prevotella copri and Bacteroides vulgatus in the feces of type 2 diabetes patients,” Front. Immunol., vol. 8, no. SEP, 2017.
dc.relation[192] F. De Vadder, P. Kovatcheva-Datchary, C. Zitoun, A. Duchampt, F. Bäckhed, and G. Mithieux, “Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis,” Cell Metab., vol. 24, no. 1, pp. 151–157, 2016.
dc.relation[193] S. Pisanu et al., “Impact of a moderately hypocaloric mediterranean diet on the gut microbiota composition of italian obese patients,” Nutrients, vol. 12, no. 9, pp. 1–19, 2020.
dc.relation[194] S. J. Pellock et al., “Three structurally and functionally distinct -glucuronidases from the human gut microbe Bacteroides uniformis,” J. Biol. Chem., vol. 293, no. 48, pp. 18559–18573, 2018.
dc.relation[195] M. Duan, Y. Wang, Q. Zhang, R. Zou, M. Guo, and H. Zheng, “Characteristics of gut microbiota in people with obesity,” PLoS One, vol. 16, no. 8 August, pp. 1–15, 2021.
dc.relation[196] A. Nakajima et al., “crossm A Soluble Fiber Diet Increases Bacteroides fragilis Group,” Food M, vol. 86, no. 13, pp. 1–13, 2020.
dc.relation[197] F. Del Chierico et al., “Fecal microbiota signatures of insulin resistance, inflammation, and metabolic syndrome in youth with obesity: a pilot study,” Acta Diabetol., vol. 58, no. 8, pp. 1009–1022, 2021.
dc.relation[198] P. Kulkarni, P. Devkumar, and I. Chattopadhyay, “Could dysbiosis of inflammatory and anti-inflammatory gut bacteria have an implications in the development of type 2 diabetes? A pilot investigation,” BMC Res. Notes, vol. 14, no. 1, pp. 1–7, 2021.
dc.relation[199] T. D. Horvath et al., “Bacteroides ovatus colonization influences the abundance of intestinal short chain fatty acids and neurotransmitters,” iScience, vol. 25, no. 5, p. 104158, 2022.
dc.relation[200] C. Kmezik, D. Krska, S. Mazurkewich, and J. Larsbrink, “Characterization of a novel multidomain CE15-GH8 enzyme encoded by a polysaccharide utilization locus in the human gut bacterium Bacteroides eggerthii,” Sci. Rep., vol. 11, no. 1, pp. 1–13, 2021.
dc.relation[201] S. S. R. Verdam, S. Fuentes, C. de Jonge, E.G. Zoetendal, R. Erbil, J.W. Greve, W.A. Buurman, W.M. de Vos, “Human intestinal microbiota composition in associated with local and systeminc inflammation in obesity - accepted article,” Obes. (Silver Spring), vol. 21, pp. 607–615, 2013.
dc.relation[202] Y. S. Kuang et al., “Connections between the human gut microbiome and gestational diabetes mellitus,” Gigascience, vol. 6, no. 8, pp. 1–12, 2017.
dc.relation[203] D. Mouillot and A. Leprêtre, “A comparison of species diversity estimators,” Res. Popul. Ecol. (Kyoto)., vol. 41, no. 2, pp. 203–215, 1999.
dc.relation[204] J. B. Socolar, J. J. Gilroy, W. E. Kunin, and D. P. Edwards, “How Should Beta-Diversity Inform Biodiversity Conservation?,” Trends Ecol. Evol., vol. 31, no. 1, pp. 67–80, 2016.
dc.relation[205] M. K. Konopiński, “Shannon diversity index: A call to replace the original Shannon’s formula with unbiased estimator in the population genetics studies,” PeerJ, vol. 2020, no. 6, 2020.
dc.relation[206] C. A. Simpson, C. Diaz-Arteche, D. Eliby, O. S. Schwartz, J. G. Simmons, and C. S. M. Cowan, “The gut microbiota in anxiety and depression – A systematic review,” Clin. Psychol. Rev., vol. 83, p. 101943, 2021.
dc.relation[207] M. A. Stanislawski, D. Dabelea, L. A. Lange, B. D. Wagner, and C. A. Lozupone, “Gut microbiota phenotypes of obesity,” npj Biofilms Microbiomes, vol. 5, no. 1, 2019.
dc.relation[208] K. D. Cox et al., “Community assessment techniques and the implications for rarefaction and extrapolation with Hill numbers,” Ecol. Evol., vol. 7, no. 24, pp. 11213–11226, 2017.
dc.relation[209] M. Hernández, N. M. Quijada, D. Rodríguez-Lázaro, and J. M. Eiros, “Bioinformatics of next generation sequencing in clinical microbiology diagnosis,” Rev. Argent. Microbiol., vol. 52, no. 2, pp. 150–161, 2020.
dc.relation[210] E. W. Beals, “Bray-curtis ordination: An effective strategy for analysis of multivariate ecological data,” Adv. Ecol. Res., vol. 14, no. C, pp. 1–55, 1984.
dc.relation[211] N. Segata et al., “Metagenomic biomarker discovery and explanation,” Genome Biol., vol. 12, no. 6, p. R60, 2011.
dc.relation[212] J. Xie et al., “Short-Chain Fatty Acids Produced by Ruminococcaceae Mediate α-Linolenic Acid Promote Intestinal Stem Cells Proliferation,” Mol. Nutr. Food Res., vol. 66, no. 1, pp. 1–12, 2022.
dc.relation[213] C. Bamberger et al., “A walnut-enriched diet affects gut microbiome in healthy caucasian subjects: A randomized, controlled trial,” Nutrients, vol. 10, no. 2, 2018.
dc.relation[214] X. Zhong, J. M. Harrington, S. R. Millar, I. J. Perry, P. W. O’toole, and C. M. Phillips, “Gut microbiota associations with metabolic health and obesity status in older adults,” Nutrients, vol. 12, no. 8, pp. 1–17, 2020.
dc.relation[215] M. Morotomi, F. Nagai, and Y. Watanabe, “Description of Christensenella minuta gen. nov., sp. nov., isolated from human faeces, which forms a distinct branch in the order Clostridiales, and proposal of Christensenellaceae fam. nov,” Int. J. Syst. Evol. Microbiol., vol. 62, no. 1, pp. 144–149, 2011.
dc.relation[216] R. C. E. Bowyer et al., “Use of dietary indices to control for diet in human gut microbiota studies,” Microbiome, vol. 6, no. 1, p. 77, 2018.
dc.relation[217] M. Beaumont et al., “Heritable components of the human fecal microbiome are associated with visceral fat,” Genome Biol., vol. 17, no. 1, pp. 1–19, 2016.
dc.relation[218] K. Oki, M. Toyama, T. Banno, O. Chonan, Y. Benno, and K. Watanabe, “Comprehensive analysis of the fecal microbiota of healthy Japanese adults reveals a new bacterial lineage associated with a phenotype characterized by a high frequency of bowel movements and a lean body type,” BMC Microbiol., vol. 16, no. 1, pp. 1–13, 2016.
dc.relation[219] A. A. Hibberd et al., “Probiotic or synbiotic alters the gut microbiota and metabolism in a randomised controlled trial of weight management in overweight adults,” Benef. Microbes, vol. 10, no. 2, pp. 121–135, 2019.
dc.relation[220] J. K. Goodrich et al., “Human genetics shape the gut microbiome,” Cell, vol. 159, no. 4, pp. 789–799, 2014.
dc.relation[221] J. L. Waters and R. E. Ley, “The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health,” BMC Biol., vol. 17, no. 1, pp. 1–11, 2019.
dc.relation[222] L. A. Sanz, Yolanda, “Solicitud de patente ES2763874A1,” 2763874, 2020.
dc.relation[223] M. Sakamoto, A. Takagaki, K. Matsumoto, Y. Kato, K. Goto, and Y. Benno, “Butyricimonas synergistica gen. nov., sp. nov. and Butyricimonas virosa sp. nov., butyric acid-producing bacteria in the family ‘Porphyromonadaceae’ isolated from rat faeces,” Int. J. Syst. Evol. Microbiol., vol. 59, no. 7, pp. 1748–1753, 2009.
dc.relation[224] W. Zhang, J. H. Xu, T. Yu, and Q. K. Chen, “Effects of berberine and metformin on intestinal inflammation and gut microbiome composition in db/db mice,” Biomed. Pharmacother., vol. 118, no. June, 2019.
dc.relation[225] H. Tan, Q. Zhai, and W. Chen, “Investigations of Bacteroides spp. towards next-generation probiotics,” Food Res. Int., vol. 116, no. 1800, pp. 637–644, 2019.
dc.relation[226] P. Gauffin Cano, A. Santacruz, Á. Moya, and Y. Sanz, “Bacteroides uniformis CECT 7771 ameliorates metabolic and immunological dysfunction in mice with high-fat-diet induced obesity,” PLoS One, vol. 7, no. 7, 2012.
dc.relation[227] M. T. Madigan, K. S. Bender, D. H. Buckley, W. M. Sattley, and D. A. Stahl, Brock biology of microorganisms / Michael T. Madigan [y otros cuatro]. 2018.
dc.relation[228] L. M. Cox et al., “Description of two novel members of the family erysipelotrichaceae: Ileibacterium valens gen. nov., sp. nov. and Dubosiella newyorkensis, gen. nov., sp. nov., from the murine intestine, and emendation to the description of Faecalibacterium rodentium,” Int. J. Syst. Evol. Microbiol., vol. 67, no. 5, pp. 1247–1254, 2017.
dc.relation[229] W. Turpin et al., “Associations of NOD2 polymorphisms with Erysipelotrichaceae in stool of in healthy first degree relatives of Crohn’s disease subjects,” BMC Med. Genet., vol. 21, no. 1, pp. 1–8, 2020.
dc.relation[230] R. Alili et al., “Characterization of the Gut Microbiota in Individuals with Overweight or Obesity during a Real-World Weight Loss Dietary Program: A Focus on the Bacteroides 2 Enterotype,” Biomedicines, vol. 10, no. 1, 2022.
dc.relation[231] R. B. Jones, T. L. Alderete, J. S. Kim, J. Millstein, F. D. Gilliland, and M. I. Goran, “High intake of dietary fructose in overweight/obese teenagers associated with depletion of Eubacterium and Streptococcus in gut microbiome,” Gut Microbes, vol. 10, no. 6, pp. 712–719, 2019.
dc.relation[232] H. Zeng, S. L. Ishaq, F. Q. Zhao, and A. D. G. Wright, “Colonic inflammation accompanies an increase of β-catenin signaling and Lachnospiraceae/Streptococcaceae bacteria in the hind gut of high-fat diet-fed mice,” J. Nutr. Biochem., vol. 35, pp. 30–36, 2016.
dc.relation[233] Z. Jie et al., “The gut microbiome in atherosclerotic cardiovascular disease,” Nat. Commun., vol. 8, no. 1, pp. 1–11, 2017.
dc.relation[234] Y. Zhang et al., “The diversity of gut microbiota in type 2 diabetes with or without cognitive impairment,” Aging Clin. Exp. Res., vol. 33, no. 3, pp. 589–601, 2021.
dc.relation[235] D. Vandeputte et al., “Prebiotic inulin-type fructans induce specific changes in the human gut microbiota,” Gut, vol. 66, no. 11, pp. 1968–1974, 2017.
dc.relation[236] J. L. Hu et al., “Gut Microbiota Community Shift with Severity of Coronary Artery Disease,” Engineering, vol. 7, no. 12, pp. 1715–1724, 2021.
dc.relation[237] J. Toledo-Alarcón, L. Fuentes, C. Etchebehere, N. Bernet, and E. Trably, “Glucose electro-fermentation with mixed cultures: A key role of the Clostridiaceae family,” Int. J. Hydrogen Energy, vol. 46, no. 2, pp. 1694–1704, 2021.
dc.relation[238] T. Van Hecke, J. De Vrieze, N. Boon, W. H. De Vos, E. Vossen, and S. De Smet, “Combined Consumption of Beef-Based Cooked Mince and Sucrose Stimulates Oxidative Stress, Cardiac Hypertrophy, and Colonic Outgrowth of Desulfovibrionaceae in Rats,” Mol. Nutr. Food Res., vol. 63, no. 2, pp. 1–11, 2019.
dc.relation[239] Y. Li, Q. Liu, C. Peng, and B. Ruan, “Both Gut Microbiota and Differentially Expressed Proteins Are Relevant to the Development of Obesity,” Biomed Res. Int., vol. 2020, 2020.
dc.relation[240] W. Zhang-Sun, L. A. Augusto, L. Zhao, and M. Caroff, “Desulfovibrio desulfuricans isolates from the gut of a single individual: Structural and biological lipid A characterization,” FEBS Lett., vol. 589, no. 1, pp. 165–171, 2015.
dc.relation[241] L. A. David et al., “Diet Rapidly Alters the Human Gut Microbiota,” Nature, vol. 505, no. 7484, pp. 559–563, 2014.
dc.relation[242] Á. S. García-Vega, V. Corrales-Agudelo, A. Reyes, and J. S. Escobar, “Diet quality, food groups and nutrients associated with the gut microbiota in a nonwestern population,” Nutrients, vol. 12, no. 10, pp. 1–21, 2020.
dc.relation[243] C. Camerotto, A. Cupisti, C. D’Alessandro, F. Muzio, and M. Gallieni, “Dietary fiber and gut microbiota in renal diets,” Nutrients, vol. 11, no. 9, pp. 1–15, 2019.
dc.relation[244] J. W. Anderson et al., “Health benefits of dietary fiber,” Nutr. Rev., vol. 67, no. 4, pp. 188–205, 2009.
dc.relation[245] FAO, Dietary protein quality evaluation in human nutrition: report of an FAO expert consultation, 31 March-2 April, 2011, Auckland, New Zealand. 2013.
dc.relation[246] L. Schwingshackl et al., “Total Dietary Fat Intake, Fat Quality, and Health Outcomes: A Scoping Review of Systematic Reviews of Prospective Studies.,” Ann. Nutr. Metab., vol. 77, no. 1, pp. 4–15, 2021.
dc.relation[247] J. L. Slavin, “Position of the American Dietetic Association: health implications of dietary fiber.,” J. Am. Diet. Assoc., vol. 108, no. 10, pp. 1716–1731, Oct. 2008.
dc.relation[248] S. Agudelo and M. de S. y P. Minsalud, “Recomendaciones de Ingesta de COMPRAS PÚBLICAS Energía y Nutrientes (RIEN) para la población colombiana Documento Resumen,” p. 22, 2016.
dc.relation[249] J. J. Carrero et al., “Efectos cardiovasculares de los ácidos grasos omega-3 y alternativas para incrementar su ingesta,” Nutr. Hosp., vol. 20, no. 1, pp. 63–69, 2005.
dc.relation[250] G. Merra et al., “Influence of mediterranean diet on human gut microbiota,” Nutrients, vol. 13, no. 1, pp. 1–12, 2021.
dc.relation[251] A. Beam, E. Clinger, and L. Hao, “Effect of diet and dietary components on the composition of the gut microbiota,” Nutrients, vol. 13, no. 8, pp. 1–15, 2021.
dc.relation[252] Y. Zhang, Y. Wang, B. Ke, and J. Du, “TMAO: how gut microbiota contributes to heart failure,” Transl. Res., vol. 228, pp. 109–125, 2021.
dc.relation[253] Z. W. Guan, E. Z. Yu, and Q. Feng, “Soluble dietary fiber, one of the most important nutrients for the gut microbiota,” Molecules, vol. 26, no. 22, pp. 1–15, 2021.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleAnálisis de microbiota intestinal en población adulta colombiana asociada a factores de riesgo de diabetes mellitus tipo 2 y obesidad.
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución