dc.contributor | Restrepo Calle, Felipe | |
dc.contributor | Plas Programming languages And Systems | |
dc.creator | Chaparro Amaya, Edna Johanna | |
dc.date.accessioned | 2023-01-20T17:55:21Z | |
dc.date.accessioned | 2023-06-07T00:25:42Z | |
dc.date.available | 2023-01-20T17:55:21Z | |
dc.date.available | 2023-06-07T00:25:42Z | |
dc.date.created | 2023-01-20T17:55:21Z | |
dc.date.issued | 2022 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/83049 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6651959 | |
dc.description.abstract | El reciente crecimiento de nuevas formas de datos educativos, ha hecho que la analítica del aprendizaje surja como una solución para identificar información relevante en la toma de decisiones educativas. Un grupo de investigaciones en analítica del aprendizaje se concentra en identificar variables del proceso de aprendizaje relacionadas con el desempeño académico de los estudiantes. Sin embargo, pocas investigaciones consideran el uso de metodologías mixtas o cualitativas, lo que limita el entendimiento sobre los comportamientos de los alumnos. El objetivo general de este trabajo es determinar las relaciones existentes entre las medidas y métricas derivadas del proceso de aprendizaje y el rendimiento académico de los estudiantes en la asignatura Programación de Computadores de la Facultad de Ingeniería en la Universidad Nacional de Colombia durante 2019 y 2020. Este trabajo propone un diseño metodológico con enfoque mixto, no experimental, donde la fase cualitativa de la metodología está enfocada hacia el análisis de contenido. Los resultados evidencian que existe una correlación positiva entre la cantidad de intentos de solución realizados por el alumno y su desempeño académico, lo que posiblemente se puede asociar a las percepciones de los estudiantes sobre la plataforma educativa utilizada en el curso como un ambiente que promueve la práctica constante debido a su disponibilidad en línea. Los errores/veredictos de las soluciones enviadas (respuesta correctas e incorrecta, límite de memoria excedido, errores de compilación y límite de tiempo excedido) también tienen correlaciones positivas, las cuales son corroboradas con las referencias de los estudiantes sobre retroalimentación formativa, consejos orientativos y casos de prueba. Métricas de software como el conteo de tokens y las líneas de código de los programas diseñados por los estudiantes tienen una correlación positiva significativa con la calificación final del alumno, lo cual se puede vincular con las referencias sobre ejercicios estimulantes y motivantes dentro de la plataforma educativa. Por otra parte, el índice de mantenibilidad tiene una correlación negativa, lo que se puede relacionar con las opiniones que resaltan la obtención de habilidades de programación. En contraste, se observan correlaciones negativas entre el uso de las herramientas de la plataforma educativa utilizada en el curso (p. ej. pruebas personalizadas, visualización de la ejecución del código y verificación de buenas prácticas de programación) con el rendimiento académico, las cuales son refutadas con las referencias de los estudiantes a estas herramientas como elementos positivos de la plataforma. En conclusión, se evidencia como el uso de métodos mixtos permite que los hallazgos de la fase cuantitativa sean corroborados, complementados o refutados por medio de las observaciones de los datos cualitativos. (Texto tomado de la fuente). | |
dc.description.abstract | The recent growth of new forms of educational data has led to the emergence of learning analytics as a solution to identify relevant information for educational decision making. A body of research in learning analytics focuses on identifying learning process variables related to students’ academic performance. However, little research considers the use of mixed or qualitative methodologies, which limits the understanding of student behaviors. The general objective of this work is to determine the existing relationships between measures and metrics derived from the learning process and the academic performance of students in the Computer Programming courses of the Faculty of Engineering at the National University of Colombia during 2019 and 2020. This work proposes a methodological design with a mixed, non-experimental approach, where the qualitative phase of the methodology is focused on content analysis. The results show that there is a positive correlation between the number of solution attempts made by the student and their academic performance, which can possibly be associated with the students’ perceptions of the educational platform used in the course as an environment that promotes constant practice due to its online availability. Errors/verdicts of submitted solutions (correct and incorrect answer, memory limit exceeded, compilation errors, and time limit exceeded) also have positive correlations, which are corroborated with students’ references to formative feedback, guiding hints, and test cases. Software metrics such as token count and lines of code of student-designed programs have a significant positive correlation with the student’s final grade, which can be linked to references about stimulating and motivating exercises within the educational platform. On the other hand, the maintainability index has a negative correlation, which can be linked to opinions highlighting the attainment of programming skills. In contrast, negative correlations are observed between the use of the educational platform tools used in the course (e.g., custom input tests, visualization of code execution and verification of good programming practices) with academic performance, which are refuted by the students’ references to these tools as positive elements of the platform. In conclusion, it is evident how the use of mixed methods allows the findings of the quantitative phase to be corroborated, complemented or refuted by the observations of the qualitative data. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Aljohani, N. R., Daud, A., Abbasi, R. A., Alowibdi, J. S., Basheri, M. & Aslam, M. A. (2019). An integrated
framework for course adapted student learning analytics dashboard. Computers in Human
Behavior, 92, 679-690. | |
dc.relation | Andergassen, M., Mödritscher, F. & Neumann, G. (2014). Practice and Repetition during Exam Preparation
in Blended Learning Courses: Correlations with Learning Results. Journal of Learning
Analytics, 1(1), 48-74. | |
dc.relation | Ang, K. L.-M., Ge, F. L. & Seng, K. P. (2020). Big Educational Data amp; Analytics: Survey, Architecture
and Challenges. IEEE Access, 8, 116392-116414. https://doi.org/10.1109/ACCESS.2020.
2994561 | |
dc.relation | Argyris, C. & Schon, D. A. (1974). Theory in practice: Increasing professional effectiveness. Jossey-Bass. | |
dc.relation | Arnold, K. E. & Pistilli, M. D. (2012). Course Signals at Purdue: Using Learning Analytics to Increase
Student Success. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge,
267-270. | |
dc.relation | Azcona, D., Hsiao, I.-H. & Smeaton, A. F. (2019). Detecting students-at-risk in computer programming
classes with learning analytics from students’ digital footprints. User Modeling and User-
Adapted Interaction, 29, 759-788. | |
dc.relation | Baker, R. S. & Inventado, P. S. (2014). Educational Data Mining and Learning Analytics. Learning Analytics:
From Research to Practice (pp. 61-75). Springer New York. | |
dc.relation | Barber, R. & Sharkey, M. (2012). Course Correction: Using Analytics to Predict Course Success. Proceedings
of the 2nd International Conference on Learning Analytics and Knowledge, 259-262. https:
//doi.org/10.1145/2330601.2330664 | |
dc.relation | Berelson, B. (1952). Content analysis in communication research. Glencoe (Ill.) : Free Press. | |
dc.relation | Berland, M., Davis, D. & Smith, C. P. (2015). AMOEBA: Designing for collaboration in computer science
classrooms through live learning analytics. International Journal of Computer-Supported Collaborative
Learning, 10, 425-4447. | |
dc.relation | Blikstein, P. (2011). Using Learning Analytics to Assess Students’ Behavior in Open-Ended Programming
Tasks. Proceedings of the 1st International Conference on Learning Analytics and Knowledge,
110-116. | |
dc.relation | Blikstein, P., Worsley, M., Piech, C., Sahami, M., Cooper, S. & Koller, D. (2014). Programming Pluralism:
Using Learning Analytics to Detect Patterns in the Learning of Computer Programming. Journal
of the Learning Sciences, 23(4), 561-599. | |
dc.relation | Bryman, A. (2015). Mixed methods research: combining quantitative and qualitative research. Social
Research Methods. Oxford University Press. | |
dc.relation | Cao, L. (2017). Data Science: A Comprehensive Overview. ACM Comput. Surv., 50(3). | |
dc.relation | Carter, A., Hundhausen, C. & Olivares, D. (2019). Leveraging the Integrated Development Environment for
Learning Analytics. University Press. | |
dc.relation | Chaparro, E., Restrepo-Calle, F. & Ramírez-Echeverry, J. J. (2021). Learning analytics in computer programming
courses [October 19–21, 2021, Arequipa, Perú]. Proceedings of the IV Latin American
Conference on Learning Analytics, 78-87. http://ceur-ws.org/Vol-3059/paper8.pdf | |
dc.relation | Charlton, P., Mavrikis, M. & Katsifli, D. (2013). The Potential of Learning Analytics and Big Data. Ariadne.
http://www.ariadne.ac.uk/issue/71/charlton-et-al/ | |
dc.relation | Clow, D. (2012). The Learning Analytics Cycle: Closing the loop effectively. Proceedings of the 2nd International
Conference on Learning Analytics and Knowledge - LAK ’12, 134-138. | |
dc.relation | Coffrin, C., Corrin, L., de Barba, P. & Kennedy, G. (2014). Visualizing Patterns of Student Engagement
and Performance in MOOCs. Proceedings of the Fourth International Conference on Learning Analytics
And Knowledge, 83-92. | |
dc.relation | Corbin, J. M. & Strauss, A. (1990). Grounded theory research: Procedures, canons, and evaluative
criteria. Qualitative Sociology, 13(1), 3-21. https://doi.org/10.1007/BF00988593 | |
dc.relation | Creswell, J. W. (2014). Chapter 1: The Selection of a Research Approach. Research Design Qualitative,
Quantitative, And Mixed Methods Approaches (4th). SAGE Publications. | |
dc.relation | Dascalu, M.-I., Bodea, C.-N., Mogos, R. I., Purnus, A. & Tesila, B. (2018). A Survey on Social Learning
Analytics: Applications, Challenges and Importance. En G. C. Silaghi, R. A. Buchmann y C. Boja
(Eds.), Informatics in Economy (pp. 70-83). Springer International Publishing. | |
dc.relation | Dhakal, K. (2022). NVivo. Journal of the Medical Library Association : JMLA, 110(2), 270-272. | |
dc.relation | Dietze, S., Siemens, G., Taibi, D. & Drachsler, H. (2016). Editorial: Datasets for Learning Analytics.
Journal of Learning Analytics, 3(2), 307-311. | |
dc.relation | Drachsler, H. & Greller, W. (2016). Privacy and Analytics: It’s a DELICATE Issue a Checklist for Trusted
Learning Analytics. Proceedings of the Sixth International Conference on Learning Analytics &
Knowledge, 89-98. | |
dc.relation | Elia, G., Solazzo, G., Lorenzo, G. & Passiante, G. (2019). Assessing learners’ satisfaction in collaborative
online courses through a big data approach. Computers in Human Behavior, 92, 589-599. | |
dc.relation | Ferguson, R. (2012). Learning analytics: drivers, developments and challenges. International Journal of
Technology Enhanced Learning, 4(5/6), 304-317. | |
dc.relation | Gasevic, D., Mirriahi, N., Long, P. & Dawson, S. (2014). Editorial: Inaugural Issue of the Journal of
Learning Analytics. Journal of Learning Analytics, 1(1). | |
dc.relation | Gašević, D., Mirriahi, N. & Dawson, S. (2014). Analytics of the Effects of Video Use and Instruction to
Support Reflective Learning. Proceedings of the Fourth International Conference on Learning Analytics
And Knowledge, 123-132. | |
dc.relation | Gergen, K. J., Josselson, R. & Freeman, M. (2015). The promises of qualitative inquiry. American Psychologist,
70(1), 1-9. | |
dc.relation | Guo, P. J. (2013). Online Python Tutor: Embeddable Web-Based Program Visualization for Cs Education.
Proceeding of the 44th ACM Technical Symposium on Computer Science Education, 579-584.
https://doi.org/10.1145/2445196.2445368 | |
dc.relation | Hernández-Sampieri, R., Fernández-Collado, C. & Baptista-Lucio, P. (2014). Proceso de la investigación
cualitativa. Metodología de la Investigación. McGraw-Hill. | |
dc.relation | Hilliger, I., Ortiz-Rojas, M., Pesántez-Cabrera, P., Scheihing, E., Tsai, Y.-S., Muñoz-Merino, P. J., Broos,
T., Whitelock-Wainwright, A. & Pérez-Sanagustín, M. (2020). Identifying needs for learning
analytics adoption in Latin American universities: A mixed-methods approach. The Internet and
Higher Education, 45, 100726. | |
dc.relation | Hsiao, I.-H. & Lin, Y.-L. (2017). Enriching programming content semantics: An evaluation of visual
analytics approach. Computers in Human Behavior, 72, 771-782. | |
dc.relation | Hu, Q. & Huang, Y. (2018). A Framework for Analysis Learning Pattern Toward Online Forum in Programming
Course. En L. Deng, W. W. K. Ma y C. W. R. Fong (Eds.), New Media for Educational
Change (pp. 71-80). Springer Singapore. | |
dc.relation | Ifenthaler, D. (2017). Are Higher Education Institutions Prepared for Learning Analytics? TechTrends,
61(4), 366-371. | |
dc.relation | Ihantola, P., Vihavainen, A., Ahadi, A., Butler, M., Börstler, J., Edwards, S. H., Isohanni, E., Korhonen,
A., Petersen, A., Rivers, K., Rubio, M. Á., Sheard, J., Skupas, B., Spacco, J., Szabo, C. & Toll, D.
(2015). Educational Data Mining and Learning Analytics in Programming: Literature Review
and Case Studies. ITICSE-WGR ’15: Proceedings of the 2015 ITiCSE on Working Group Reports.,
41-63. | |
dc.relation | Kizilcec, R. F., Pérez-Sanagustín, M. & Maldonado, J. J. (2017). Self-regulated learning strategies predict
learner behavior and goal attainment in Massive Open Online Courses. Computers and
Education, 104, 18-33. | |
dc.relation | Klašnja-Milićević, A., Vesin, B., Ivanović, M. & Budimac, Z. (2011). E-Learning personalization based
on hybrid recommendation strategy and learning style identification. Computers & Education,
56(3), 885-899. | |
dc.relation | Kolb, D. A. (1984). Experiential learning: experience as thesource of learning and development. Prentice Hall. | |
dc.relation | Kop, R., Fournier, H. & Durand, G. (2017). A Critical Perspective on Learning Analytics and Educational
Data Mining. En C. Lang, G. Siemens, A. F. Wise y D. Gaševic (Eds.), The Handbook of Learning
Analytics (1.a ed., pp. 319-326). Society for Learning Analytics Research (SoLAR). | |
dc.relation | Kumar, V. S., Kinshuk, Somasundaram, T. S., Boulanger, D., Seanosky, J. & Vilela, M. F. (2015). Big
Data Learning Analytics: A New Perpsective. Ubiquitous Learning Environments and Technologies
(pp. 139-158). Springer Berlin Heidelberg. | |
dc.relation | Kurilovas, E. (2019). Advanced machine learning approaches to personalise learning: learning analytics
and decision making. Behaviour and Information Technology, 38(4), 410-421. | |
dc.relation | Lagus, J., Longi, K., Klami, A. & Hellas, A. (2018). Transfer-Learning Methods in Programming Course
Outcome Prediction. ACM Trans. Comput. Educ., 18(4). | |
dc.relation | Laurillard, D. (2002). Rethinking University Teaching: A conversational framework for the effective use of
learning technologies. Routledge. | |
dc.relation | Leony, D., Muñoz-Merino, P. J., Pardo, A. & Delgado Kloos, C. (2013). Provision of awareness of learners’
emotions through visualizations in a computer interaction-based environment. Expert
Systems with Applications, 40(13), 5093-5100. | |
dc.relation | Lockyer, L. & Dawson, S. (2011). Learning Designs and Learning Analytics. Proceedings of the 1st International
Conference on Learning Analytics and Knowledge, 153-156. | |
dc.relation | Long, P. & Siemens, G. (2011). Penetrating the Fog: Analytics in Learning and Education. EDUCAUSE
Review, 46(5), 31-40. | |
dc.relation | Lonn, S., Aguilar, S. J. & Teasley, S. D. (2015). Investigating student motivation in the context of a
learning analytics intervention during a summer bridge program. Computers in Human Behavior,
47, 90-97. | |
dc.relation | Lu, O. H. T., Huang, J. C. H., Huang, A. Y. Q. & Yang, S. J. H. (2017). Applying learning analytics for
improving students engagement and learning outcomes in an MOOCs enabled collaborative
programming course. Interactive Learning Environments, 25(2), 220-234. | |
dc.relation | Macfadyen, L. P. & Dawson, S. (2010). Mining LMS data to develop an “early warning system” for
educators: A proof of concept. Computers and Education, 54(2), 588-599. | |
dc.relation | Mangaroska, K. & Giannakos, M. (2017). Learning Analytics for Learning Design: Towards Evidence-
Driven Decisions to Enhance Learning. En É. Lavoué, H. Drachsler, K. Verbert, J. Broisin y M.
Pérez-Sanagustín (Eds.), Data Driven Approaches in Digital Education (pp. 428-433). Springer
International Publishing. | |
dc.relation | Martin, F. & Whitmer, J. C. (2016). Applying Learning Analytics to Investigate Timed Release in Online
Learning. Technology, Knowledge and Learning, 21, 59-74. | |
dc.relation | Monllaó Olivé, D., Huynh, D. Q., Reynolds, M., Dougiamas, M. & Wiese, D. (2020). A supervised learning
framework: using assessment to identify students at risk of dropping out of a MOOC.
Journal of Computing in Higher Education, 32, 9-26. | |
dc.relation | Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R. & Muharemagc, E. (2016).
Deep Learning Techniques in Big Data Analytics. Big Data Technologies and Applications (pp. 133-156).
Springer International Publishing. https://doi.org/10.1007/978-3-319-44550-2\_5 | |
dc.relation | Pardo, A. & Siemens, G. (2014). Ethical and privacy principles for learning analytics. British Journal of
Educational Technology, 45(3), 438-450. | |
dc.relation | Pistilli, M. D., Willis, J. E. & Campbell, J. P. (2014). Analytics Through an Institutional Lens: Definition,
Theory, Design, and Impact. Learning Analytics: From Research to Practice (pp. 79-102). Springer
New York. | |
dc.relation | Ramírez-Echeverry, J. J., Restrepo-Calle, F. & González, F. A. (2022). A case study in technologyenhanced
learning in an introductory computer programming course. Global Journal of Engineering
Education, 24(1). | |
dc.relation | Restrepo-Calle, F., Ramírez-Echeverry, J. & Gonzalez, F. (2018). UNCODE: INTERACTIVE SYSTEM FOR
LEARNING AND AUTOMATIC EVALUATION OF COMPUTER PROGRAMMING SKILLS. EDULEARN18
Proceedings, 6888-6898. https://doi.org/10.21125/edulearn.2018.1632 | |
dc.relation | Restrepo-Calle, F., Ramírez Echeverry, J. J. & González, F. A. (2019). Continuous assessment in a computer
programming course supported by a software tool. Computer Applications in Engineering
Education, 27(1), 80-89. https://doi.org/10.1002/cae.22058 | |
dc.relation | Restrepo-Calle, F., Ramírez-Echeverry, J. J. & González, F. A. (2020). Using an Interactive Software
Tool for the Formative and Summative Evaluation in a Computer Programming Course: an
Experience Report. Global Journal of Engineering Education, 22(3), 174-185. | |
dc.relation | Rienties, B. & Toetenel, L. (2016). The Impact of 151 Learning Designs on Student Satisfaction and
Performance: Social Learning (Analytics) Matters. Proceedings of the Sixth International Conference
on Learning Analytics and Knowledge, 339-343. | |
dc.relation | Robinson, C., Yeomans, M., Reich, J., Hulleman, C. & Gehlbach, H. (2016). Forecasting Student Achievement
in MOOCs with Natural Language Processing. Proceedings of the Sixth International Conference
on Learning Analytics & Knowledge, 383-387. | |
dc.relation | Ruipérez-Valiente, J. A., Muñoz-Merino, P. J., Leony, D. & Kloos, C. D. (2015). ALAS-KA: A learning
analytics extension for better understanding the learning process in the Khan Academy platform.
Computers in Human Behavior, 47, 139-148. | |
dc.relation | Scheffel, M., Niemann, K., Leony, D., Pardo, A., Schmitz, H.-C., Wolpers, M. & Delgado Kloos, C.
(2012). Key Action Extraction for Learning Analytics. En A. Ravenscroft, S. Lindstaedt, C. D.
Kloos y D. Hernández-Leo (Eds.), 21st Century Learning for 21st Century Skills (pp. 320-333).
Springer Berlin Heidelberg. | |
dc.relation | Schmitz, M., van Limbeek, E., Greller, W., Sloep, P. & Drachsler, H. (2017). Opportunities and Challenges
in Using Learning Analytics in Learning Design. En É. Lavoué, H. Drachsler, K. Verbert, J.
Broisin y M. Pérez-Sanagustín (Eds.), Data Driven Approaches in Digital Education (pp. 209-223).
Springer International Publishing. | |
dc.relation | Schön, D. A. (1983). The Reflective Practitioner: How professionals think in action. Temple Smith. | |
dc.relation | Schön, D. A. (1991). The Reflective Turn: Case studies in and on educational practice. Teachers College
Press. | |
dc.relation | Selwyn, N. (2020). Re-imagining ‘Learning Analytics’ … a case for starting again? The Internet and Higher
Education, 46, 100745. | |
dc.relation | Seufert, S. & Meier, C. (2018). Big Data in Education: Supporting Learners in Their Role as Reflective
Practitioners. Frontiers of Cyberlearning: Emerging Technologies for Teaching and Learning (pp. 103-123).
Springer Singapore. | |
dc.relation | Shen, H., Liang, L., Law, N., Hemberg, E. & O’Reilly, U.-M. (2020). Understanding Learner Behavior Through
Learning Design Informed Learning Analytics. Proceedings of the Seventh ACM Conference
on Learning @ Scale, 135-145. | |
dc.relation | Siemens, G. (2013). Learning Analytics: The Emergence of a Discipline. American Behavioral Scientist,
57(10), 1380-1400. | |
dc.relation | Society for Learning Analytics Research, S. (2022). What is Learning Analytics? https://www.solaresearch.
org/about/what-is-learning-analytic | |
dc.relation | Stemler, S. (2000). An overview of content analysis. Practical assessment, research, and evaluation, 7(1),17. | |
dc.relation | Tabuenca, B., Kalz, M., Drachsler, H. & Specht, M. (2015). Time will tell: The role of mobile learning
analytics in self-regulated learning. Computers and Education, 89, 53-74. | |
dc.relation | Tam, V., Lam, E. Y., Huang, Y., Liu, K., Tam, V. & Tse, P. (2016). Developing the Petal E-Learning Platform
for Facial Analytics and Personalized Learning. Learning, Design, and Technology: An International
Compendium of Theory, Research, Practice, and Policy (pp. 1-17). Springer International
Publishing. | |
dc.relation | Tempelaar, D. T., Rienties, B. & Giesbers, B. (2016). Verifying the Stability and Sensitivity of Learning
Analytics Based Prediction Models: An Extended Case Study. En S. Zvacek, M. T. Restivo, J.
Uhomoibhi y M. Helfert (Eds.), Computer Supported Education (pp. 256-273). Springer International
Publishing. | |
dc.relation | Trætteberg, H., Mavroudi, A., Sharma, K. & Giannakos, M. (2017). Utilizing Real-Time Descriptive
Learning Analytics to Enhance Learning Programming. Learning, Design, and Technology: An International
Compendium of Theory, Research, Practice, and Policy (pp. 1-22). Springer International
Publishing. | |
dc.relation | Vahdat, M., Oneto, L., Anguita, D., Funk, M. & Rauterberg, M. (2015). A Learning Analytics Approach to
Correlate the Academic Achievements of Students with Interaction Data from an Educational
Simulator. En G. Conole, T. Klobučar, C. Rensing, J. Konert y E. Lavoué (Eds.), Design for Teaching
and Learning in a Networked World (pp. 352-366). Springer International Publishing. | |
dc.relation | Wong, B. T.-m. & Li, K. C. (2020). A review of learning analytics intervention in higher education
(2011–2018). Journal of Computers in Education, 7, 7-28. | |
dc.relation | Wu, Y. & Wu, W. (2018). A Learning Analytics System for Cognition Analysis in Online Learning Community.
En L. H. U y H. Xie (Eds.), Web and Big Data (pp. 243-258). Springer International
Publishing. | |
dc.relation | Zacharis, N. Z. (2015). A multivariate approach to predicting student outcomes in web-enabled blended
learning courses. The Internet and Higher Education, 27, 44-53. | |
dc.relation | Zikopoulos, P., Eaton, C. & IBM. (2011). Understanding Big Data: Analytics for Enterprise Class Hadoop
and Streaming Data (1st). McGraw-Hill Osborne Media. | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Analítica de aprendizaje en la asignatura Programación de Computadores: una investigación basada en métodos mixtos | |
dc.type | Trabajo de grado - Maestría | |