dc.contributorArunachalam, Viswanathan
dc.contributorProcesos Estocásticos
dc.contributorProcesos Estoc´asticos
dc.contributorAndres Felipe Rincon Prieto
dc.creatorRincón Prieto, Andrés Felipe
dc.date.accessioned2023-04-27T16:17:07Z
dc.date.accessioned2023-06-07T00:23:49Z
dc.date.available2023-04-27T16:17:07Z
dc.date.available2023-06-07T00:23:49Z
dc.date.created2023-04-27T16:17:07Z
dc.date.issued2023
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/83804
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6651938
dc.description.abstractEl SARS-COV2 es un virus que se ha propagado por todo el mundo y ha generado una crisis de sanitaria global. El objetivo de este trabajo es proponer un modelo SEIR modificado para describir la dinámica de la propagación del COVID-19 en el Pacífico Nariñense a partir de los datos suministrados por el Instituto Nacional de Salud (INS). Computacionalmente se realizan experimentos para el modelo SEIR modificado con lo que se espera estimar algunos parámetros del modelo y proponer la modelación de posibles escenarios de la propagación del virus. (Texto tomado de la fuente)
dc.description.abstractSARS-COV2 is a virus that has spread worldwide and has generated a global health crisis. The objective of this work is to propose a modified SEIR model to describe the dynamics of the spread of COVID-19 in the Pacific of Nari˜no based on data provided by the National Institute of Health (INS). Computational experiments are performed for the modified SEIR model with which it is expected to estimate some parameters of the model and propose the modeling of possible scenarios of virus spread.
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Estadística
dc.publisherFacultad de Ciencias
dc.publisherBogotá,Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAllen, L. J. (2010). An introduction to stochastic processes with applications to biology. CRC press
dc.relationAtkinson, K., Han, W., and Stewart, D. E. (2011). Numerical solution of ordinary differential equations. John Wiley & Sons.
dc.relationBastin, G. (2018). Lectures on mathematical modelling of biological systems. GBIO2060.
dc.relationBhattacharyya, R., Kundu, R., Bhaduri, R., Ray, D., Beesley, L. J., Salvatore, M., and Mukherjee, B. (2021). Incorporating false negative tests in epidemiological models for SARS-Cov-2 transmission and reconciling with seroprevalence estimates. Scientific reports, 11(1):1–14.
dc.relationBlanco, L. (2019). Probabilidad. Univ. Nacional de Colombia.
dc.relationBlanco, L., Arunachalam, V., and Dharmaraja, S. (2012). Introduction to probability and stochastic processes with applications. John Wiley & Sons
dc.relationCooper, I., Mondal, A., and Antonopoulos, C. G. (2020). A SIR model assumption for the spread of covid-19 in different communities. Chaos, Solitons & Fractals, 139:110057.
dc.relationDiekmann, O., Heesterbeek, J., and Roberts, M. G. (2010). The construction of next-generation matrices for compartmental epidemic models. Journal of the Royal Society Interface, 7(47):873–885.
dc.relationHairer, E., Wanner, G., and Nørsett, S. P. (1993). Classical Mathematical Theory. Solving Ordinary Differential Equations I: Nonstiff Problems, pages 1–128
dc.relationHeffernan, J. M., Smith, R. J., and Wahl, L. M. (2005). Perspectives on the basic reproductive ratio. Journal of the Royal Society Interface, 2(4):281–293.
dc.relationKaratzas, I. and Shreve, S. (2012). Brownian Motion and Stochastic Calculus, volume 113. Springer Science & Business Media
dc.relationØksendal, B. (2003). Stochastic Differential Equations. In Stochastic differential equations, pages 65–84. Springer.
dc.relationRivera-Rodriguez, C. and Urdinola, B. P. (2020). Predicting hospital demand during the Covid-19 outbreak in Bogota, Colombia. Frontiers in Public Health, 8:710
dc.relationTornatore, E., Buccellato, S. M., and Vetro, P. (2006). On a stochastic disease model with vaccination. Rendiconti del Circolo Matematico di Palermo, 55(2):223–240
dc.relationVelasco-Hernandez, J. X. (2021). Modelling epidemics: a perspetive on mathematical models and their use in the present SARS-Cov-2 epidemic. arXiv preprint arXiv:2104.07793.
dc.relationCulqui Sánchez, M., Nasimba Quinatoa, J., and Chiliquinga Calderón, E. (2020). Aplicación del modelo matemático SEIR en la pandemia por Covid-19, relevancia en salud pública. Vive Revista de Salud, 3(9):275–290
dc.relationNiño-Torres, D., Ríos-Gutíerrez, A., Arunachalam, V., Ohajunwa, C., and Seshaiyer, P. (2022). Stochastic modeling, analysis, and simulation of the covid-19 pandemic with explicit behavioral changes in bogotá: A case study. Infectious Disease Modelling, 7(1):199–211
dc.relationRíos Gutiérrez, A. S. (2019). Modelos epidemiológicos estocásticos y su inferencia: casos sis y seir. Universidad Nacional de Colombia
dc.relationRíos-Gutíerrez, A., Torres, S., and Arunachalam, V. (2021). Studies on the basic reproduction number in stochastic epidemic models with random perturbations. Advances in difference equations, 2021(1):1–24
dc.relationRidenhour, B., Kowalik, J. M., and Shay, D. K. (2018). El numero reproductivo básico (R0) consideraciones para su aplicación en la salud publica. American Journal of Public Health, 108(S6):S455–S465
dc.relationUribarri, S. G., Meza, M. A. R., and Cota, J. L. C. (2013). Las matemáticas de las epidemias: caso México 2009 y otros. CIENCIA ergo-sum, Revista Científica Multidisciplinaria de Prospectiva, 20(3):238–246
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleModelo SEIR con compartimientos para la propagación del Covid-19 en el Pacífico Nariñense
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución