dc.contributorOsorio Hernanadez, Robinson
dc.contributorCamacho Tamayo, Jesús Hernán
dc.creatorAlvarez Carpintero, Juan David
dc.date.accessioned2023-05-25T22:08:21Z
dc.date.accessioned2023-06-07T00:20:38Z
dc.date.available2023-05-25T22:08:21Z
dc.date.available2023-06-07T00:20:38Z
dc.date.created2023-05-25T22:08:21Z
dc.date.issued2023
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/83877
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6651902
dc.description.abstractNon-Centrifugal Cane Sugar production in Colombia is an important economic and social factor for the 350,000 peasant families that subsist on this activity. In Colombia, the implementation of industrial factories, called Centrales, has tried to improve the economy of the workers who carry out these activities without technification. So far, there are no bioclimatic studies applied to this type of agroindustrial facilities. Thus, the objective of this study was to develop a computational model to represent the real environment, in the specific case of the Sugarcane Honey Plant, in order to predict its environmental behavior under different scenarios. The results showed adequate temperature levels for the 7am and 9am hours, but with high relative humidity, favoring water vapor condensation, dripping and fungus proliferation. At 2pm, the results showed high temperature values, generating thermal stress in the workers, due to the nature of the work activities at the plant. The proposed alternatives show an improvement in the plant’s environment; however, it is necessary to implement other measures to reduce the thermal stress of the workers.
dc.description.abstractLa producción de panela en Colombia es un importante factor económico y social para las 350.0000 familias campesinas que subsisten de esta actividad. En Colombia, la implementación de fábricas industriales, llamadas Centrales, han intentado mejorar la economía de los trabajadores que ejercen estas actividades sin tecnificación. Hasta el momento no existen estudios de bioclimática aplicada a este tipo de instalaciones agroindustriales. De esta manera, el objetivo del presente estudio fue desarrollar un modelo computacional que representara el entorno real, en el caso específico de la Central de Mieles de Caña, con el fin de predecir su comportamiento ambiental bajo diferentes escenarios. Los resultados mostraron niveles de temperatura adecuados para los horarios de 7 am y 9 am, pero con altas humedades relativas, favoreciendo la condensación de vapor de agua, el goteo y la proliferación de hongos. En horarios de 2 pm, los resultados mostraron valores de temperatura altos, generando estrés térmico en los trabajadores, debido a la naturaleza de las actividades laborales en la Central. Las alternativas propuestas muestran un mejoramiento del ambiente de la Central, no obstante, es necesario acoplar otras medidas para reducir el estrés térmico de los operarios. (Texto tomado de la fuente).
dc.languageeng
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Agrícola
dc.publisherFacultad de Ingeniería
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAgrosavia
dc.relationAgrovoc
dc.relationAguilar-Rivera, N., & Olvera-Vargas, L. A. (2021). Innovations for Sustainable Production of Traditional and Artisan Unrefined Non-centrifugal Cane Sugar in Mexico. In World sustainability series (pp. 313–330). doi: 10.1007/978-3-030-78825-4 19
dc.relationAhlawat, A., Wiedensohler, A., Mishra, S. K., et al. (2020). An overview on the role of relative humidity in airborne transmission of sars-cov-2 in indoor environments. Aerosol and Air Quality Research, 20(9), 1856–1861. doi: https://doi.org/10.4209/aaqr.2020.06.0302
dc.relationAlarcón, A. L., Orjuela, A., Narváez, P. C., & Camacho, E. C. (2020). Thermal and rheological properties of juices and syrups during non-centrifugal sugar cane (jaggery) production. Food and Bioproducts Processing, 121, 76–90. doi: https://doi.org/10.1016/j.fbp.2020.01.016
dc.relationAsikin, Y., Hirose, N., Tamaki, H., Ito, S., Oku, H., & Wada, K. (2016). Effects of different drying–solidification processes on physical properties, volatile fraction, and antioxidant activity of non-centrifugal cane brown sugar. LWT - Food Science and Technology, 66, 340-347. Retrieved from https://www.sciencedirect.com/science/article/pii/S0023643815302577 doi: https://doi.org/10.1016/j.lwt.2015.10.039
dc.relationAsikin, Y., Takahashi, M., Hirose, N., Hou, D.-X., Takara, K., & Wada, K. (2012). Wax, policosanol, and long-chain aldehydes of different sugarcane (saccharum officinarum l.) cultivars. European Journal of Lipid Science and Technology, 114(5), 583-591. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/ejlt.201100300 doi: https://doi.org/10.1002/ejlt.201100300
dc.relationAttri, M. K., & Varma, A. (2018). Comparative study of growth of piriformospora indica by using different sources of jaggery. Journal of PurE and aPPliEd Microbiology, 12(2), 933–942. doi: http://dx.doi.org/10.22207/JPAM.12.2.56
dc.relationBudd, G. M. (2008). Wet-bulb globe temperature (wbgt)—its history and its limitations. Journal of Science and Medicine in Sport, 11(1), 20-32. Retrieved from https://www.sciencedirect.com/science/article/pii/S1440244007001478 (Heat Stress in Sport) doi: https://doi.org/10.1016/j.jsams.2007.07.003
dc.relationBustos-Vanegas, J. D., Hempel, S., Janke, D., Doumbia, M., Streng, J., & Amon, T. (2019). Numerical simulation of airflow in animal occupied zones in a dairy cattle building. Biosystems Engineering, 186, 100–105. doi: https://doi.org/10.1016/j.biosystemseng.2019.07.002
dc.relationCai, X., Lu, Y., & Wang, J. (2018). The impact of temperature on manufacturing worker productivity: Evidence from personnel data. Journal of Comparative Economics, 46(4), 889–905. doi: 10.1016/j.jce.2018.06.003
dc.relationDziubata, Z., Trokhaniak, V., Rogovskii, I., Titova, L., Luzan, P., & Popyk, P. (2020). Using cfd simulation to investigate the impact of fresh air valves on poultry house aerodynamics in case of a side ventilation system. doi: https://doi.org/10.35633/inmateh-62-16
dc.relationEbadi, S., & Azlan, A. (2021). Nutritional composition and role of non-centrifugal sugar (ncs) in human health. Current Nutrition & Food Science, 17(3).
dc.relationEkka, J. P., & Palanisamy, M. (2020). Determination of heat transfer coefficients and drying kinetics of red chilli dried in a forced convection mixed mode solar dryer. Thermal Science and Engineering Progress, 19, 100607. doi: https://doi.org/10.1016/j.tsep.2020.100607
dc.relationFAO. (2022). Crops and livestock products database. Retrieved junio 18, 2022, from https://www.fao.org/faostat/en/#data/QCL/visualize (Production/Yield quantities of Sugar Raw Centrifugal in Colombia. Ultima actualización: 07/02/2022.)
dc.relationFedepanela. (2019). PROTOCOLO DE TRAZABILIDAD PARA OBTENCION DE PAN-´ ELA. BOGOTA, D.C.. Unpublished writing
dc.relationFlórez-Martínez, D. H., Contreras-Pedraza, C. A., & Rodríguez, J. (2021). A systematic analysis of non-centrifugal sugar cane processing: Research and new trends. Trends in Food Science & Technology, 107, 415-428. Retrieved from https://www.sciencedirect.com/science/article/pii/S0924224420306828 doi: https://doi.org/10.1016/j.tifs.2020.11.011
dc.relationFox, B., Bellini, G., & Pellegrini, L. (2014). Chapter 14 - drying. In H. C. Vogel & C. M. Todaro (Eds.), Fermentation and biochemical engineering handbook (third edition) (Third Edition ed., p. 283-305). Boston: William Andrew Publishing. Retrieved from https://www.sciencedirect.com/science/article/pii/B9781455725533000143 doi: https://doi.org/10.1016/B978-1-4557-2553-3.00014-3
dc.relationGarcía, J. M., Narváez, P. C., Heredia, F. J., Orjuela, A., & Osorio, C.´ (2017). Physicochemical and sensory (aroma and colour) characterisation of a noncentrifugal cane sugar (“panela”) beverage. Food Chemistry, 228, 7–13. doi: 10.1016/j.foodchem.2017.01.134
dc.relationGhernaout, B., Attia, M. E., Bouabdallah, S., Driss, Z., & Benali, M. L. (2020). Heat and fluid flow in an agricultural greenhouse. Int. J. Heat Technol, 3, 92–98. doi: https://doi.org/10.18280/ijht.380110
dc.relationGuerra García, L. M., Osorio Hernández, R., Osorio Saraz, J. A., Carlo, J. C., & Damasceno, F. A. (2022). Bioclimatic performance of wet coffee processing facilities: conditions for workers and coffee. Revista Facultad Nacional de Agronomía Medellín, 75(1), 9763– 9772. doi: https://doi.org/10.15446/rfnam.v75n1.96247
dc.relationGuo, H., Aviv, D., Loyola, M., Teitelbaum, E., Houchois, N., & Meggers, F. (2020). On the understanding of the mean radiant temperature within both the indoor and outdoor environment, a critical review. Renewable and Sustainable Energy Reviews, 117, 109207. doi: https://doi.org/10.1016/j.rser.2019.06.014
dc.relationGuzmán, C. H., Carrera, J. L., Dur´an, H. A., Berumen, J., Ortiz, A. A., Guirette, O. A., ... others (2018). Implementation of virtual sensors for monitoring temperature in greenhouses using cfd and control. Sensors, 19(1), 60. doi: https://doi.org/10.3390/s19010060
dc.relationHanif, M. A., Nadeem, F., Tariq, R., & Rashid, U. (2022). Chapter 4 - solar thermal energy and photovoltaic systems. In M. A. Hanif, F. Nadeem, R. Tariq, & U. Rashid (Eds.), Renewable and alternative energy resources (p. 171-261). Academic Press. Retrieved from https://www.sciencedirect.com/science/article/pii/B9780128181508000071 doi: https://doi.org/10.1016/B978-0-12-818150-8.00007-1
dc.relationJaffe, W. R. (2012). Health effects of non-centrifugal sugar (ncs): a review. Sugar tech, 14(2), 87–94. doi: http://dx.doi.org/10.1007/s12355-012-0145-1
dc.relationJaffe, W. R. (2015). Nutritional and functional components of non centrifugal cane sugar: A compilation of the data from the analytical literature. Journal of Food Composition and Analysis, 43, 194–202. doi: 10.1016/j.jfca.2015.06.007
dc.relationJung, W., & Kim, H. (2022). Evaluation of heat stress levels inside greenhouses during summer in korea. International Journal of Environmental Research and Public Health, 19(19), 12497. doi: https://doi.org/10.3390/ijerph191912497
dc.relationJunzeng, X., Qi, W., Shizhang, P., & Yanmei, Y. (2012). Error of saturation vapor pressure calculated by different formulas and its effect on calculation of reference evapotranspiration in high latitude cold region. Procedia Engineering, 28, 43-48. Retrieved from https://www.sciencedirect.com/science/article/pii/S187770581200690X (2012 International Conference on Modern Hydraulic Engineering) doi: https://doi.org/10.1016/j.proeng.2012.01.680
dc.relationKim, R.-w., Kim, J.-g., Lee, I.-b., Yeo, U.-h., & Lee, S.-y. (2019). Development of a vr simulator for educating cfd-computed internal environment of piglet house. biosystems engineering, 188, 243–264. doi: https://doi.org/10.1016/j.biosystemseng.2019.10.024
dc.relationKumar, R., & Kumar, M. (2021a). Performance evaluation of improved and traditional two pan jaggery making plants: A comparative study. Sustainable Energy Technologies and Assessments, 47, 101462. doi: https://doi.org/10.1016/j.seta.2021.101462
dc.relationKumar, R., & Kumar, M. (2021b). Thermoeconomic analysis of a modified jaggery making plant. Heat Transfer, 50(5), 4871–4891.
dc.relationLegg, R. (2017). Chapter 1 - properties of humid air. In R. Legg (Ed.), Air conditioning system design (p. 1-28). Butterworth-Heinemann. Retrieved from https://www.sciencedirect.com/science/article/pii/B9780081011232000017 doi: https://doi.org/10.1016/B978-0-08-101123-2.00001-7
dc.relationLingayat, A. B., Chandramohan, V., Raju, V., & Meda, V. (2020). A review on indirect type solar dryers for agricultural crops–dryer setup, its performance, energy storage and important highlights. Applied Energy, 258, 114005. doi: https://doi.org/10.1016/j.apenergy.2019.114005
dc.relationLintermann, A. (2021). Computational meshing for cfd simulations. In K. Inthavong, N. Singh, E. Wong, & J. Tu (Eds.), Clinical and biomedical engineering in the human nose: A computational fluid dynamics approach (pp. 85–115). Singapore: Springer Singapore. Retrieved from https://doi.org/10.1007/978-981-15-6716-2 6 doi: 10.1007/978-981-15-6716-2 6
dc.relationLipczynska, A., Schiavon, S., & Graham, L. T. (2018). Thermal comfort and self-reported productivity in an office with ceiling fans in the tropics. Building and Environment, 135, 202–212. doi: https://doi.org/10.1016/j.buildenv.2018.03.013
dc.relationManavvi, S., & Rajasekar, E. (2020). Estimating outdoor mean radiant temperature in a humid subtropical climate. Building and Environment, 171, 106658. doi: https://doi.org/10.1016/j.buildenv.2020.106658
dc.relationMendieta, O., García, M., Peña, A., & Rodríguez, J. (2016). Las buenas prácticas de manufactura en la producción de panela (1st ed.; Corpoica, Ed.). Mosquera (Colombia).
dc.relationMinisterio de Agricultura y Desarrollo Rural. (2018). Cadena Agroindustrial De La Panela. El Renacer del Campo, 2018.
dc.relationMinisterio de Agricultura y Desarrollo Rural. (2019). Cadena agroindustrial de la panela.
dc.relationMinisterio de Protección Social. (2006). Resolución Número 779 de 2006. Retrieved from https://fedepanela.org.co/gremio/descargas/resolucion-779-de-2006/
dc.relationMinisterio de Protección Social. (2008). Resolución Número 3462 de 2008. Retrieved from https://fedepanela.org.co/gremio/descargas/resolucion-3462-de-2008/
dc.relationMinisterio de Protección Social. (2009). Resolución Número 3544 de 2009. Retrieved from https://fedepanela.org.co/gremio/descargas/resolucion-3544-de-2009/
dc.relationMinisterio de Trabajo y Seguridad Social. (1979). RESOLUCION´ 2400 DE 1979. BOGOTA,´ D.C.. Retrieved from https://minvivienda.gov.co/sites/default/files/normativa/2400 1979.pdf
dc.relationMinisterio do Trabalho e Providencia. (2021). Portaria n.º 426 de 07 de outubro de 2021. Retrieved from https://www.gov.br/trabalho-e-previdencia/pt-br/composicao/orgaos-espec ificos/secretaria-de-trabalho/inspecao/seguranca-e-saude-no-trabalho/ss t-portarias/2021/portaria-mtp-no-426-anexos-i-vibracao-e-iii-calor-da-n r-09.pdf (Anexo 3)
dc.relationMobtaker, H. G., Ajabshirchi, Y., Ranjbar, S. F., & Matloobi, M. (2019). Simulation of thermal performance of solar greenhouse in north-west of iran: An experimental validation. Renewable Energy, 135, 88–97.
dc.relationMujica, M., Guerra, M., & Soto, N. (2008). Efecto de la variedad, lavado de la caña y temperatura de punteo sobre la calidad de la panela granulada. Interciencia, 33, 598–603.
dc.relationOLIVEIRA, B. F. A., Silveira, I. H., Feitosa, R. C., Horta, M. A. P., Junger, W. L., & Hacon, S. (2019). Human heat stress risk prediction in the brazilian semiarid region based on the wet-bulb globe temperature. Anais da Academia Brasileira de Ciencias, 91. doi: https://doi.org/10.1590/0001-3765201920180748
dc.relationOrlov, A., Daloz, A. S., Sillmann, J., Thiery, W., Douzal, C., Lejeune, Q., & Schleussner, C. (2021). Global economic responses to heat stress impacts on worker productivity in crop production. Economics of Disasters and Climate Change, 5(3), 367–390. doi: https://doi.org/10.1007/s41885-021-00091-6
dc.relationOsorio, G. (2007). Manual: Buenas Practicas Agrícolas -BPA- y Buenas Prácticas de Manufactura -BPM-en la Producción de Caña y Panela. (Primera ed.). FAO.
dc.relationParkes, M. G., Azevedo, D. L., Domingos, T., & Teixeira, R. F. (2022). Narratives and benefits of agricultural technology in urban buildings: A review. Atmosphere, 13(8), 1250.
dc.relationRao, G. P., & Singh, P. (2022). Value Addition and Fortification in Non-Centrifugal Sugar (Jaggery): A Potential Source of Functional and Nutraceutical Foods. Sugar Tech, 24(2), 387–396. Retrieved from https://doi.org/10.1007/s12355-021-01020-3 doi: 10.1007/s12355-021-01020-3
dc.relationRodríguez, G., García, H., Roa, Z., & Santacoloma, P. (2004). Producción de panela como estrategia de diversificación en la generación de ingresos en a´reas rurales de Am´erica Latina Producción de panela como estrategia de diversificación en áreas rurales de America Latina. FAO, 98.
dc.relationRozo, T. (2013). Manual técnico de buenas prácticas de manufactura (BPM) para el proceso tecnológico de producción de panela. Retrieved from https://www.onfandina.com/images/Publicaciones/Panela /Manual Técnico BPM Trapiches.pdf
dc.relationSaberian, A., & Sajadiye, S. M. (2019). The effect of dynamic solar heat load on the greenhouse microclimate using cfd simulation. Renewable Energy, 138, 722–737. doi: https://doi.org/10.1016/j.renene.2019.01.108
dc.relationSadiq, L. S., Hashim, Z., & Osman, M. (2019). The impact of heat on health and productivity among maize farmers in a tropical climate area. Journal of environmental and public health, 2019. doi: https://doi.org/10.1155/2019/9896410
dc.relationSalehi, F. (2020). Recent applications and potential of infrared dryer systems for drying various agricultural products: A review. International Journal of Fruit Science, 20(3), 586–602. doi: https://doi.org/10.1080/15538362.2019.1616243
dc.relationSamet, J. M., Marbury, M. C., & Spengler, J. D. (1987). State of Art: Indoor Air Pollution. The American Review of Respiratory Disease(136), 1486–1508.
dc.relationShrivastava, A., & Singh, P. (2020, 12). Jaggery (gur): The ancient indian open-pan noncentrifugal sugar. In (p. 283-307). doi: 10.1007/978-981-15-6663-9 19
dc.relationStull, R. (2011). Wet-bulb temperature from relative humidity and air temperature. Journal of Applied Meteorology and Climatology, 50(11), 2267–2269. doi: 10.1175/JAMC-D11-0143.1
dc.relationTakakura, J., Fujimori, S., Takahashi, K., Hijioka, Y., & Honda, Y. (2019). Site-specific hourly resolution wet bulb globe temperature reconstruction from gridded daily resolution climate variables for planning climate change adaptation measures. International journal of biometeorology, 63(6), 787–800. doi: https://doi.org/10.1007/s00484-019-01692-3
dc.relationTarazona Parra, G. A. (2011). Manejo fotosanitario del cultivo de caña panelera - Medidas para la temporada invernal. BOGOTA, D.C.
dc.relationTarigan, E. (2018). Mathematical modeling and simulation of a solar agricultural dryer with back-up biomass burner and thermal storage. Case studies in thermal engineering, 12, 149–165.
dc.relationTong, X., Hong, S.-W., & Zhao, L. (2019). Cfd modelling of airflow pattern and thermal environment in a commercial manure-belt layer house with tunnel ventilation. Biosystems engineering, 178, 275–293. doi: https://doi.org/10.1016/j.biosystemseng.2018.08.008
dc.relationTran, V. T., Duong, Y. H., & Le, T. M. (2021). The influence of meshing strategies on the numerical simulation of solar greenhouse dryer. In Iop conference series: Earth and environmental science (Vol. 947, p. 012007).
dc.relationTu, J., Yeoh, G. H., & Liu, C. (2018). Computational fluid dynamics: a practical approach. Butterworth-Heinemann.
dc.relationTun, A. (2019). Review of the specific heat of food models. (3), 82–86. doi: https://doi.org/10.17586/1606-4313-2019-18-3-82-86
dc.relationTyagi, S., Kamboj, S., Himanshu, Tyagi, N., Narayanan, R., & Tyagi, V. (2022). Technological advancements in jaggery-making processes and emission reduction potential via clean combustion for sustainable jaggery production: An overview. Journal of Environmental Management, 301, 113792. Retrieved from https://www.sciencedirect.com/science/article/pii/S0301479721018545 doi: https://doi.org/10.1016/j.jenvman.2021.113792
dc.relationVelásquez, F., Espitia, J., Mendieta, O., Escobar, S., & Rodr´ıguez, J. (2019). Noncentrifugal cane sugar processing: A review on recent advances and the influence of process variables on qualities attributes of final products. Journal of Food Engineering, 255(November 2018), 32–40. doi: 10.1016/j.jfoodeng.2019.03.009
dc.relationWeerawatanakorn, M., Asikin, Y., Takahashi, M., Tamaki, H., Wada, K., Ho, C.-T., & Chuekittisak, R. (2016). Physico-chemical properties, wax composition, aroma profiles, and antioxidant activity of granulated non-centrifugal sugars from sugarcane cultivars of Thailand. Journal of Food Science and Technology, 53(11), 4084–4092. Retrieved from https://doi.org/10.1007/s13197-016-2415-5 doi: 10.1007/s13197-016-24155
dc.relationXie, Q., Ni, J.-Q., Bao, J., & Su, Z. (2019). A thermal environmental model for indoor air temperature prediction and energy consumption in pig building. Building and Environment, 161, 106238. doi: https://doi.org/10.1016/j.buildenv.2019.106238
dc.relationXu, H. J., Xing, Z. B., Wang, F., & Cheng, Z. (2019). Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: Fundamentals and applications. Chemical Engineering Science, 195, 462–483.
dc.relationYaciuk, G. (1981). 24 - solar crop drying. In A. JANZEN & R. SWARTMAN (Eds.), Solar energy conversion ii (p. 377-396). Pergamon. Retrieved from https://www.sciencedirect.com/science/article/pii/B9780080253886500490 doi: https://doi.org/10.1016/B978-0-08-025388-6.50049-0
dc.relationYoshida, S., Yoshida, A., & Kinoshita, S. (2020). Chapter 5 - evaluation methods of adaptation cities. In H. Takebayashi & M. Moriyama (Eds.), Adaptation measures for urban heat islands (p. 115-159). Academic Press. doi: https://doi.org/10.1016/B978-0-12-817624-5.00005-1
dc.relationZhang, Y., Yasutake, D., Hidaka, K., Kitano, M., & Okayasu, T. (2020). Cfd analysis for evaluating and optimizing spatial distribution of co2 concentration in a strawberry greenhouse under different co2 enrichment methods. Computers and Electronics in Agriculture, 179, 105811. doi: https://doi.org/10.1016/j.compag.2020.105811
dc.relationZhou, B., Wang, X., Mondaca, M. R., Rong, L., & Choi, C. Y. (2019). Assessment of optimal airflow baffle locations and angles in mechanically-ventilated dairy houses using computational fluid dynamics. Computers and Electronics in Agriculture, 165, 104930. doi: https://doi.org/10.1016/j.compag.2019.104930
dc.relationAguilar-Rivera, N., & Olvera-Vargas, L. A. (2021). Innovations for Sustainable Production of Traditional and Artisan Unrefined Non-centrifugal Cane Sugar in Mexico. In World sustainability series (pp. 313–330). doi: 10.1007/978-3-030-78825-4 19
dc.relationAlfarawi, S. S., El-sawi, A., & Omar, H. (2021). Exploring discontinuous meshing for cfd modelling of counter flow heat exchanger. Journal of Advanced Research in Numerical Heat Transfer, 5(1), 26–34.
dc.relationAshrae. (2017). Ashrae handbook fundamentals 2017: Inch-pound edition. American Society of Heating, Refrigerating and Air-Conditioning Engineers. Retrieved from https://books.google.com.co/books?id=6VhRswEACAAJ
dc.relationASTM. (2002). Guide for statistical evaluation of indoor air quality models (d5157-97). American Society for Testing Materials. Retrieved from https://www.astm.org/d5157-19.html doi: https://doi.org/10.1520/D5157-19
dc.relationBakker, A., Siegel, J. A., Mendell, M. J., Prussin, A. J., Marr, L. C., & Peccia, J. (2020). Bacterial and fungal ecology on air conditioning cooling coils is influenced by climate and building factors. Indoor air, 30(2), 326–334. doi: https://doi.org/10.1111/ina.12632
dc.relationBustos-Vanegas, J. D., Hempel, S., Janke, D., Doumbia, M., Streng, J., & Amon, T. (2019). Numerical simulation of airflow in animal occupied zones in a dairy cattle building. Biosystems Engineering, 186, 100–105. doi: https://doi.org/10.1016/j.biosystemseng.2019.07.002
dc.relationCai, X., Lu, Y., & Wang, J. (2018). The impact of temperature on manufacturing worker productivity: Evidence from personnel data. Journal of Comparative Economics, 46(4), 889–905. doi: 10.1016/j.jce.2018.06.003
dc.relationCheng, Q., Feng, H., Meng, H., & Zhou, H. (2021). Cfd study of the effect of inlet position and flap on the airflow and temperature in a laying hen house in summer. Biosystems Engineering, 203, 109–123. doi: https://doi.org/10.1016/j.biosystemseng.2021.01.009
dc.relationDuran, P., Merker, A., Briceño, G., Colon, E., Line, D., Abad, V., ... Hagenas, L. (2016). Colombian reference growth curves for height, weight, body mass index and head circumference. Acta Paediatrica, 105(3), e116-e125. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1111/apa.13269 doi: https://doi.org/10.1111/apa.13269
dc.relationDziubata, Z., Trokhaniak, V., Rogovskii, I., Titova, L., Luzan, P., & Popyk, P. (2020). Using cfd simulation to investigate the impact of fresh air valves on poultry house aerodynamics in case of a side ventilation system. doi: https://doi.org/10.35633/inmateh-62-16
dc.relationEspitia, J., Velasquez, F., Lopez, R., Escobar, S., & Rodrıguez, J. (2020). An engineering approach to design a non-centrifugal cane sugar production module: A heat transfer study to improve the energy use. Journal of Food Engineering, 274, 109843. Retrieved from https://www.sciencedirect.com/science/article/pii/S0260877419304868 doi: https://doi.org/10.1016/j.jfoodeng.2019.109843
dc.relationFedepanela. (2019). PROTOCOLO DE TRAZABILIDAD PARA OBTENCION DE PANELA. BOGOTA, D.C.. Unpublished writing.´
dc.relationIDEAM. (2015a). Mapa de precipitaci´on total anual (mm). Cundinamarca, Colombia.
dc.relationIDEAM. (2015b). Mapa de temperatura media anual (◦c). Cundinamarca, Colombia.
dc.relationJeong, K., Kessen, M. J., Bilirgen, H., & Levy, E. K. (2010). Analytical modeling of water condensation in condensing heat exchanger. International Journal of Heat and Mass Transfer, 53(11-12), 2361–2368. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.004
dc.relationJunzeng, X., Qi, W., Shizhang, P., & Yanmei, Y. (2012). Error of saturation vapor pressure calculated by different formulas and its effect on calculation of reference evapotranspiration in high latitude cold region. Procedia Engineering, 28, 43-48. Retrieved from https://www.sciencedirect.com/science/article/pii/S187770581200690X (2012 International Conference on Modern Hydraulic Engineering) doi: https://doi.org/10.1016/j.proeng.2012.01.680
dc.relationKim, R.-w., Kim, J.-g., Lee, I.-b., Yeo, U.-h., & Lee, S.-y. (2019). Development of a vr simulator for educating cfd-computed internal environment of piglet house. biosystems engineering, 188, 243–264. doi: https://doi.org/10.1016/j.biosystemseng.2019.10.024
dc.relationLintermann, A. (2021). Computational meshing for cfd simulations. In K. Inthavong, N. Singh, E. Wong, & J. Tu (Eds.), Clinical and biomedical engineering in the human nose: A computational fluid dynamics approach (pp. 85–115). Singapore: Springer Singapore. Retrieved from https://doi.org/10.1007/978-981-15-6716-2 6 doi: 10.1007/978-981-15-6716-2 6
dc.relationMendieta, O., García, M., Peña, A., & Rodríguez, J. (2016). Las buenas practicas de manufactura en la producci´on de panela (1st ed.; Corpoica, Ed.). Mosquera (Colombia).
dc.relationMinisterio de Agricultura y Desarrollo Rural. (2018). Cadena Agroindustrial De La Panela. El Renacer del Campo, 2018.
dc.relationMinisterio de Trabajo y Seguridad Social. (1979). RESOLUCION´ 2400 DE 1979. BOGOTA,´ D.C.. Retrieved from https://minvivienda.gov.co/sites/default/files/normativa/2400 1979.pdf
dc.relationMishra, P., & Aharwal, K. R. (2018, aug). A review on selection of turbulence model for cfd analysis of air flow within a cold storage. IOP Conference Series: Materials Science and Engineering, 402(1), 012145. doi: https://dx.doi.org/10.1088/1757-899X/402/1/012145
dc.relationMujica, M., Guerra, M., & Soto, N. (2008). Efecto de la variedad, lavado de la caña y temperatura de punteo sobre la calidad de la panela granulada. Interciencia, 33, 598–603.
dc.relationMurray, F. W. (1967). On the computation of saturation vapor pressure. Journal of Applied Meteorology and Climatology, 6(1), 203 - 204. doi: https://10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2
dc.relationOsorio, J. A., Ferreira, I. d. F., Olivera, K. S., Barreto, L., & Norton, T. (2016, 01). A CFD based approach for determination of ammonia concentration profile and flux from poultry houses with natural ventilation. Revista Facultad Nacional de Agronomia Medellín, 69, 7825 - 7834. doi: http://dx.doi.org/10.15446/rfna.v69n1.54750
dc.relationOsorio-Hernandez, R., Osorio-Saraz, J., Sullivan-Oliveira, K., Aristizaba, I., & Arango, J. (2020). Computational fluid dynamics assessment of effect of different openings configurations on the thermal environment of a facility for coffee wet processing. Journal of Agricultural Engineering, 51(1), 21–26. doi: 10.4081/jae.2020.892
dc.relationPasanen, P., Pasanen, A.-L., & Jantunen, M. (1993). Water condensation promotes fungal growth in ventilation ducts. Indoor Air, 3(2), 106–112. doi: https://doi.org/10.1111/j.1600-0668.1993.t01-2-00005.x
dc.relationRocha, D. K. S. O., Martins, J. H., Martins, M. A., Saraz, J. A. O., & Filho, A. F. L. (2013). Three-dimensional modeling and simulation of heat and mass transfer processes in porous media: An application for maize stored in a flat bin. Drying Technology, 31(10), 1099-1106. doi: https://doi.org/10.1080/07373937.2013.775145
dc.relationSingh, S., Dubey, A., Tiwari, L., & Verma, A. (2009). Microbial profile of stored jaggery: a traditional indian sweetener. Sugar Tech, 11(2), 213–216. doi: https://doi.org/10.1007/s12355-009-0034-4
dc.relationSolís-Fuentes, J. A., Hernández-Ceja, Y., del Rosario Herna´ndez-Medel, M., García-Gómez, R. S., Bernal-Gonz´alez, M., Mendoza-P´erez, S., & del Carmen Dura´n-Dom´ınguezde Bazu´a, M. (2019). Quality improvement of jaggery, a traditional sweetener, using bagasse activated carbon. Food Bioscience, 32, 100444. Retrieved from https://www.sciencedirect.com/science/article/pii/S2212429218308071 doi: https://doi.org/10.1016/j.fbio.2019.100444
dc.relationSwaab, D., Hofman, M., Mirmiran, M., Ravid, R., & van Leeuwen, F. (1992). Anatomy of the human hypothalamus (chiasmatic and tuberal region). The Human Hypothalamus in Health and Disease, 3
dc.relationTaylor, N. A. (2006). Challenges to temperature regulation when working in hot environments. Industrial health, 44(3), 331–344. doi: https://doi.org/10.2486/indhealth.44.331
dc.relationTeixeira, L., Talaia, M., & Meles, B. (2017). Assessment of thermal comfort in a portuguese metalworking industry. Occupational Ergonomics, 13(S1), 59–70. doi: https://doi.org/10.3233/OER-170254
dc.relationTong, X., Hong, S.-W., & Zhao, L. (2019). Cfd modelling of airflow pattern and thermal environment in a commercial manure-belt layer house with tunnel ventilation. Biosystems engineering, 178, 275–293. doi: https://doi.org/10.1016/j.biosystemseng.2018.08.008
dc.relationVarela-Aldás, J., Fuentes, E. M., Ruales, B., & Ichina, C. (2020). Construction of a wbgt index meter using low cost devices. In International conference on information technology & systems (pp. 459–468). doi: https://doi.org/10.1007/978-3-030-40690-5 45
dc.relationVelásquez, F., Espitia, J., Mendieta, O., Escobar, S., & Rodr´ıguez, J. (2019). Noncentrifugal cane sugar processing: A review on recent advances and the influence of process variables on qualities attributes of final products. Journal of Food Engineering, 255(November 2018), 32–40. doi: 10.1016/j.jfoodeng.2019.03.009
dc.relationWolkoff, P., Azuma, K., & Carrer, P. (2021). Health, work performance, and risk of infection in office-like environments: The role of indoor temperature, air humidity, and ventilation. International Journal of Hygiene and Environmental Health, 233, 113709. doi: https://doi.org/10.1016/j.ijheh.2021.113709
dc.relationXie, Q., Ni, J.-Q., Bao, J., & Su, Z. (2019). A thermal environmental model for indoor air temperature prediction and energy consumption in pig building. Building and Environment, 161, 106238. doi: https://doi.org/10.1016/j.buildenv.2019.106238
dc.relationYin, Y., Wang, R., Zhai, X., & Ishugah, T. (2014). Experimental investigation on the heat transfer performance and water condensation phenomenon of radiant cooling panels. Building and environment, 71, 15–23. doi: https://doi.org/10.1016/j.buildenv.2013.09.016
dc.relationZhou, B., Wang, X., Mondaca, M. R., Rong, L., & Choi, C. Y. (2019). Assessment of optimal airflow baffle locations and angles in mechanically-ventilated dairy houses using computational fluid dynamics. Computers and Electronics in Agriculture, 165, 104930. doi: https://doi.org/10.1016/j.compag.2019.104930
dc.relationZidan, D., & Azlan, A. (2022). Non-centrifugal sugar (ncs) and health: a review on functional components and health benefits. Applied Sciences, 12(1), 460. doi: https://doi.org/10.3390/app12010460
dc.relationAbreu, P. G. d., Abreu, V. M. N., Franciscon, L., Coldebella, A., & Amaral, A. G. d. (2011, dez.). Estimativa da temperatura de globo negro a partir da temperatura de bulbo seco. Revista Engenharia na Agricultura - REVENG, 19(6), 557–563. doi: https://10.13083/reveng.v19i6.273
dc.relationAhmed, H. O., Bindekhain, J. A., Alshuweihi, M. I., Yunis, M. A., & Matar, N. R. (2020). Assessment of thermal exposure level among construction workers in uae using wbgt, hsi and twl indices. Industrial health, 58(2), 170–181.
dc.relationAlfarawi, S. S., El-sawi, A., & Omar, H. (2021). Exploring discontinuous meshing for cfd modelling of counter flow heat exchanger. Journal of Advanced Research in Numerical Heat Transfer, 5(1), 26–34.
dc.relationASTM. (2002). Guide for statistical evaluation of indoor air quality models (d5157-97). American Society for Testing Materials. Retrieved from https://www.astm.org/d5157-19.html doi: https://doi.org/10.1520/D5157-19
dc.relationBudd, G. M. (2008). Wet-bulb globe temperature (wbgt)—its history and its limitations. Journal of Science and Medicine in Sport, 11(1), 20-32. Retrieved from https://www.sciencedirect.com/science/article/pii/S1440244007001478 (Heat Stress in Sport) doi: https://doi.org/10.1016/j.jsams.2007.07.003
dc.relationDimiceli, V. E., Piltz, S. F., & Amburn, S. A. (2013). Black globe temperature estimate for the wbgt index. In H. K. Kim, S.-I. Ao, & B. B. Rieger (Eds.), Iaeng transactions on engineering technologies: Special edition of the world congress on engineering and computer science 2011 (pp. 323–334). Dordrecht: Springer Netherlands. Retrieved from https://doi.org/10.1007/978-94-007-4786-9 26 doi: 10.1007/978-94-007-4786-9 26
dc.relationEspitia, J., Velasquez, F., Lopez, R., Escobar, S., & Rodrıguez, J. (2020). An engineering approach to design a non-centrifugal cane sugar production module: A heat transfer study to improve the energy use. Journal of Food Engineering, 274, 109843. Retrieved from https://www.sciencedirect.com/science/article/pii/S0260877419304868 doi: https://doi.org/10.1016/j.jfoodeng.2019.109843
dc.relationFedepanela. (2019). PROTOCOLO DE TRAZABILIDAD PARA OBTENCION DE PANELA. BOGOTA, D.C.. Unpublished writing.´
dc.relationGhani, S., Mahgoub, A. O., Bakochristou, F., & ElBialy, E. A. (2021). Assessment of thermal comfort indices in an open air-conditioned stadium in hot and arid environment. Journal of Building Engineering, 40, 102378. Retrieved from https://www.sciencedirect.com/science/article/pii/S2352710221002345 doi: https://doi.org/10.1016/j.jobe.2021.102378
dc.relationIDEAM. (2015a). Mapa de precipitacion total anual (mm). Cundinamarca, Colombia.
dc.relationIDEAM. (2015b). Mapa de temperatura media anual (◦c). Cundinamarca, Colombia.
dc.relationJunzeng, X., Qi, W., Shizhang, P., & Yanmei, Y. (2012). Error of saturation vapor pressure calculated by different formulas and its effect on calculation of reference evapotranspiration in high latitude cold region. Procedia Engineering, 28, 43-48. Retrieved from https://www.sciencedirect.com/science/article/pii/S187770581200690X (2012 International Conference on Modern Hydraulic Engineering) doi: https://doi.org/10.1016/j.proeng.2012.01.680
dc.relationJaffe, W. R. (2015). Nutritional and functional components of non centrifugal cane sugar: A compilation of the data from the analytical literature. Journal of Food Composition and Analysis, 43, 194–202. doi: 10.1016/j.jfca.2015.06.007
dc.relationKakaei, H., Omidi, F., Ghasemi, R., Sabet, M. R., & Golbabaei, F. (2019). Changes of wbgt as a heat stress index over the time: A systematic review and meta-analysis. Urban Climate, 27, 284–292.
dc.relationLintermann, A. (2021). Computational meshing for cfd simulations. In K. Inthavong, N. Singh, E. Wong, & J. Tu (Eds.), Clinical and biomedical engineering in the human nose: A computational fluid dynamics approach (pp. 85–115). Singapore: Springer Singapore. Retrieved from https://doi.org/10.1007/978-981-15-6716-2 6 doi: 10.1007/978-981-15-6716-2 6
dc.relationMendieta, O., Garcıa, M., Peña, A., & Rodríguez, J. (2016). Las buenas practicas de manufactura en la produccion de panela (1st ed.; Corpoica, Ed.). Mosquera (Colombia).
dc.relationMinisterio de Agricultura y Desarrollo Rural. (2019). Cadena agroindustrial de la panela.
dc.relationMinisterio de Trabajo y Seguridad Social. (1979). RESOLUCION´ 2400 DE 1979. BOGOTA,´ D.C.. Retrieved from https://minvivienda.gov.co/sites/default/files/normativa/2400 1979.pdf
dc.relationMinisterio do Trabalho e Previdencia. (2021). Portaria n.º 426 de 07 de outubro de 2021. Retrieved from https://www.gov.br/trabalho-e-previdencia/pt-br/composicao/orgaos-espec ificos/secretaria-de-trabalho/inspecao/seguranca-e-saude-no-trabalho/ss t-portarias/2021/portaria-mtp-no-426-anexos-i-vibracao-e-iii-calor-da-n r-09.pdf (Anexo 3)
dc.relationMishra, P., & Aharwal, K. R. (2018, aug). A review on selection of turbulence model for cfd analysis of air flow within a cold storage. IOP Conference Series: Materials Science and Engineering, 402(1), 012145. doi: https://dx.doi.org/10.1088/1757-899X/402/1/012145
dc.relationMurray, F. W. (1967). On the computation of saturation vapor pressure. Journal of Applied Meteorology and Climatology, 6(1), 203 - 204. doi: https://10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2
dc.relationOsorio, J. A., Ferreira, I. d. F., Olivera, K. S., Barreto, L., & Norton, T. (2016, 01). A CFD based approach for determination of ammonia concentration profile and flux from poultry houses with natural ventilation. Revista Facultad Nacional de Agronomıa Medellın, 69, 7825 - 7834. doi: http://dx.doi.org/10.15446/rfna.v69n1.54750
dc.relationOsorio-Hernandez, R., Osorio-Saraz, J., Sullivan-Oliveira, K., Aristizaba, I., & Arango, J. (2020). Computational fluid dynamics assessment of effect of different openings configurations on the thermal environment of a facility for coffee wet processing. Journal of Agricultural Engineering, 51(1), 21–26. doi: 10.4081/jae.2020.892
dc.relationRocha, D. K. S. O., Martins, J. H., Martins, M. A., Saraz, J. A. O., & Filho, A. F. L. (2013). Three-dimensional modeling and simulation of heat and mass transfer processes in porous media: An application for maize stored in a flat bin. Drying Technology, 31(10), 1099-1106. doi: https://doi.org/10.1080/07373937.2013.775145
dc.relationSchickele, E. (1947). Environment and fatal heat stroke: an analysis of 157 cases occurring in the army in the us during world war ii. The Military Surgeon (United States), 100(3), 235–256.
dc.relationStull, R. (2011). Wet-bulb temperature from relative humidity and air temperature. Journal of Applied Meteorology and Climatology, 50(11), 2267–2269. doi: 10.1175/JAMC-D11-0143.1
dc.relationTong, X., Hong, S.-W., & Zhao, L. (2019). Cfd modelling of airflow pattern and thermal environment in a commercial manure-belt layer house with tunnel ventilation. Biosystems engineering, 178, 275–293. doi: https://doi.org/10.1016/j.biosystemseng.2018.08.008
dc.relationVelasquez, F., Espitia, J., Mendieta, O., Escobar, S., & Rodrıguez, J. (2019). Noncentrifugal cane sugar processing: A review on recent advances and the influence of process variables on qualities attributes of final products. Journal of Food Engineering, 255(November 2018), 32–40. doi: 10.1016/j.jfoodeng.2019.03.009
dc.relationWolkoff, P., Azuma, K., & Carrer, P. (2021). Health, work performance, and risk of infection in office-like environments: The role of indoor temperature, air humidity, and ventilation. International Journal of Hygiene and Environmental Health, 233, 113709. doi: https://doi.org/10.1016/j.ijheh.2021.113709
dc.relationXue, H., & TY, B. (2002). An occupant-coupled cfd model for local wbgt analysis in a ventilated enclosure. Journal of the Human-Environment System, 5(2), 79–86. doi: https://doi.org/10.1618/jhes.5.79
dc.relationYaglou, C., Minaed, D., et al. (1957). Control of heat casualties at military training centers. Arch. Indust. Health, 16(4), 302–16.
dc.relationYoshida, S., Yoshida, A., & Kinoshita, S. (2020). Chapter 5 - evaluation methods of adaptation cities. In H. Takebayashi & M. Moriyama (Eds.), Adaptation measures for urban heat islands (p. 115-159). Academic Press. doi: https://doi.org/10.1016/B978-0-12-817624-5.00005-1
dc.relationYuan, J., Farnham, C., & Emura, K. (2021). Effect of different reflection directional characteristics of building facades on outdoor thermal environment and indoor heat loads by cfd analysis. Urban Climate, 38, 100875. doi: https://doi.org/10.1016/j.uclim.2021.100875
dc.relationFedepanela. (2019). PROTOCOLO DE TRAZABILIDAD PARA OBTENCION DE PANELA. BOGOTA, D.C.. Unpublished writing.´
dc.relationGarcía, J. M., Narváez, P. C., Heredia, F. J., Orjuela, A., & Osorio, C.´ (2017). Physicochemical and sensory (aroma and colour) characterisation of a noncentrifugal cane sugar (“panela”) beverage. Food Chemistry, 228, 7–13. doi: 10.1016/j.foodchem.2017.01.134
dc.relationHasibuan, C., Sutrisno, F., & Pranatal, B. (2020, 02). The instensity measurement and noise mapping in fatty acid plant area at pt. xyz. Simetrikal: Journal of Engineering and Technology, 2, 20-27. doi: 10.32734/jet.v2i1.3556
dc.relationIDEAM. (2015a). Mapa de precipitaci´on total anual (mm). Cundinamarca, Colombia.
dc.relationIDEAM. (2015b). Mapa de temperatura media anual (◦c). Cundinamarca, Colombia.
dc.relationJaffe, W. R. (2015). Nutritional and functional components of non centrifugal cane sugar: A compilation of the data from the analytical literature. Journal of Food Composition and Analysis, 43, 194–202. doi: 10.1016/j.jfca.2015.06.007
dc.relationKing, E., Murphy, E., & Rice, H. (2010, 11). Implementation of the eu environmental noise directive: Lessons from the first phase of strategic noise mapping and action planning in ireland. Journal of environmental management, 92, 756-64. doi: 10.1016/j.jenvman.2010.10.034
dc.relationLim, M., Lee, Y., Lee, F. W., & Heng, G. (2018, 01). Strategic noise mapping prediction for a rubber manufacturing factory in malaysia. E3S Web of Conferences, 65, 05019. doi: 10.1051/e3sconf/20186505019
dc.relationLuzzi, S., & Vassiliev, A. V. (2005). A comparison of noise mapping methods in italian and russian experiences. In (p. 1051-1056). S. Hirzel Verlag. Retrieved from https://books.google.com.co/books?id=EJ88HQAACAAJ
dc.relationMendieta, O., García, M., Peña, A., & Rodr´ıguez, J. (2016). Las buenas practicas de manufactura en la produccion de panela (1st ed.; Corpoica, Ed.). Mosquera (Colombia).
dc.relationMinisterio de Agricultura y Desarrollo Rural. (2019). Cadena agroindustrial de la panela.
dc.relationMinisterio de Ambiente, vivienda y Desarrollo Territorial. (2006). RESOLUCION 0627 DE 2006. BOGOTA, D.C..´
dc.relationMujica, M., Guerra, M., & Soto, N. (2008). Efecto de la variedad, lavado de la caña y temperatura de punteo sobre la calidad de la panela granulada. Interciencia, 33, 598–603.
dc.relationNIOSH. (1998). Occupational Noise Exposure (No. 98-126). Cincinnati: National Institute for Occupational Safety and Health. doi: 10.1121/1.4778162
dc.relationOrganización Internacional del Trabajo. (2010). La salud y la seguridad en el trabajo: El ruido en el lugar de trabajo. Organizacio´n Internacional del Trabajo.
dc.relationRodriguez, G., Garcia, H., Roa, Z., & Santacoloma, P. (2004). Producción de panela como estrategia de diversificación en la generación de ingresos en áreas rurales de Am´erica Latina Producción de panela como estrategia de diversificación en áreas rurales de America Latina. FAO, 98.
dc.relationSolís-Fuentes, J. A., Hernández-Ceja, Y., del Rosario Hernández-Medel, M., García-Gómez, R. S., Bernal-González, M., Mendoza-Pérez, S., & del Carmen Durán-Domínguezde Bazúa, M. (2019). Quality improvement of jaggery, a traditional sweetener, using bagasse activated carbon. Food Bioscience, 32, 100444. Retrieved from https://www.sciencedirect.com/science/article/pii/S2212429218308071 doi: https://doi.org/10.1016/j.fbio.2019.100444
dc.relationVelásquez, F., Espitia, J., Mendieta, O., Escobar, S., & Rodríguez, J. (2019). Noncentrifugal cane sugar processing: A review on recent advances and the influence of process variables on qualities attributes of final products. Journal of Food Engineering, 255(November 2018), 32–40. doi: 10.1016/j.jfoodeng.2019.03.009
dc.relationAhmed, S. S., & Gadelmoula, A. M. (2022). Industrial noise monitoring using noise mapping technique: a case study on a concrete block-making factory. International Journal of Environmental Science and Technology, 19(2), 851–862. Retrieved from https://doi.org/10.1007/s13762-020-02982-9 doi: 10.1007/s13762-020-02982-9
dc.relationAlvarez-Carpintero, J., & Osorio-Hernandez, R. (2021, July). Thermal analysis for an unrefined sugar cane processing factory in colombia by using cfd. In Proceedings of the European Conference on Agricultural Engineering AgEng2021 (pp. 733–739). Universidade de Evora.´
dc.relationConde-Santos, L., Matias, C., Vieira, F., & Valado, F. (2008, October). Noise mapping of industrial sources. In (p. 1-12). Retrieved from https://dialnet.unirioja.es/servlet/libro?codigo=788358
dc.relationEspitia, J., Velasquez, F., Lopez, R., Escobar, S., & Rodrıguez, J. (2020). An engineering approach to design a non-centrifugal cane sugar production module: A heat transfer study to improve the energy use. Journal of Food Engineering, 274, 109843. Retrieved from https://www.sciencedirect.com/science/article/pii/S0260877419304868 doi: https://doi.org/10.1016/j.jfoodeng.2019.109843
dc.relationVillagran-Munar, E. A., & Bojaca´-Aldana, C. R. (2019). Determination of the thermal behavior of a colombian hanging greenhouse applying cfd simulation. Revista Ciencias T´ecnicas Agropecuarias, 28(3), 1–10.
dc.relationJaffe, W. R. (2015). Nutritional and functional components of non centrifugal cane sugar: A compilation of the data from the analytical literature. Journal of Food Composition and Analysis, 43, 194–202. doi: 10.1016/j.jfca.2015.06.007
dc.relationKolokotroni, M., & Littler, J. (1995). Effectiveness of extractor fans in reducing airborne moisture in homes. Indoor Air, 5(1), 69-75. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0668.1995.00011.x doi: https://doi.org/10.1111/j.1600-0668.1995.00011.x
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleBioclimatic evaluation and optimization of the Non-Centrifugal Cane Sugar (NCS) Factory in Caparrapí, Colombia
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución