dc.contributor | Calderón Ozuna, Martha Nancy | |
dc.contributor | Bioquímica y Biología Molecular de las Micobacterias | |
dc.contributor | Ginneth Riaño, [0000-0001-9084-6349] | |
dc.creator | Riaño Ayala, Ginneth Lorena | |
dc.date.accessioned | 2023-01-18T02:35:00Z | |
dc.date.accessioned | 2023-06-07T00:10:16Z | |
dc.date.available | 2023-01-18T02:35:00Z | |
dc.date.available | 2023-06-07T00:10:16Z | |
dc.date.created | 2023-01-18T02:35:00Z | |
dc.date.issued | 2022 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/83003 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6651783 | |
dc.description.abstract | La obesidad y la diabetes mellitus tipo 2 (DM2) son enfermedades representativas de la alteración del metabolismo. Esta investigación comparó factores de riesgo a obesidad y DM2 en colombianos de 40-70 años. Se evaluó la glucosa preprandial y el perfil lipídico a 535 voluntarios; se les aplicó el cuestionario FINDRISC, que incluye información de antecedentes familiares, estilo de vida, composición e índice de masa corporal (IMC); además se analizaron los índices aterogénicos. Las medidas bioquímicas y antropométricas en la población mostraron situaciones de dislipidemias (54%), hiperglucemia (23%), alteración del perímetro de cintura (73%) y del IMC (70%). El FINDRISC valoró que el 57% de la población presentó riesgo entre moderado y alto a DM2. El factor de riesgo genético se evaluó mediante qPCR de alto rendimiento, en 111 voluntarios, e incluyó el análisis de 16 SNPs relacionados con DM2 y 58 SNPs con obesidad; de esos 27 presentaron OR≥1 (relación de probabilidad) como factor de riesgo a obesidad. Se aplicó la puntuación de riesgo genético como predictor de alteración del IMC, con alta sensibilidad y especificidad descritas por el área bajo la curva ROC (AUC=0,9). En promedio la población presentó 62% de riesgo genético a obesidad, sugiriendo los genes LINGO2, NFE2L3, C2orf16, SEC16B, TNEM18, TBX15, APOA5 y BDNF como biomarcadores. El riesgo genético a DM2 en la población fue moderado (64%), en relación directamente proporcional con el IMC. El análisis de biomarcadores a DM2 sugirió a los genes PPARG, WFS1, JAZF1. Evaluar los factores de riesgo favorece la detección y la intervención temprana de las alteraciones metabólicas, en un intento de prevenir las complicaciones, que disminuyen la calidad de vida de la población. (Texto tomado de la fuente). | |
dc.description.abstract | Obesity and type 2 diabetes mellitus (DM2) are representative diseases in the alteration of carbohydrate and lipid metabolism. In this research, we compared risk factors for obesity and DM2 in Colombians aged 40-70 years old. Preprandial glucose and lipid profile were evaluated in 535 volunteers; they were administered the noninvasive FINDRISC questionnaire, which includes information on family history, lifestyle, composition and body mass index (BMI), atherogenic indices were also analyzed. Biochemical and anthropometric measurements in the population showed dyslipidemia (54%), hyperglycemia (23%), altered waist circumference (73%) and BMI (70%). The FINDRISC assessed that 57% of the population presented moderate to high risk of DM2. The genetic risk factor was evaluated by high-throughput qPCR, in 111 volunteers, and included the analysis of 16 SNPs related to DM2 and 58 SNPs associated with obesity; of these 27 presented OR≥1 (odds ratio) as a risk factor for obesity. Genetic risk score was applied as a predictor of BMI alteration, with high sensitivity and specificity described by AUC 0.9 (the area under the ROC curve). On average, the population presented 62% genetic risk to obesity, suggesting the genes LINGO2, NFE2L3, C2orf16, SEC16B, TNEM18, TBX15, APOA5 and BDNF as biomarkers. The genetic risk of DM2 in the population was moderate (64%), in direct proportion to BMI. The analysis of biomarkers to DM2 suggested PPARG, WFS1, JAZF1 genes. Evaluating risk factors favors the detection and early intervention of metabolic alterations, in an attempt to prevent complications, which diminish the quality of life of the population. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Bioquímica | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Bireme | |
dc.relation | “Enfermedades no transmisibles,” 2021. [Online]. Available: https://www.who.int/es/news-room/fact-sheets/detail/noncommunicable-diseases. | |
dc.relation | Guía ALAD sobre el diagnóstico, Control y Tratamiento de la Diabetes Mellitus tipo 2 con Med. basada en evidencia., pp. 118–118, 2019, doi: 10.1007/978-3-642-16483-5_167. | |
dc.relation | “International Diabetes Federation - What is diabetes.” [Online]. Available: https://idf.org/aboutdiabetes/what-is-diabetes.html. [Accessed: 23-Mar-2020]. | |
dc.relation | “Obesidad y Sobrepeso,” datos y cifras, 2021. [Online]. Available: https://www.who.int/es/news-room/fact-sheets/detail/obesity-and-overweight. | |
dc.relation | “Encuesta Nacional de la Situación Nutricional-ENSIN 2015,” Bogotá, 2015. | |
dc.relation | S. Webber, International Diabetes Federation, vol. 102, no. 2. 2013. | |
dc.relation | “Diabetes around the world in 2021,” IDF diabetes atlas, 2021. [Online]. Available: https://diabetesatlas.org/. | |
dc.relation | “Día mundial de la diabetes 2021,” Cuenta de Alto Costo, Fondo Colombiano de Enfermedades de Alto Costo, 2021. [Online]. Available: https://cuentadealtocosto.org/site/general/dia-mundial-de-la-diabetes-2021/. | |
dc.relation | Federacion Internacional de Diabtes (IDF), Diabetes Atlas. 2015. | |
dc.relation | Guías Alad De Diagnóstico, Control Y Tratamiento De La Diabetes Mellitus Tipo 2 con medicina basada en evidencia, vol. 1. 2009. | |
dc.relation | R. Gabriel et al., “Validation of the Finnish Type 2 Diabetes Risk Score (FINDRISC) with the OGTT in Health Care Practices in Europe,” Diabetes Res. Clin. Pract., vol. 178, p. 108976, 2021, doi: https://doi.org/10.1016/j.diabres.2021.108976. | |
dc.relation | D. Fernández-Bergés et al., “Metabolic and Inflammatory Profiles of Biomarkers in Obesity, Metabolic Syndrome, and Diabetes in a Mediterranean Population. DARIOS Inflammatory Study,” Rev. Española Cardiol. (English Ed., vol. 67, no. 8, pp. 624–631, 2014, doi: https://doi.org/10.1016/j.rec.2013.10.019. | |
dc.relation | E. S. Tobias, “The human genome, Gene regulation and genomic variation.,” Handb. pharmacogenomics Stratif. Med., pp. 41–56, 2014. | |
dc.relation | J. B. Cole and J. C. Florez, “Genetics of diabetes mellitus and diabetes complications,” Nat. Rev. Nephrol., vol. 16, no. 7, pp. 377–390, 2020, doi: 10.1038/s41581-020-0278-5. | |
dc.relation | C. J. Castro-Juárez, S. A. Ramírez-García, N. Villa-Ruano, and D. García-Cruz, “Genetic epidemiology on casual theories and pathogenesis of type 2 diabetes mellitus,” Gac. Mexico, vol. 153, no. 7, pp. 784–793, 2019, doi: 10.24875/gmm.m18000086. | |
dc.relation | A. T. Chande, L. Rishishwar, A. B. Conley, A. Valderrama-Aguirre, M. A. Medina-Rivas, and I. K. Jordan, “Ancestry effects on type 2 diabetes genetic risk inference in Hispanic/Latino populations,” BMC Med. Genet., vol. 21, no. 2, p. 132, 2020, doi: 10.1186/s12881-020-01068-0. | |
dc.relation | B. Costa, “Prevention of type 2 diabetes. What can be done from Primary Care? the experience of DE-PLAN-CAT,” Av. en Diabetol., vol. 28, no. 3, pp. 59–63, 2012, doi: 10.1016/j.avdiab.2012.04.004. | |
dc.relation | A. Mottalib, M. Kasetty, J. Y. Mar, T. Elseaidy, S. Ashrafzadeh, and O. Hamdy, “Weight Management in Patients with Type 1 Diabetes and Obesity,” Curr. Diab. Rep., vol. 17, no. 10, p. 92, 2017, doi: 10.1007/s11892-017-0918-8. | |
dc.relation | J. M. Pappachan, C. J. Fernandez, and E. C. Chacko, “Diabesity and antidiabetic drugs,” Mol. Aspects Med., vol. 66, pp. 3–12, 2019, doi: https://doi.org/10.1016/j.mam.2018.10.004. | |
dc.relation | P. Malakar et al., “Insulin receptor alternative splicing is regulated by insulin signaling and modulates beta cell survival,” Sci. Rep., vol. 6, p. 31222, Aug. 2016, doi: 10.1038/srep31222. | |
dc.relation | A. M. Angelidi, A. Filippaios, and C. S. Mantzoros, “Severe insulin resistance syndromes,” J. Clin. Invest., vol. 131, no. 4, Feb. 2021, doi: 10.1172/JCI142245. | |
dc.relation | A. Melvin, S. O’Rahilly, and D. B. Savage, “Genetic syndromes of severe insulin resistance,” Curr. Opin. Genet. Dev., vol. 50, pp. 60–67, 2018, doi: https://doi.org/10.1016/j.gde.2018.02.002. | |
dc.relation | A. M. Gómez Medina, Guía de Práctica Clínica (GPC) para el diagnóstico, tratamiento y seguimiento de la diabetes mellitus tipo 1 en la población mayor de 15 años, vol. 3, no. 2. 2017. | |
dc.relation | M. Viigimaa, A. Sachinidis, M. Toumpourleka, K. Koutsampasopoulos, S. Alliksoo, and T. Titma, “Macrovascular Complications of Type 2 Diabetes Mellitus.,” Curr. Vasc. Pharmacol., vol. 18, no. 2, pp. 110–116, 2020, doi: 10.2174/1570161117666190405165151. | |
dc.relation | T. R. Einarson, A. Acs, C. Ludwig, and U. H. Panton, “Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017,” Cardiovasc. Diabetol., vol. 17, no. 1, p. 83, Jun. 2018, doi: 10.1186/s12933-018-0728-6. | |
dc.relation | S. Abedian et al., “Effect of metabolic genetic variants on long-term disease comorbidity in patients with type 2 diabetes,” Sci. Rep., vol. 11, no. 1, pp. 1–10, 2021, doi: 10.1038/s41598-021-82276-3. | |
dc.relation | Y. Wu, Y. Ding, Y. Tanaka, and W. Zhang, “Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention,” Int. J. Med. Sci., vol. 11, no. 11, pp. 1185–1200, Sep. 2014, doi: 10.7150/ijms.10001. | |
dc.relation | R. A. Vigersky, “An overview of management issues in adult patients with type 2 diabetes mellitus,” J. Diabetes Sci. Technol., vol. 5, no. 2, pp. 245–250, Mar. 2011, doi: 10.1177/193229681100500207. | |
dc.relation | J. Franch Nadal, M. Mata Cases, and D. Mauricio Puente, “Epidemiología y control clínico de la diabetes mellitus tipo 2 y sus comorbilidades en España (estudio e-Control),” Med. Clin. (Barc)., vol. 147, pp. 1–7, 2016, doi: https://doi.org/10.1016/S0025-7753(17)30618-8. | |
dc.relation | American Diabetes Association. “Diabetes y su diagnóstico,” [Online]. Available: https://www.diabetes.org/diagnostico#:~:text=graves de diabetes.-,La diabetes se diagnostica cuando el nivel de glucosa (azúcar,igual a 200 mg%2Fdl. | |
dc.relation | A. M. Gómez Medina, “Guía de Práctica Clínica (GPC) para el diagnóstico, tratamiento y seguimiento de la diabetes mellitus tipo 1 en la población mayor de 15 años,” 2017. | |
dc.relation | American Diabetes Association, “La prueba de A1C y la diabetes,” Stand. Med. Care Diabetes—2018, pp. 1–10, 2018. | |
dc.relation | S. Ye, P. Ruan, J. Yong, H. Shen, Z. Liao, and X. Dong, “The impact of the HbA1c level of type 2 diabetics on the structure of haemoglobin,” Sci. Rep., vol. 6, pp. 1–8, 2016, doi: 10.1038/srep33352. | |
dc.relation | M. J. Picón and F. J. Tinahones, “Factores genéticos frente a factores ambientales en el desarrollo de la diabetes tipo 2: Genetic vs ambient factors in the development of type 2 diabetes,” Av. en Diabetol., vol. 26, no. 4, pp. 268–269, 2010, doi: https://doi.org/10.1016/S1134-3230(10)64013-6. | |
dc.relation | X. Wang, G. Strizich, Y. Hu, T. Wang, R. C. Kaplan, and Q. Qi, “Genetic markers of type 2 diabetes: Progress in genome-wide association studies and clinical application for risk prediction.,” J. Diabetes, vol. 8, no. 1, pp. 24–35, Jan. 2016, doi: 10.1111/1753-0407.12323. | |
dc.relation | K. Yu, L. Li, L. Zhang, L. Guo, and C. Wang, “Association between MC4R rs17782313 genotype and obesity: A meta-analysis.,” Gene, vol. 733, p. 144372, Apr. 2020, doi: 10.1016/j.gene.2020.144372. | |
dc.relation | H. Toplak et al., “„Diabesity“ – Adipositas und Typ-2-Diabetes (Update 2019),” Wien. Klin. Wochenschr., vol. 131, no. 1, pp. 71–76, 2019, doi: 10.1007/s00508-018-1418-9. | |
dc.relation | A. C T Ng, V. Delgado, B. A. Borlaug, and J. J. Bax, “Diabesity: the combined burden of obesity and diabetes on heart disease and the role of imaging,” Nat. Rev. Cardiol., vol. 18, no. 4, pp. 291–304, 2021, doi: 10.1038/s41569-020-00465-5. | |
dc.relation | M. F. Barcones-Molero et al., “The influence of obesity and weight gain on quality of life according to the SF-36 for individuals of the dynamic follow-up cohort of the University of Navarra.,” Rev. Clin. Esp., vol. 218, no. 8, pp. 408–416, Nov. 2018, doi: 10.1016/j.rce.2018.05.005. | |
dc.relation | M. A. Ortega et al., “Type 2 Diabetes Mellitus Associated with Obesity (Diabesity). The Central Role of Gut Microbiota and Its Translational Applications,” Nutrients, vol. 12, no. 9, p. 2749, Sep. 2020, doi: 10.3390/nu12092749. | |
dc.relation | A. Bergmann, J. Li, L. Wang, J. Schulze, S. R. Bornstein, and P. E. H. Schwarz, “A simplified Finnish diabetes risk score to predict type 2 diabetes risk and disease evolution in a German population.,” Horm. Metab. Res. = Horm. und Stoffwechselforsch. = Horm. Metab., vol. 39, no. 9, pp. 677–682, Sep. 2007, doi: 10.1055/s-2007-985353. | |
dc.relation | J. R. Jiménez-morales, “Implicaciones funcionales de los SNPs” Gac. Med. Mex., vol. 153, pp. 238–50, 2017. | |
dc.relation | J. Ramírez-Bello, G. Vargas-Alarcón, C. Tovilla-Zárate, and J. M. Fragoso, “Polimorfismos de un solo nucleótido (SNP): Implicaciones funcionales de los SNP reguladores (rSNP) y de los SNP-ARN estructurales (srSNP) en enfermedades complejas,” Gac. Med. Mex., vol. 149, no. 2, pp. 220–228, 2013. | |
dc.relation | J. Obsteter, P. Dovc, and T. Kunej, “Genetic variability of microRNA regulome in human,” Mol. Genet. genomic Med., vol. 3, no. 1, pp. 30–39, Jan. 2015, doi: 10.1002/mgg3.110. | |
dc.relation | V. Ramensky, P. Bork, and S. Sunyaev, “Human non-synonymous SNPs: server and survey,” Nucleic Acids Res., vol. 30, no. 17, pp. 3894–3900, Sep. 2002, doi: 10.1093/nar/gkf493. | |
dc.relation | M. J. Picón and F. J. Tinahones, “Genetic vs ambient factors in the development of type 2 diabetes,” Av. en Diabetol., vol. 26, no. 4, pp. 268–269, 2010, doi: 10.1016/S1134-3230(10)64013-6. | |
dc.relation | D. Esparza-castro, F. J. Andrade-ancira, C. A. Merelo-arias, and M. Cruz, “Paper De Diabetes 8,” vol. 53, no. 5, 2015. | |
dc.relation | S. Faherty, National Human Genome Research Institute. [Online]. Available: https://www.genome.gov/news/media-availability/type-2-diabetes-genetics-revealed-in-unprecedented-detail. | |
dc.relation | C. Fuchsberger et al., “The genetic architecture of type 2 diabetes,” Nature, vol. 536, no. 7614, pp. 41–47, 2016, doi: 10.1038/nature18642. | |
dc.relation | S. T. Consortium et al., “Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico,” Nature, vol. 506, no. 7486, pp. 97–101, Feb. 2014, doi: 10.1038/nature12828. | |
dc.relation | Y. Kimura et al., “The association between SLC16A11 haplotype and lipid metabolism in Japanese patients with type 2 diabetes,” Drug Metab. Pharmacokinet., vol. 37, p. 100376, 2021, doi: https://doi.org/10.1016/j.dmpk.2020.100376. | |
dc.relation | J. M. Mercader and J. C. Florez, “The Genetic Basis of Type 2 Diabetes in Hispanics and Latin Americans: Challenges and Opportunities,” Front. Public Heal., vol. 5, 2017, doi: 10.3389/fpubh.2017.00329. | |
dc.relation | J. Berumen et al., “Influence of obesity, parental history of diabetes, and genes in type 2 diabetes: A case-control study,” Sci. Rep., vol. 9, no. 1, p. 2748, 2019, doi: 10.1038/s41598-019-39145-x. | |
dc.relation | L. Bjorkhaug, J. V Sagen, P. Thorsby, O. Sovik, A. Molven, and P. R. Njolstad, “Hepatocyte Nuclear Factor-1α Gene Mutations and Diabetes in Norway,” J. Clin. Endocrinol. Metab., vol. 88, no. 2, pp. 920–931, Feb. 2003, doi: 10.1210/jc.2002-020945. | |
dc.relation | S. T. Consortium et al., “Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population,” JAMA, vol. 311, no. 22, pp. 2305–2314, Jun. 2014, doi: 10.1001/jama.2014.6511. | |
dc.relation | A. Mahajan et al., “Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility.,” Nat. Genet., vol. 46, no. 3, pp. 234–244, Mar. 2014, doi: 10.1038/ng.2897. | |
dc.relation | T. Das Aka et al., “Risk of type 2 diabetes mellitus and cardiovascular complications in KCNJ11, HHEX and SLC30A8 genetic polymorphisms carriers: A case-control study,” Heliyon, vol. 7, no. 11, p. e08376, 2021, doi: https://doi.org/10.1016/j.heliyon.2021.e08376. | |
dc.relation | O. S. Ahmad et al., “A Mendelian randomization study of the effect of type-2 diabetes on coronary heart disease,” Nat. Commun., vol. 6, no. 1, p. 7060, 2015, doi: 10.1038/ncomms8060. | |
dc.relation | H. Jia, L. Yu, Z. Jiang, and Q. Ji, “Association Between IGF2BP2 rs4402960 Polymorphism and Risk of Type 2 Diabetes Mellitus: A Meta-analysis,” Arch. Med. Res., vol. 42, no. 5, pp. 361–367, 2011, doi: https://doi.org/10.1016/j.arcmed.2011.08.001. | |
dc.relation | F. H. Naser et al., “Association of CDKAL1 gene polymorphisms with type 2 diabetes mellitus in a sample of Iraqi population,” Gene Reports, vol. 25, p. 101371, 2021, doi: https://doi.org/10.1016/j.genrep.2021.101371. | |
dc.relation | J. Dupuis et al., “New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk,” Nat. Genet., vol. 42, no. 2, pp. 105–116, 2010, doi: 10.1038/ng.520. | |
dc.relation | K. Yuasa, N. Aoki, and T. Hijikata, “JAZF1 promotes proliferation of C2C12 cells, but retards their myogenic differentiation through transcriptional repression of MEF2C and MRF4—Implications for the role of Jazf1 variants in oncogenesis and type 2 diabetes,” Exp. Cell Res., vol. 336, no. 2, pp. 287–297, 2015, doi: https://doi.org/10.1016/j.yexcr.2015.06.009. | |
dc.relation | J. V van Vliet-Ostaptchouk et al., “HHEX gene polymorphisms are associated with type 2 diabetes in the Dutch Breda cohort,” Eur. J. Hum. Genet., vol. 16, no. 5, pp. 652–656, 2008, doi: 10.1038/sj.ejhg.5202008. | |
dc.relation | B. Bankura, A. K. Pattanayak, S. Ghosh, S. Guria, A. Sinha, and M. Das, “Implication of KCNJ11 and TCF7L2 gene variants for the predisposition of type 2 diabetes mellitus in West Bengal, India,” Diabetes Epidemiol. Manag., vol. 6, p. 100066, 2022, doi: https://doi.org/10.1016/j.deman.2022.100066. | |
dc.relation | Y. Ren, W. Zhu, J. Shi, A. Shao, Y. Cheng, and Y. Liu, “Association between KCNJ11 E23K polymorphism and the risk of type 2 diabetes mellitus: A global meta-analysis,” J. Diabetes Complications, p. 108170, 2022, doi: https://doi.org/10.1016/j.jdiacomp.2022.108170. | |
dc.relation | S. Afshardoost, N. Sarhangi, M. Afshari, H. R. Aghaei Meybodi, and M. Hasanzad, “The influence of a genetic variant in the KCNQ1 gene on type 2 diabetes mellitus development,” Gene Reports, vol. 17, p. 100529, 2019, doi: https://doi.org/10.1016/j.genrep.2019.100529. | |
dc.relation | S. U. Shahid, and S. Hasnain, “Use of a gene score of multiple low-modest effect size variants can predict the risk of obesity better than the individual SNPs,” Lipids Health Dis., vol. 17, no. 1, p. 155, Jul. 2018, doi: 10.1186/s12944-018-0806-5. | |
dc.relation | X. Y. Bao, C. Xie, and M. S. Yang, “Association between Type 2 Diabetes and CDKN2A/B: a meta-analysis study,” Mol. Biol. Rep., vol. 39, no. 2, pp. 1609–1616, 2012, doi: 10.1007/s11033-011-0900-5. | |
dc.relation | S. Ali, S. Nafis, P. Kalaiarasan, E. Rai, S. Sharma, and R. N. Bamezai, “Understanding Genetic Heterogeneity in Type 2 Diabetes by Delineating Physiological Phenotypes: SIRT1 and its Gene Network in Impaired Insulin Secretion,” Rev. Diabet. Stud., vol. 13, no. 1, pp. 17–34, 2016, doi: 10.1900/RDS.2016.13.17. | |
dc.relation | V. Lyssenko et al., “Clinical Risk Factors, DNA Variants, and the Development of Type 2 Diabetes,” N. Engl. J. Med., vol. 359, no. 21, pp. 2220–2232, 2008, doi: 10.1056/nejmoa0801869. | |
dc.relation | L. Richards, “Genetic risk factors in type 2 diabetes mellitus,” Nat. Rev. Endocrinol., vol. 5, no. 8, p. 414, 2009, doi: 10.1038/nrendo.2009.117. | |
dc.relation | L. J. Scott et al., “The genetic regulatory signature of type 2 diabetes in human skeletal muscle,” Nat. Commun., vol. 7, 2016, doi: 10.1038/ncomms11764. | |
dc.relation | P. D. Sorlie et al., “Design and implementation of the Hispanic Community Health Study/Study of Latinos.,” Ann. Epidemiol., vol. 20, no. 8, pp. 629–641, Aug. 2010, doi: 10.1016/j.annepidem.2010.03.015. | |
dc.relation | A. T. Chande et al., “Influence of genetic ancestry and socioeconomic status on type 2 diabetes in the diverse Colombian populations of Chocó and Antioquia,” Sci. Rep., vol. 7, no. 1, p. 17127, Dec. 2017, doi: 10.1038/s41598-017-17380-4. | |
dc.relation | J. C. Florez et al., “Strong association of socioeconomic status with genetic ancestry in Latinos: implications for admixture studies of type 2 diabetes.,” Diabetologia, vol. 52, no. 8, pp. 1528–1536, Aug. 2009, doi: 10.1007/s00125-009-1412-x. | |
dc.relation | B. A. Hidalgo et al., “Associations between SLC16A11 variants and diabetes in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL),” Sci. Rep., vol. 9, no. 1, p. 843, Jan. 2019, doi: 10.1038/s41598-018-35707-7. | |
dc.relation | Y. Zhao et al., “Gain-of-Function Mutations of SLC16A11 Contribute to the Pathogenesis of Type 2 Diabetes,” Cell Rep., vol. 26, no. 4, pp. 884-892.e4, 2019, doi: https://doi.org/10.1016/j.celrep.2018.12.100. | |
dc.relation | J. E. Larrahondo Aguilar, J. A. Mora Vargas, and E. M. Rodriguez Puertas, Azucares : conceptos basicos de la quimica de los carbohidratos / Jesus Eliecer Larrahondo A., Jorge Andres Mora Vargas, Elkin Mauricio Rodriguez Puertas. 2017. | |
dc.relation | L. Franco-Hincapié et al., “Asociación de variantes en genes de las proteínas desacoplantes con diabetes mellitus tipo 2 en una población del nordeste colombiano,” Biomédica, vol. 29, no. 1, p. 108, 2009, doi: 10.7705/biomedica.v29i1.46. | |
dc.relation | W. Wen et al., “Meta-analysis identifies common variants associated with body mass index in east Asians,” Nat. Genet., vol. 44, no. 3, pp. 307–311, Feb. 2012, doi: 10.1038/ng.1087. | |
dc.relation | I. M. Heid et al., “Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution,” Nat. Genet., vol. 42, no. 11, pp. 949–960, Nov. 2010, doi: 10.1038/ng.685. | |
dc.relation | Ali samadikuchaksaraei, Ed., Polymerase chain reaction for biomedical applications. Rijeka, 2016. | |
dc.relation | J. manuel M. Lopez and A. Cepeda, Eds., Fats and associated compounds, Royal soci. United Kingdom, 2022. | |
dc.relation | A. T. Kraja et al., “A bivariate genome-wide approach to metabolic syndrome: STAMPEED consortium,” Diabetes, vol. 60, no. 4, pp. 1329–1339, Apr. 2011, doi: 10.2337/db10-1011. | |
dc.relation | J. C. Randall et al., “Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits,” PLoS Genet., vol. 9, no. 6, pp. e1003500–e1003500, Jun. 2013, doi: 10.1371/journal.pgen.1003500. | |
dc.relation | E. K. Speliotes et al., “Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index,” Nat. Genet., vol. 42, no. 11, pp. 937–948, Nov. 2010, doi: 10.1038/ng.686. | |
dc.relation | K. Wang et al., “A genome-wide association study on obesity and obesity-related traits,” PLoS One, vol. 6, no. 4, pp. e18939–e18939, Apr. 2011, doi: 10.1371/journal.pone.0018939. | |
dc.relation | R. J. F. Loos and C. Bouchard, “FTO: the first gene contributing to common forms of human obesity.,” Obes. Rev. an Off. J. Int. Assoc. Study Obes., vol. 9, no. 3, pp. 246–250, May 2008, doi: 10.1111/j.1467-789X.2008.00481.x. | |
dc.relation | T. O. Kilpeläinen et al., “Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children,” PLoS Med., vol. 8, no. 11, pp. e1001116–e1001116, Nov. 2011, doi: 10.1371/journal.pmed.1001116. | |
dc.relation | W. T. Friedewald, R. I. Levy, and D. S. Fredrickson, “Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge,” Clin. Chem., vol. 18, no. 6, pp. 499–502, Jun. 1972, doi: 10.1093/clinchem/18.6.499. | |
dc.relation | “Patia diabetes.” [Online]. Available: https://www.patiadiabetes.com/. | |
dc.relation | D. Peña, Daniel Peña Fundamentos de Estadística Alianza Editorial. 2014. | |
dc.relation | Ministerio de Salud y Protección Social-Colciencias, Guía de práctica clínica: Hipertensión arterial primaria (HTA), vol. 18, no. 18. 2013. | |
dc.relation | “Organización Mundial de la Salud.” [Online]. Available: https://www.who.int/es/news-room/fact-sheets/detail/obesity-and-overweight. | |
dc.relation | Y. Lu et al., “Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: A pooled analysis of 97 prospective cohorts with 1·8 million participants,” Lancet, vol. 383, no. 9921, pp. 970–983, 2014, doi: 10.1016/S0140-6736(13)61836-X. | |
dc.relation | C. M. Lakhani, B. T. Tierney, A. K. Jian, M. Pate et al, HHS Public Access,” Physiol. Behav., vol. 176, no. 3, pp. 139–148, 2019, doi: 10.1038/s41588-017-0011-x.Users. | |
dc.relation | Y. Gil-Rojas et al., “Burden of Disease Attributable to Obesity and Overweight in Colombia,” Value Heal. Reg. Issues, vol. 20, no. 40, pp. 66–72, 2019, doi: 10.1016/j.vhri.2019.02.001. | |
dc.relation | C. M. López De Fez, M. T. Gaztelu, T. Rubio, and A. Castaño, “Mecanismos de hipertensión en obesidad,” An. Sist. Sanit. Navar., vol. 27, no. 2, pp. 211–219, 2004, doi: 10.4321/s1137-66272004000300006. | |
dc.relation | G. Seravalle and G. Grassi, “Obesity and hypertension,” Pharmacol. Res., vol. 122, pp. 1–7, 2017, doi: 10.1016/j.phrs.2017.05.013. | |
dc.relation | R. Buendía, M. Zambrano, Á. Díaz, A. Reino, J. Ramírez, and E. Espinosa, “Puntos de corte de perímetro de cintura para el diagnóstico de obesidad abdominal en población colombiana usando bioimpedanciometría como estándar de referencia,” Rev. Colomb. Cardiol., vol. 23, no. 1, pp. 19–25, 2016, doi: https://doi.org/10.1016/j.rccar.2015.07.011. | |
dc.relation | J. A. Gallo Villegas, J. E. Ochoa Múnera, J. K. Balparda Arias, and D. Aristizábal Ocampo, “Puntos de corte del perímetro de la cintura para identificar sujetos con resistencia a la insulina en una población colombiana,” Acta Médica Colomb., vol. 38, no. 3, pp. 118–126, 2013, doi: 10.36104/amc.2013.73. | |
dc.relation | M. Stepień et al., “Waist circumference, ghrelin and selected adipose tissue-derived adipokines as predictors of insulin resistance in obese patients: Preliminary results,” Med. Sci. Monit., vol. 17, no. 11, pp. 13–18, 2011, doi: 10.12659/msm.882030. | |
dc.relation | S. H. Kim and F. Abbasi, “Myths about insulin resistance: Tribute to Gerald Reaven,” Endocrinol. Metab., vol. 34, no. 1, pp. 47–52, 2019, doi: 10.3803/EnM.2019.34.1.47. | |
dc.relation | A. M. Nevill, M. J. Duncan, and T. Myers, “BMI is dead; long live waist-circumference indices: But which index should we choose to predict cardio-metabolic risk?,” Nutr. Metab. Cardiovasc. Dis., 2022, doi: 10.1016/j.numecd.2022.04.003. | |
dc.relation | J. C. Aristizábal and A. Giraldo, “Comparación de la composición corporal de mujeres jóvenes obtenida por hidrodensitometría y tres técnicas de bioimpedancia,” Iatreia, vol. 30, no. 3, pp. 255–264, 2017, doi: 10.17533/udea.iatreia.v30n3a01. | |
dc.relation | H. OMRON, “Manual de instrucciones Balanza de control corporal Antes de usar la balanza Cuidado y mantenimiento,” 2014. | |
dc.relation | K. Duda, J. Majerczak, Z. Nieckarz, S. B. Heymsfield, and J. A. Zoladz, “Chapter 1 - Human Body Composition and Muscle Mass,”, Ed. Academic Press, 2019, pp. 3–26. | |
dc.relation | N. Sukkriang, W. Chanprasertpinyo, A. Wattanapisit, C. Punsawad, N. Thamrongrat, and S. Sangpoom, “Correlation of body visceral fat rating with serum lipid profile and fasting blood sugar in obese adults using a noninvasive machine,” Heliyon, vol. 7, no. 2, p. e06264, 2021, doi: 10.1016/j.heliyon.2021.e06264. | |
dc.relation | A. I. García, L. Niño-Silva, K. González-Ruiz, and R. Ramírez-Vélez, “Volumen de grasa visceral como indicador de obesidad en hombres adultos,” Rev. Colomb. Cardiol., vol. 23, no. 4, pp. 313–320, 2016, doi: https://doi.org/10.1016/j.rccar.2015.12.009. | |
dc.relation | M. del P. Barrera, A. E. Pinilla, L. M. Caicedo, Y. M. Castillo, Y. M. Lozano, and K. M. Rodriguez, “Factores de riesgos alimentarios y nutricionales en adultos con diabetes mellitus.,” Rev. la Fac. Med. Vol. 60, num. 1 Supl. S28-40 2357-3848 0120-0011, 2012. | |
dc.relation | F. Masanés Torán, M. Navarro López, E. Sacanella Meseguer, and A. López Soto, “¿Qué es la sarcopenia?,” Semin. la Fund. Esp. Reumatol., vol. 11, no. 1, pp. 14–23, 2010, doi: 10.1016/j.semreu.2009.10.003. | |
dc.relation | Ministerio de salud y proteccion social, “Guía de práctica clínica en la población mayor de 18 años,” Inst. evaluaciones Tecnol. en salud, no. 27, 2014. | |
dc.relation | C. Sisniegas-Vergara and C. Ríos-Vásquez, “Limitación de la movilidad articular de la mano y ateromatosis carotídea en diabéticos tipo 2,” Rev. del Cuerpo Médico del HNAAA, vol. 12, no. 4, pp. 283–290, 2020, doi: 10.35434/rcmhnaaa.2019.124.561. | |
dc.relation | D. Ibarretxe and L. Masana, “Metabolismo de los triglicéridos y clasificación de las hipertrigliceridemias,” Clínica e Investig. en Arterioscler., vol. 33, pp. 1–6, 2021, doi: https://doi.org/10.1016/j.arteri.2021.02.004. | |
dc.relation | A. E. Pinilla-Roa, M. D. P. Barrera-Perdomo, and M. del P. Barrera-Perdomo, “Prevención en diabetes mellitus y riesgo cardiovascular: enfoque médico y nutricional,” Rev. la Fac. Med., vol. 66, no. 3, pp. 459–468, Jul. 2018, doi: 10.15446/revfacmed.v66n3.60060. | |
dc.relation | M. E. Campos Aldrete, “Revista Mexicana de Ciencias Farmaceuticas: Editorial,” Rev. Mex. Ciencias Farm., vol. 41, no. 3, p. 5, 2010. | |
dc.relation | P. A. Camacho et al., “The spectrum of the dyslipidemia in Colombia: The PURE study,” Int. J. Cardiol., vol. 284, pp. 111–117, 2019, doi: 10.1016/j.ijcard.2018.10.090. | |
dc.relation | M. Blasco and J. F. Ascaso, “Control del perfil lipídico global,” Clínica e Investig. en Arterioscler., vol. 31, pp. 34–41, 2019, doi: https://doi.org/10.1016/j.arteri.2019.10.002. | |
dc.relation | D. S. Kunstmann F. and D. D. Gainza K., “enfermedad cardiovascular en la mujer: fisiopatología, presentación clínica, factores de riesgo, terapia hormonal y pruebas diagnósticas,” Rev. Médica Clínica Las Condes, vol. 26, no. 2, pp. 127–132, 2015, doi: https://doi.org/10.1016/j.rmclc.2015.04.001. | |
dc.relation | J. C. Fernández-Macías, A. C. Ochoa-Martínez, J. A. Varela-Silva, and I. N. Pérez-Maldonado, “Atherogenic Index of Plasma: Novel Predictive Biomarker for Cardiovascular Illnesses.,” Arch. Med. Res., vol. 50, no. 5, pp. 285–294, Jul. 2019, doi: 10.1016/j.arcmed.2019.08.009. | |
dc.relation | J. Millán et al., “Cocientes lipoproteicos: significado fisiológico y utilidad clínica de los índices aterogénicos en prevención cardiovascular,” Clínica e Investig. en Arterioscler., vol. 22, no. 1, pp. 25–32, 2010, doi: https://doi.org/10.1016/S0214-9168(10)70005-X. | |
dc.relation | A. Y. Baioumi, “Chapter 3 - Comparing Measures of Obesity: Waist Circumference, Waist-Hip, and Waist-Height Ratios,” (Second E. Watson, Ed. Academic Press, 2019, pp. 29–40. | |
dc.relation | S. Anoop et al., “The waist-height ratio is a potential anthropometric index of insulin resistance: Observations based on oral glucose tolerance test in lean, normo-glycaemic, Asian Indian males from Southern India,” Clin. Epidemiol. Glob. Heal., vol. 11, no. October 2020, p. 100762, 2021, doi: 10.1016/j.cegh.2021.100762. | |
dc.relation | F. Valle, “Ciencias de la salud,” Historia Santiago., vol. 5, p. 7, 2012. | |
dc.relation | J. Carranza-Madrigal, “Triglicéridos y riesgo cardiovascular,” Med. Interna Mex., vol. 33, no. 4, pp. 511–514, 2017. | |
dc.relation | F. Soriguer et al., “Validación del FINDRISC (FINnish Diabetes Risk SCore) para la predicción del riesgo de diabetes tipo 2 en una población del sur de España. Estudio Pizarra,” Med. Clin. (Barc)., vol. 138, no. 9, pp. 371–376, 2012, doi: 10.1016/j.medcli.2011.05.025. | |
dc.relation | M. Guardiola et al., “APOA5 variants predispose hyperlipidemic patients to atherogenic dyslipidemia and subclinical atherosclerosis.,” Atherosclerosis, vol. 240, no. 1, pp. 98–104, May 2015, doi: 10.1016/j.atherosclerosis.2015.03.008. | |
dc.relation | M. Sotos-Prieto, F. Francés, and D. Corella, “[Impact of apolipoprotein A5 on cardiovascular risk. Genetic and environmental modulation].,” Rev. Med. Chil., vol. 138, no. 7, pp. 868–880, Jul. 2010, doi: 10.4067/s0034-98872010000700013. | |
dc.relation | S. Rana and A. Sultana, “Association of the Variant rs7561317 Downstream of the TMEM18 Gene with Overweight/Obesity and Related Anthropometric Traits in a Sample of Pakistani Population,” Biochem. Genet., vol. 58, no. 2, pp. 257–278, 2020, doi: 10.1007/s10528-019-09940-2. | |
dc.relation | J. R. Speakman, “Functional analysis of seven genes linked to body mass index and adiposity by genome-wide association studies: a review.,” Hum. Hered., vol. 75, no. 2–4, pp. 57–79, 2013, doi: 10.1159/000353585. | |
dc.relation | C. J. Willer et al., “Six new loci associated with body mass index highlight a neuronal influence on body weight regulation,” Nat. Genet., vol. 41, no. 1, pp. 25–34, Jan. 2009, doi: 10.1038/ng.287. | |
dc.relation | R. Gutierrez-Aguilar et al., “The obesity-associated transcription factor ETV5 modulates circulating glucocorticoids,” Physiol. Behav., vol. 150, pp. 38–42, Oct. 2015, doi: 10.1016/j.physbeh.2015.03.027. | |
dc.relation | B. F. Palmer and R. J. Alpern, “CHAPTER 12 - Metabolic Acidosis,” J. Floege, R. J. Johnson, and J. B. T.-C. C. N. (Fourth E. Feehally, Eds. Philadelphia: Mosby, 2010, pp. 155–166. | |
dc.relation | K. S. Burgdorf et al., “Association studies of novel obesity-related gene variants with quantitative metabolic phenotypes in a population-based sample of 6,039 Danish individuals,” Diabetologia, vol. 55, no. 1, pp. 105–113, 2012, doi: 10.1007/s00125-011-2320-4. | |
dc.relation | D. Albuquerque et al., “Association study of six single nucleotide polymorphisms with obesity in two independent Iberian samples,” Meta Gene, vol. 17, pp. 17–22, 2018, doi: https://doi.org/10.1016/j.mgene.2018.04.006. | |
dc.relation | S. Farooq, S. Rana, A. J. Siddiqui, A. Iqbal, and S. G. Musharraf, “Association of metabolites with obesity based on two gene variants, MC4R rs17782313 and BDNF rs6265,” Biochim. Biophys. Acta - Mol. Basis Dis., vol. 1867, no. 7, p. 166144, 2021, doi: https://doi.org/10.1016/j.bbadis.2021.166144. | |
dc.relation | C. Ricci et al., “The impact of CPT1B rs470117, LEPR rs1137101 and BDNF rs6265 polymorphisms on the risk of developing obesity in an Italian population,” Obes. Res. Clin. Pract., vol. 15, no. 4, pp. 327–333, 2021, doi: https://doi.org/10.1016/j.orcp.2021.06.008. | |
dc.relation | S.-W. Oh et al., “Genome-wide association study of metabolic syndrome in Korean populations,” PloS one, vol. 15, no. 1. Department of Family Medicine, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, South Korea., p. e0227357, 2020, doi: 10.1371/journal.pone.0227357. | |
dc.relation | J. F. Felix et al., “Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index,” Hum. Mol. Genet., vol. 25, no. 2, pp. 389–403, Jan. 2016, doi: 10.1093/hmg/ddv472. | |
dc.relation | A. Ribas-Latre and K. Eckel-Mahan, “Interdependence of nutrient metabolism and the circadian clock system: Importance for metabolic health.,” Mol. Metab., vol. 5, no. 3, pp. 133–152, Mar. 2016, doi: 10.1016/j.molmet.2015.12.006. | |
dc.relation | P. Riestra et al., “Circadian CLOCK gene polymorphisms in relation to sleep patterns and obesity in African Americans: findings from the Jackson heart study.,” BMC Genet., vol. 18, no. 1, p. 58, Jun. 2017, doi: 10.1186/s12863-017-0522-6. | |
dc.relation | P. G. de Azevedo et al., “Genetic association of the PERIOD3 (PER3) Clock gene with extreme obesity,” Obes. Res. Clin. Pract., vol. 15, no. 4, pp. 334–338, 2021, doi: https://doi.org/10.1016/j.orcp.2021.06.006. | |
dc.relation | C. Andrade, “Understanding relative risk, odds ratio, and related terms: as simple as it can get.,” J. Clin. Psychiatry, vol. 76, no. 7, pp. e857-61, Jul. 2015, doi: 10.4088/JCP.15f10150. | |
dc.relation | M. Majid, A. Masood, S. A. Kadla, I. Hameed, and B. A. Ganai, “Association of Pro12Ala Polymorphism of Peroxisome Proliferator-Activated Receptor gamma 2 (PPARγ2) Gene with Type 2 Diabetes Mellitus in Ethnic Kashmiri Population,” Biochem. Genet., vol. 55, no. 1, pp. 10–21, 2017, doi: 10.1007/s10528-016-9765-6. | |
dc.relation | I. M. Heid et al., “Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution,” Nat. Genet., vol. 42, no. 11, pp. 949–960, 2010, doi: 10.1038/ng.685. | |
dc.relation | Z. H. Hoo, J. Candlish, and D. Teare, “What is an ROC curve?,” Emergency medicine journal : EMJ, vol. 34, no. 6. England, pp. 357–359, Jun-2017, doi: 10.1136/emermed-2017-206735. | |
dc.relation | P. A. English, J. A. Williams, J.-F. Martini, R. J. Motzer, O. Valota, and R. E. Buller, “A case for the use of receiver operating characteristic analysis of potential clinical efficacy biomarkers in advanced renal cell carcinoma,” Future Oncol., vol. 12, no. 2, pp. 175–182, Jan. 2016, doi: 10.2217/fon.15.290. | |
dc.relation | D. W. Belsky et al., “Development and evaluation of a genetic risk score for obesity,” Biodemography Soc. Biol., vol. 59, no. 1, pp. 85–100, 2013, doi: 10.1080/19485565.2013.774628. | |
dc.relation | A. N. Kamarudin, T. Cox, and R. Kolamunnage-Dona, “Time-dependent ROC curve analysis in medical research: current methods and applications,” BMC Med. Res. Methodol., vol. 17, no. 1, p. 53, Apr. 2017, doi: 10.1186/s12874-017-0332-6. | |
dc.relation | C. H. Sandholt et al., “Combined analyses of 20 common obesity susceptibility variants,” Diabetes, vol. 59, no. 7, pp. 1667–1673, Jul. 2010, doi: 10.2337/db09-1042. | |
dc.relation | F. Renström et al., “Replication and extension of genome-wide association study results for obesity in 4923 adults from northern Sweden,” Hum. Mol. Genet., vol. 18, no. 8, pp. 1489–1496, Apr. 2009, doi: 10.1093/hmg/ddp041. | |
dc.relation | M. Seral-Cortes et al., “Development of a Genetic Risk Score to predict the risk of overweight and obesity in European adolescents from the HELENA study,” Sci. Rep., vol. 11, no. 1, p. 3067, Feb. 2021, doi: 10.1038/s41598-021-82712-4. | |
dc.relation | M. Alfaifi, “Interaction between rs6446482 polymorphisms in the WFS1 gene in type 2 diabetes patients,” J. King Saud Univ. - Sci., vol. 34, no. 1, p. 101721, 2022, doi: https://doi.org/10.1016/j.jksus.2021.101721. | |
dc.relation | M. G. Domínguez-Cruz et al., “Maya gene variants related to the risk of type 2 diabetes in a family-based association study,” Gene, vol. 730, no. May 2019, p. 144259, 2020, doi: 10.1016/j.gene.2019.144259. | |
dc.relation | Z. Elek et al., “Micro-RNA binding site polymorphisms in the WFS1 gene are risk factors of diabetes mellitus,” PLoS One, vol. 10, no. 10, p. 139519, 2015, doi: 10.1371/journal.pone.0139519. | |
dc.relation | J. Li, X. Niu, J. Li, and Q. Wang, “Association of PPARG Gene Polymorphisms Pro12Ala with Type 2 Diabetes Mellitus: A Meta-analysis.,” Curr. Diabetes Rev., vol. 15, no. 4, pp. 277–283, 2019, doi: 10.2174/1573399814666180912130401. | |
dc.relation | S. Cataldi, V. Costa, A. Ciccodicola, and M. Aprile, “PPARγ and Diabetes: Beyond the Genome and Towards Personalized Medicine,” Curr. Diab. Rep., vol. 21, no. 6, p. 18, 2021, doi: 10.1007/s11892-021-01385-5. | |
dc.relation | L. Hashemian, N. Sarhangi, M. Afshari, H. R. Aghaei Meybodi, and M. Hasanzad, “The role of the PPARG (Pro12Ala) common genetic variant on type 2 diabetes mellitus risk.,” J. Diabetes Metab. Disord., vol. 20, no. 2, pp. 1385–1390, Dec. 2021, doi: 10.1007/s40200-021-00872-6. | |
dc.relation | D. A. Chistiakov, V. A. Potapov, D. S. Khodirev, M. S. Shamkhalova, M. V Shestakova, and V. V Nosikov, “The PPARγ Pro12Ala variant is associated with insulin sensitivity in Russian normoglycaemic and type 2 diabetic subjects,” Diabetes Vasc. Dis. Res., vol. 7, no. 1, pp. 56–62, Oct. 2009, doi: 10.1177/1479164109347689. | |
dc.relation | D. S. Avzaletdinova, L. F. Sharipova, O. V Kochetova, T. V Morugova, V. V Erdman, and O. E. Mustafina, “Association of variable rs1801282 locus of PPARG2 gene with diabetic nephropathy,” Russ. J. Genet., vol. 52, no. 8, pp. 877–881, 2016, doi: 10.1134/S1022795416080032. | |
dc.relation | S. Bakhashab et al., “The Effect Sizes of PPARγ rs1801282, FTO rs9939609, and MC4R rs2229616 Variants on Type 2 Diabetes Mellitus Risk among the Western Saudi Population: A Cross-Sectional Prospective Study,” Genes (Basel)., vol. 11, no. 1, p. 98, Jan. 2020, doi: 10.3390/genes11010098. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Análisis de factores de riesgo para diabetes tipo 2 y obesidad en población colombiana de 40 a 70 años | |
dc.type | Trabajo de grado - Maestría | |