Colombia | Trabajo de grado - Maestría
dc.contributorHernandez Ortiz, Juan Pablo
dc.contributorCrs-Tid Center for Research and Surveillance of Tropical and Infectious Diseases
dc.contributorCeballos Arroyo, Alberto Mario [0000-0002-4883-5440]
dc.contributor_zL4pEkAAAAJ
dc.creatorCeballos-Arroyo, Alberto Mario
dc.date.accessioned2023-01-31T15:49:30Z
dc.date.accessioned2023-06-07T00:08:28Z
dc.date.available2023-01-31T15:49:30Z
dc.date.available2023-06-07T00:08:28Z
dc.date.created2023-01-31T15:49:30Z
dc.date.issued2022
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/83214
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6651760
dc.description.abstractFluoroscanning is a novel system for quickly generating genomic maps. Unlike preceding systems like optical mapping and nanocoding, Fluoroscanning relies only on the intensity signals produced by dye fluorochromes when bound to DNA nucleotides, which we deem Fluoroscans. As part of this work, we wanted to develop and evaluated a fast digital image processing pipeline for extracting Fluoroscan signals from fluorescence microscopy images, to devise and implement a parallel and highly optimized algorithm for simulating the physical principles behind Fluoroscanning, and to guide laboratory experiments using such a tool in order to enable the generation of genomic maps through alignment algorithms. As a result of our work, we were able to set up a workflow in which real Fluoroscans extracted from digital images were used to adjust the parameters of a Monte Carlo simulation of Fluoroscanning which was then leveraged to guide further laboratory experiments and to generate a synthetic human-genome-scale dataset which will enable the development of signal alignment algorithms for genomic map generation.
dc.description.abstractEl Fluoroscanning es un sistema novedoso para la generación rápida de mapas genómicos. A diferencia de sistemas anteriores como el optical mapping y el nanocoding, el Fluoroscanning solo se basa en la intensidad de las señales (que llamamos Fluoroscans) producidas por fluorocromos de tinte cuando se adhieren a nucleótidos de ADN. Como parte de este trabajo, se desarrolla y se evalúa una serie de pasos que incluyen procesamiento de imágenes para extraer señales Fluoroscan de manera rápida a partir de imágenes de microscopía de fluorescencia, un algoritmo paralelo y altamente optimizado para simular los principios físicos detrás del Fluoroscanning y una metodología para guiar experimentos de laboratorio a partir de dicho algoritmo. Como resultado de nuestro trabajo, pudimos establecer un flujo de trabajo en el que Fluoroscans reales extraídos de imágenes digitales se utilizaron para ajustar los parámetros de las simulaciones, que a su vez fueron utilizadas para guiar experimentos de laboratorio y para generar un conjunto de datos sintético a escala genómica que permitirá ayudar al desarrollo de algoritmos de alineamiento de señales para la generación de mapas genómicos. (Texto tomado de la fuente)
dc.languageeng
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Minas - Maestría en Ingeniería - Ingeniería de Sistemas
dc.publisherFacultad de Minas
dc.publisherMedellín, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationRedCol
dc.relationLaReferencia
dc.relationAlberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2008). Molecular Biology of the Cell (M. Anderson & S. Granum, Eds.; 5th). Garland Science.
dc.relationAston, C., Hiort, C., & Schwartz, D. C. (1999). Optical Mapping: An Approach for Fine Mapping. Methods Enzymol., 303, 55–73. https://doi.org/10.1016/S0076-6879(99) 03006-2
dc.relationBahadar, K., Khaliq, A. A., & Shahid, M. (2016). A morphological hessian based approach for retinal blood vessels segmentation and denoising using region based otsu thresholding. PLoS One, 11 (7), 1–19. https://doi.org/10.1371/journal.pone.0158996
dc.relationBarber, D. (2012). Bayesian Reasoning and Machine Learning. Cambridge University Press. https://doi.org/10.1017/CBO9780511804779
dc.relationBennink, M., Sch ̈arer, O., Kanaar, R., Sakata-Sogawa, K., Schins, J., Kanger, J., de Grooth, B., & Greve, J. (1999). Single-molecule manipulation of double-stranded dna using optical tweezers: Interaction studies of dna with reca and yoyo-1. Cytometry, 36 (3), 200–208.
dc.relationBorst, A., & Theunissen, F. E. (1999). Information theory and neural coding. Nat Neurosci, 2 (11), 947–957. https://doi.org/10.1038/14731
dc.relationBrady, E. (1992). Real-time data compression using a FFT digital signal processor. https://doi.org/10.2172/7275570
dc.relationCao, H., Hastie, A. R., Cao, D., Lam, E. T., Sun, Y., Huang, H., Liu, X., Lin, L., Andrews, W., Chan, S., Huang, S., Tong, X., Requa, M., Anantharaman, T., Krogh, A., Yang, H., Cao, H., & Xu, X. (2014). Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology. Gigascience, 3 (1), 1–11. https://doi.org/10.1186/2047-217X-3-34
dc.relationChan, E. K., Cameron, D. L., Petersen, D. C., Lyons, R. J., Baldi, B. F., Papenfuss, A. T., Thomas, D. M., & Hayes, V. M. (2018). Optical mapping reveals a higher level of genomic architecture of chained fusions in cancer. Genome Research, 28 (5), 726–738. https://doi.org/10.1101/gr.227975.117
dc.relationChandra, R., Dagum, L., Kohr, D., Menon, R., Maydan, D., & McDonald, J. (2001). Parallel programming in OpenMP (D. E. Penrose & E. Wade, Eds.; 1st). Morgan Kaufmann Publishers.
dc.relationChing, T., Himmelstein, D. S., Beaulieu-Jones, B. K., Kalinin, A. A., Do, B. T., Way, G. P., Ferrero, E., Agapow, P.-M., Zietz, M., Hoffman, M. M., Xie, W., Rosen, G. L., Lengerich, B. J., Israeli, J., Lanchantin, J., Woloszynek, S., Carpenter, A. E., Shrikumar, A., Xu, J., . . . Greene, C. S. (2018). Opportunities and obstacles for deep learning in biology and medicine. Journal of The Royal Society Interface, 15 (141), 0170387. https://doi.org/10.1098/rsif.2017.0387
dc.relationCormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to Algorithms (2nd). The MIT Press; McGraw-Hill Book Company.
dc.relationDeGroot, M. H., Schervish, M. J., & Sheet, C. (2011). Probability and Statistics. Addison Wesley. https://doi.org/0321709705
dc.relationDeligeorgiev, T., Kaloyanova, S., & Vaquero, J. (2010). Intercalating cyanine dyes for nucleic acid detection. Recent Patents on Materials Science, 2, 1–26. https://doi.org/10.2174/1874465610902010001
dc.relationDimalanta, E. T., Lim, A., Runnheim, R., Lamers, C., Churas, C., Forrest, D. K., Pablo, J. J. D., Graham, M. D., Coppersmith, S. N., Goldstein, S., & Schwartz, D. C. (2004). A Microfluidic System for Large DNA Molecule Arrays. Anal. Chem., 76 (18), 5293–5301. https://doi.org/10.1021/ac0496401
dc.relationDuarte, M. (2021). Detecta: A python module to detect events in data (Version v0.0.5). Zenodo. https://doi.org/10.5281/zenodo.4598962
dc.relationDvirnas, A., Pichler, C., Stewart, C. L., Quaderi, S., Nyberg, L. K., M ̈uller, V., Bikkarolla, S. K., Kristiansson, E., Sandegren, L., Westerlund, F., & Ambj ̈ornsson, T. (2018).Facilitated sequence assembly using densely labeled optical DNA barcodes: A combinatorial auction approach. PLOS ONE, 13 (3), e0193900. https://doi.org/10.1371/journal.pone.0193900
dc.relationGonzalez, R. C., & Woods, R. E. (2008). Digital image processing (3rd). Prentice Hall. https://www.imageprocessingplace.com
dc.relationGuennebaud, G., & Jacob, B. (2010). Eigen v3 [software library]. http://eigen.tuxfamily.org
dc.relationGuizar-Sicairos, M., Thurman, S. T., & Fienup, J. R. (2008). Efficient subpixel image registration algorithms. Opt. Lett., 33 (2), 156–158. https://doi.org/10.1364/OL.33.000156
dc.relationG ̈unther, K., Mertig, M., & Seidel, R. (2010). Mechanical and structural properties of YOYO-1 complexed DNA. Nucleic Acids Res., 38 (19), 6526–6532. https://doi.org/10.1093/nar/gkq434
dc.relationGupta, A., Kounovsky-Shafer, K. L., Ravindran, P., & Schwartz, D. C. (2016). Optical mapping and nanocoding approaches to whole-genome analysis. Microfluid. Nanofluidics, 20 (3), 1–14. https://doi.org/10.1007/s10404-015-1685-y
dc.relationGupta, A., Place, M., Goldstein, S., Sarkar, D., Zhou, S., Potamousis, K., Kim, J., Flanagan, C., Li, Y., Newton, M. A., Callander, N. S., Hematti, P., Bresnick, E. H., Ma, J., Asimakopoulos, F., & Schwartz, D. C. (2015). Single-molecule analysis reveals widespread structural variation in multiple myeloma. Proc. Natl. Acad. Sci., 112 (25), 7689–7694. https://doi.org/10.1073/pnas.1418577112
dc.relationHarris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del R ́ıo, J. F., Wiebe, M., Peterson, P., . . . Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585 (7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2
dc.relationInternational Organization for Standardization. (2012). ISO/IEC 14882:2011 Information technology — Programming languages — C++. Geneva, Switzerland, International Organization for Standardization. http://www.iso.org/iso/iso catalogue/catalogue_tc/catalogue detail.htm?csnumber=50372
dc.relationJo, K., Schramm, T. M., & Schwartz, D. C. (2009). A single-molecule barcoding system using nanoslits for DNA analysis : nanocoding. Methods Mol. Biol., 544 (8), 29–42. https://doi.org/10.1007/978-1-59745-483-4_3
dc.relationJohansen, F., & Jacobsen, J. P. (1998). 1H NMR studies of the bis-intercalation of a homodimeric oxazole yellow dye in DNA oligonucleotides. J Biomol Struct Dyn, 16 (2), 205–222.
dc.relationJohnson, I. (2010). Molecular probes handbook: A guide to fluorescent probes and labeling technologies. Life Technologies Corporation. https://books.google.com/books?id=djuacQAACAAJ
dc.relationKatsonis, P., Koire, A., Wilson, S. J., Hsu, T. K., Lua, R. C., Wilkins, A. D., & Lichtarge, O. (2014). Single nucleotide variations: Biological impact and theoretical interpretation. Protein Sci., 23 (12), 1650–1666. https://doi.org/10.1002/pro.2552
dc.relationKounovsky-Shafer, K. L., Hernandez-Ortiz, J. P., Potamousis, K., Tsvid, G., Place, M., Ravindran, P., Jo, K., Zhou, S., Odijk, T., de Pablo, J. J., & Schwartz, D. C. (2017). Electrostatic confinement and manipulation of DNA molecules for genome analysis. Proc. Natl. Acad. Sci., (January), 13400–13405. https : / / doi . org / 10 . 1073 / pnas . 1711069114
dc.relationLarsson, A., Carlsson, C., Jonsson, M., & Albinsson, B. (1994). Characterization of the Bind- ing of the Fluorescent Dyes YO and YOYO to DNA by Polarized Light Spectroscopy. J. Am. Chem. Soc., 116 (19), 8459–8465. https://doi.org/10.1021/ja00098a004
dc.relationLee, S., & Jo, K. (2016). Visualization of Surface-tethered Large DNA Molecules with a Fluorescent Protein DNA Binding Peptide. Journal of Visualized Experiments: JoVE, (112). https://doi.org/10.3791/54141
dc.relationLee, S., Lee, Y., Kim, Y., Wang, C., Park, J., Jung, G. Y., Chen, Y.-L., Chang, R., Ikeda, S., Sugiyama, H., & Jo, K. (2018). Nanochannel-Confined TAMRA-Polypyrrole Stained DNA Stretching by Varying the Ionic Strength from Micromolar to Millimolar Con- centrations. Polymers, 11 (1), 15. https://doi.org/10.3390/polym11010015
dc.relationLesho, E., Clifford, R., Onmus-Leone, F., Appalla, L., Snesrud, E., Kwak, Y., Ong, A., May- bank, R., Waterman, P., Rohrbeck, P., Julius, M., Roth, A., Martinez, J., Nielsen, L., Steele, E., McGann, P., & Hinkle, M. (2016). The challenges of implementing next generation sequencing across a large healthcare system, and the molecular epidemiology and antibiotic susceptibilities of carbapenemase-producing bacteria in the healthcare system of the U.S. Department of Defense. PLoS One, 11 (5), 1–12. https: //doi.org/10.1371/journal.pone.0155770
dc.relationLeung, A. K. Y., Kwok, T. P., Wan, R., Xiao, M., Kwok, P. Y., Yip, K. Y., & Chan, T. F. (2017). OMBlast: Alignment tool for optical mapping using a seed-and-extend approach. Bioinformatics, 33 (3), 311–319. https://doi.org/10.1093/bioinformatics/ btw620
dc.relationLi, Y., Zhou, S., Schwartz, D. C., & Ma, J. (2016). Allele-Specific Quantification of Structural Variations in Cancer Genomes. Cell Systems, 3 (1), 21–34. https://doi.org/10.1016/j.cels.2016.05.007
dc.relationLouie, E., Ott, J., & Majewski, J. (2003). Nucleotide Frequency Variation Across Human Genes. Genome Res., 2594–2601. https://doi.org/10.1101/gr.1317703.
dc.relationMajewski, J., Majewski, J., Ott, J., & Ott, J. (2002). Distribution and characterization of regulatory elements in the human genome. Genome Res., 12 (212), 1827–1836. https: //doi.org/10.1101/gr.606402.12
dc.relationMarie, R., Pedersen, J. N., Bauer, D. L., Rasmussen, K. H., Yusuf, M., Volpi, E., Flyvbjerg, H., Kristensen, A., & Mir, K. U. (2013). Integrated view of genome structure and sequence of a single DNA molecule in a nanofluidic device. Proceedings of the National Academy of Sciences of the United States of America, 110 (13), 4893–4898. https://doi.org/10.1073/pnas.1214570110
dc.relationMarie, R., Pedersen, J. N., Bærlocher, L., Koprowska, K., Pødenphant, M., Sabatel, C., Za- lkovskij, M., Mironov, A., Bilenberg, B., Ashley, N., Flyvbjerg, H., Bodmer, W. F., Kristensen, A., & Mir, K. U. (2018). Single-molecule DNA-mapping and whole-genome sequencing of individual cells. Proceedings of the National Academy of Sciences of the United States of America, 115 (44), 11192–11197. https://doi.org/10.1073/pnas.1804194115
dc.relationMatsumoto, M., & Nishimura, T. (1998). Mersenne twister: A 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans. on Modeling and Computer Simulation, 8 (1), 3–30.
dc.relationMin, S., Lee, B., & Yoon, S. (2017). Deep learning in bioinformatics. Brief. Bioinform., 18 (5), arXiv 1603.06430, 851–869. https://doi.org/10.1093/bib/bbw068
dc.relationM ̈uller, V., Dvirnas, A., Andersson, J., Singh, V., KK, S., Johansson, P., Ebenstein, Y., Ambj ̈ornsson, T., & Westerlund, F. (2019). Enzyme-free optical DNA mapping of the human genome using competitive binding. Nucleic Acids Research, 47 (15), e89. https://doi.org/10.1093/nar/gkz489
dc.relationNagarajan, N., Read, T. D., & Pop, M. (2008). Scaffolding and validation of bacterial genome assemblies using optical restriction maps. Bioinformatics, 24 (10), 1229–1235. https://doi.org/10.1093/bioinformatics/btn102
dc.relationNandi, S. (2017). Statistical Learning Methods for Fluroroscanning (Ph.D. Thesis). University of Wisconsin-Madison.
dc.relationNetzel, T. L., Nafisi, K., Zhao, M., Lenhard, J. R., & Johnson, I. (1995). Base-Content Dependence of Emission Enhancements, Quantum Yields, and Lifetimes for Cyanine Dyes Bound to Double-Strand DNA: Photophysical Properties of Monomeric and Bichromomphoric DNA Stains. J. Phys. Chem., 99 (51), 17936–17947. https://doi.org/10.1021/j100051a019
dc.relationNyberg, L., Persson, F., ̊Akerman, B., & Westerlund, F. (2013). Heterogeneous staining: a tool for studies of how fluorescent dyes affect the physical properties of DNA. Nucleic Acids Research, 41 (19), e184–e184. https://doi.org/10.1093/nar/gkt755
dc.relationOtsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9 (1), 62–66. https://doi.org/ 10 .1109/TSMC.1979.4310076
dc.relationPark, J., Lee, S., Won, N., Shin, E., Kim, S.-H., Chun, M.-Y., Gu, J., Jung, G.-Y., Lim, K.-I., & Jo, K. (2019). Single-molecule DNA visualization using AT-specific red and non-specific green DNA-binding fluorescent proteins. Analyst, 144 (3), 921–927. https://doi.org/10.1039/C8AN01426D
dc.relationPereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J., Fernandes, J. P., & Saraiva, J. (2021). Ranking programming languages by energy efficiency. Science of Computer Programming, 205, 102609. https://doi.org/https://doi.org/10.1016/j.scico.2021. 102609
dc.relationPrecision Medicine Initiative (PMI) Working Group. (2015). The precision medicine initia- tive cohort program – building a research foundation for 21st century medicine (tech.rep.). http://www.nih.gov/precisionmedicine
dc.relationRavindran, P., & Gupta, A. (2015). Image processing for optical mapping. Gigascience, 4 (1), 1–8. https://doi.org/10.1186/s13742-015-0096-z
dc.relationReisner, W., Larsen, N. B., Silahtaroglu, A., Kristensen, A., Tommerup, N., Tegenfeldt, J. O., & Flyvbjerg, H. (2010). Single-molecule denaturation mapping of DNA in nanofluidic channels. Proceedings of the National Academy of Sciences, 107 (30), 13294–13299. https://doi.org/10.1073/pnas.1007081107
dc.relationRoy, A., Diao, Y., Evani, U., Abhyankar, A., Howarth, C., Le Priol, R., & Bloom, T. (2017). Massively Parallel Processing of Whole Genome Sequence Data, In Proc. 2017 acm int. conf. manag. data - sigmod ’17. https://doi.org/10.1145/3035918.3064048
dc.relationRye, H. S., Yue, S., Wemmer, D. E., Quesada, M. A., Haugland, R. P., Mathies, R. A., & Glazer, A. N. (1992). Stable fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes: Properties and applications. Nucleic Acids Research, 20 (11), 2803–2812.
dc.relationSchwartz, D., Li, X., Hernandez, L., Ramnarain, S., Huff, E., & Wang, Y. (1993). Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping. Science 262 (5130), 110–114. https://doi.org/10.1126/science. 8211116
dc.relationShapiro, H. (2004). Excitation and emission spectra of common dyes. Current Protocols in Cytometry, Chapter 1, Unit 1.19. https://doi.org/10.1002/0471142956.cy0119s26
dc.relationShiguo, Z., Herscheleb, J., & Schwartz, D. C. (2007). A single molecule system for whole genome analysis., In New high throughput technol. dna seq. genomics.
dc.relationShit, S., Paetzold, J. C., Sekuboyina, A., Zhylka, A., Ezhov, I., Unger, A., Pluim, J. P. W., Tetteh, G., & Menze, B. H. (2020). clDice – a Topology-Preserving Loss Function for Tubular Structure Segmentation, arXiv 2003.07311, 1–23. http://arxiv.org/abs/ 2003.07311
dc.relationSpielmann, H. P., Wemmer, D. E., & Jacobsen, J. P. (1995). Solution structure of a DNA complex with the fluorescent bis-intercalator TOTO determined by NMR spectroscopy. Biochemistry, 34 (27), 8542–8553.
dc.relationTang, H., Lyons, E., & Town, C. D. (2015). Optical mapping in plant comparative genomics. Gigascience, 4 (1), 1–6. https://doi.org/10.1186/s13742-015-0044-y
dc.relationTeague, B., Waterman, M. S., Goldstein, S., Potamousis, K., Zhou, S., Reslewic, S., Sarkar, D., Valouev, A., Churas, C., Kidd, J. M., Kohn, S., Runnheim, R., Lamers, C., Forrest, D., Newton, M. A., Eichler, E. E., Kent-First, M., Surti, U., Livny, M., & Schwartz, D. C. (2010). High-resolution human genome structure by single-molecule analysis. Proc. Natl. Acad. Sci., 107 (24), 10848–10853. https://doi.org/10.1073/ pnas.0914638107
dc.relationValouev, A., Schwartz, D. C., Zhou, S., & Waterman, M. S. (2006). An algorithm for assembly of ordered restriction maps from single DNA molecules. Proc. Natl. Acad. Sci., 103 (43), 15770–15775. https://doi.org/10.1073/pnas.0604040103
dc.relationValouev, A., Li, L., Liu, Y.-C., Schwartz, D. C., Yang, Y., Zhang, Y., & Waterman, M. S. (2006). Alignment of Optical Maps. J. Comput. Biol., 13 (2), 442–462. https://doi. org/10.1089/cmb.2006.13.442
dc.relationValouev, A., Zhang, Y., Schwartz, D. C., & Waterman, M. S. (2006). Refinement of optical map assemblies. Bioinformatics, 22 (10), 1217–1224. https://doi.org/10.1093/ bioinformatics/btl063
dc.relationVan der Walt, S., Sch ̈onberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, E., & Yu, T. (2014). Scikit-image: Image processing in python. PeerJ, 2, e453.
dc.relationVirtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., . . . SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17, 261–272. https://doi.org/ 10.1038/s41592-019-0686-2
dc.relationVoigtl ̈ander, B. (2015). Data Representation and Image Processing (P. Avouris, B. Bhushan, D. Bimberg, H. Sakaki, K. von Klitzing, & R. Wiesendanger, Eds.; 1st ed.). In P. Avouris, B. Bhushan, D. Bimberg, H. Sakaki, K. von Klitzing, & R. Wiesendanger (Eds.), Scanning probe microsc. at. force microsc. scanning tunneling microsc. (1st ed.). Berlin, Heidelberg, Springer-Verlag GmbH Berlin Heidelberg. https://doi.org/10.1016/B978-0-12-814182-3.00005-5
dc.relationZhou, S., & Schwartz, D. C. (2004). The Optical Mapping of Microbial Genomes. ASM News, 70 (7), 323–330.
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleA computational methodology for the generation of genomic maps from fluoroscanning images
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución