Colombia
| Trabajo de grado - Maestría
A computational methodology for the generation of genomic maps from fluoroscanning images
dc.contributor | Hernandez Ortiz, Juan Pablo | |
dc.contributor | Crs-Tid Center for Research and Surveillance of Tropical and Infectious Diseases | |
dc.contributor | Ceballos Arroyo, Alberto Mario [0000-0002-4883-5440] | |
dc.contributor | _zL4pEkAAAAJ | |
dc.creator | Ceballos-Arroyo, Alberto Mario | |
dc.date.accessioned | 2023-01-31T15:49:30Z | |
dc.date.accessioned | 2023-06-07T00:08:28Z | |
dc.date.available | 2023-01-31T15:49:30Z | |
dc.date.available | 2023-06-07T00:08:28Z | |
dc.date.created | 2023-01-31T15:49:30Z | |
dc.date.issued | 2022 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/83214 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6651760 | |
dc.description.abstract | Fluoroscanning is a novel system for quickly generating genomic maps. Unlike preceding systems like optical mapping and nanocoding, Fluoroscanning relies only on the intensity signals produced by dye fluorochromes when bound to DNA nucleotides, which we deem Fluoroscans. As part of this work, we wanted to develop and evaluated a fast digital image processing pipeline for extracting Fluoroscan signals from fluorescence microscopy images, to devise and implement a parallel and highly optimized algorithm for simulating the physical principles behind Fluoroscanning, and to guide laboratory experiments using such a tool in order to enable the generation of genomic maps through alignment algorithms. As a result of our work, we were able to set up a workflow in which real Fluoroscans extracted from digital images were used to adjust the parameters of a Monte Carlo simulation of Fluoroscanning which was then leveraged to guide further laboratory experiments and to generate a synthetic human-genome-scale dataset which will enable the development of signal alignment algorithms for genomic map generation. | |
dc.description.abstract | El Fluoroscanning es un sistema novedoso para la generación rápida de mapas genómicos. A diferencia de sistemas anteriores como el optical mapping y el nanocoding, el Fluoroscanning solo se basa en la intensidad de las señales (que llamamos Fluoroscans) producidas por fluorocromos de tinte cuando se adhieren a nucleótidos de ADN. Como parte de este trabajo, se desarrolla y se evalúa una serie de pasos que incluyen procesamiento de imágenes para extraer señales Fluoroscan de manera rápida a partir de imágenes de microscopía de fluorescencia, un algoritmo paralelo y altamente optimizado para simular los principios físicos detrás del Fluoroscanning y una metodología para guiar experimentos de laboratorio a partir de dicho algoritmo. Como resultado de nuestro trabajo, pudimos establecer un flujo de trabajo en el que Fluoroscans reales extraídos de imágenes digitales se utilizaron para ajustar los parámetros de las simulaciones, que a su vez fueron utilizadas para guiar experimentos de laboratorio y para generar un conjunto de datos sintético a escala genómica que permitirá ayudar al desarrollo de algoritmos de alineamiento de señales para la generación de mapas genómicos. (Texto tomado de la fuente) | |
dc.language | eng | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Medellín - Minas - Maestría en Ingeniería - Ingeniería de Sistemas | |
dc.publisher | Facultad de Minas | |
dc.publisher | Medellín, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | RedCol | |
dc.relation | LaReferencia | |
dc.relation | Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2008). Molecular Biology of the Cell (M. Anderson & S. Granum, Eds.; 5th). Garland Science. | |
dc.relation | Aston, C., Hiort, C., & Schwartz, D. C. (1999). Optical Mapping: An Approach for Fine Mapping. Methods Enzymol., 303, 55–73. https://doi.org/10.1016/S0076-6879(99) 03006-2 | |
dc.relation | Bahadar, K., Khaliq, A. A., & Shahid, M. (2016). A morphological hessian based approach for retinal blood vessels segmentation and denoising using region based otsu thresholding. PLoS One, 11 (7), 1–19. https://doi.org/10.1371/journal.pone.0158996 | |
dc.relation | Barber, D. (2012). Bayesian Reasoning and Machine Learning. Cambridge University Press. https://doi.org/10.1017/CBO9780511804779 | |
dc.relation | Bennink, M., Sch ̈arer, O., Kanaar, R., Sakata-Sogawa, K., Schins, J., Kanger, J., de Grooth, B., & Greve, J. (1999). Single-molecule manipulation of double-stranded dna using optical tweezers: Interaction studies of dna with reca and yoyo-1. Cytometry, 36 (3), 200–208. | |
dc.relation | Borst, A., & Theunissen, F. E. (1999). Information theory and neural coding. Nat Neurosci, 2 (11), 947–957. https://doi.org/10.1038/14731 | |
dc.relation | Brady, E. (1992). Real-time data compression using a FFT digital signal processor. https://doi.org/10.2172/7275570 | |
dc.relation | Cao, H., Hastie, A. R., Cao, D., Lam, E. T., Sun, Y., Huang, H., Liu, X., Lin, L., Andrews, W., Chan, S., Huang, S., Tong, X., Requa, M., Anantharaman, T., Krogh, A., Yang, H., Cao, H., & Xu, X. (2014). Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology. Gigascience, 3 (1), 1–11. https://doi.org/10.1186/2047-217X-3-34 | |
dc.relation | Chan, E. K., Cameron, D. L., Petersen, D. C., Lyons, R. J., Baldi, B. F., Papenfuss, A. T., Thomas, D. M., & Hayes, V. M. (2018). Optical mapping reveals a higher level of genomic architecture of chained fusions in cancer. Genome Research, 28 (5), 726–738. https://doi.org/10.1101/gr.227975.117 | |
dc.relation | Chandra, R., Dagum, L., Kohr, D., Menon, R., Maydan, D., & McDonald, J. (2001). Parallel programming in OpenMP (D. E. Penrose & E. Wade, Eds.; 1st). Morgan Kaufmann Publishers. | |
dc.relation | Ching, T., Himmelstein, D. S., Beaulieu-Jones, B. K., Kalinin, A. A., Do, B. T., Way, G. P., Ferrero, E., Agapow, P.-M., Zietz, M., Hoffman, M. M., Xie, W., Rosen, G. L., Lengerich, B. J., Israeli, J., Lanchantin, J., Woloszynek, S., Carpenter, A. E., Shrikumar, A., Xu, J., . . . Greene, C. S. (2018). Opportunities and obstacles for deep learning in biology and medicine. Journal of The Royal Society Interface, 15 (141), 0170387. https://doi.org/10.1098/rsif.2017.0387 | |
dc.relation | Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to Algorithms (2nd). The MIT Press; McGraw-Hill Book Company. | |
dc.relation | DeGroot, M. H., Schervish, M. J., & Sheet, C. (2011). Probability and Statistics. Addison Wesley. https://doi.org/0321709705 | |
dc.relation | Deligeorgiev, T., Kaloyanova, S., & Vaquero, J. (2010). Intercalating cyanine dyes for nucleic acid detection. Recent Patents on Materials Science, 2, 1–26. https://doi.org/10.2174/1874465610902010001 | |
dc.relation | Dimalanta, E. T., Lim, A., Runnheim, R., Lamers, C., Churas, C., Forrest, D. K., Pablo, J. J. D., Graham, M. D., Coppersmith, S. N., Goldstein, S., & Schwartz, D. C. (2004). A Microfluidic System for Large DNA Molecule Arrays. Anal. Chem., 76 (18), 5293–5301. https://doi.org/10.1021/ac0496401 | |
dc.relation | Duarte, M. (2021). Detecta: A python module to detect events in data (Version v0.0.5). Zenodo. https://doi.org/10.5281/zenodo.4598962 | |
dc.relation | Dvirnas, A., Pichler, C., Stewart, C. L., Quaderi, S., Nyberg, L. K., M ̈uller, V., Bikkarolla, S. K., Kristiansson, E., Sandegren, L., Westerlund, F., & Ambj ̈ornsson, T. (2018).Facilitated sequence assembly using densely labeled optical DNA barcodes: A combinatorial auction approach. PLOS ONE, 13 (3), e0193900. https://doi.org/10.1371/journal.pone.0193900 | |
dc.relation | Gonzalez, R. C., & Woods, R. E. (2008). Digital image processing (3rd). Prentice Hall. https://www.imageprocessingplace.com | |
dc.relation | Guennebaud, G., & Jacob, B. (2010). Eigen v3 [software library]. http://eigen.tuxfamily.org | |
dc.relation | Guizar-Sicairos, M., Thurman, S. T., & Fienup, J. R. (2008). Efficient subpixel image registration algorithms. Opt. Lett., 33 (2), 156–158. https://doi.org/10.1364/OL.33.000156 | |
dc.relation | G ̈unther, K., Mertig, M., & Seidel, R. (2010). Mechanical and structural properties of YOYO-1 complexed DNA. Nucleic Acids Res., 38 (19), 6526–6532. https://doi.org/10.1093/nar/gkq434 | |
dc.relation | Gupta, A., Kounovsky-Shafer, K. L., Ravindran, P., & Schwartz, D. C. (2016). Optical mapping and nanocoding approaches to whole-genome analysis. Microfluid. Nanofluidics, 20 (3), 1–14. https://doi.org/10.1007/s10404-015-1685-y | |
dc.relation | Gupta, A., Place, M., Goldstein, S., Sarkar, D., Zhou, S., Potamousis, K., Kim, J., Flanagan, C., Li, Y., Newton, M. A., Callander, N. S., Hematti, P., Bresnick, E. H., Ma, J., Asimakopoulos, F., & Schwartz, D. C. (2015). Single-molecule analysis reveals widespread structural variation in multiple myeloma. Proc. Natl. Acad. Sci., 112 (25), 7689–7694. https://doi.org/10.1073/pnas.1418577112 | |
dc.relation | Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del R ́ıo, J. F., Wiebe, M., Peterson, P., . . . Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585 (7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2 | |
dc.relation | International Organization for Standardization. (2012). ISO/IEC 14882:2011 Information technology — Programming languages — C++. Geneva, Switzerland, International Organization for Standardization. http://www.iso.org/iso/iso catalogue/catalogue_tc/catalogue detail.htm?csnumber=50372 | |
dc.relation | Jo, K., Schramm, T. M., & Schwartz, D. C. (2009). A single-molecule barcoding system using nanoslits for DNA analysis : nanocoding. Methods Mol. Biol., 544 (8), 29–42. https://doi.org/10.1007/978-1-59745-483-4_3 | |
dc.relation | Johansen, F., & Jacobsen, J. P. (1998). 1H NMR studies of the bis-intercalation of a homodimeric oxazole yellow dye in DNA oligonucleotides. J Biomol Struct Dyn, 16 (2), 205–222. | |
dc.relation | Johnson, I. (2010). Molecular probes handbook: A guide to fluorescent probes and labeling technologies. Life Technologies Corporation. https://books.google.com/books?id=djuacQAACAAJ | |
dc.relation | Katsonis, P., Koire, A., Wilson, S. J., Hsu, T. K., Lua, R. C., Wilkins, A. D., & Lichtarge, O. (2014). Single nucleotide variations: Biological impact and theoretical interpretation. Protein Sci., 23 (12), 1650–1666. https://doi.org/10.1002/pro.2552 | |
dc.relation | Kounovsky-Shafer, K. L., Hernandez-Ortiz, J. P., Potamousis, K., Tsvid, G., Place, M., Ravindran, P., Jo, K., Zhou, S., Odijk, T., de Pablo, J. J., & Schwartz, D. C. (2017). Electrostatic confinement and manipulation of DNA molecules for genome analysis. Proc. Natl. Acad. Sci., (January), 13400–13405. https : / / doi . org / 10 . 1073 / pnas . 1711069114 | |
dc.relation | Larsson, A., Carlsson, C., Jonsson, M., & Albinsson, B. (1994). Characterization of the Bind- ing of the Fluorescent Dyes YO and YOYO to DNA by Polarized Light Spectroscopy. J. Am. Chem. Soc., 116 (19), 8459–8465. https://doi.org/10.1021/ja00098a004 | |
dc.relation | Lee, S., & Jo, K. (2016). Visualization of Surface-tethered Large DNA Molecules with a Fluorescent Protein DNA Binding Peptide. Journal of Visualized Experiments: JoVE, (112). https://doi.org/10.3791/54141 | |
dc.relation | Lee, S., Lee, Y., Kim, Y., Wang, C., Park, J., Jung, G. Y., Chen, Y.-L., Chang, R., Ikeda, S., Sugiyama, H., & Jo, K. (2018). Nanochannel-Confined TAMRA-Polypyrrole Stained DNA Stretching by Varying the Ionic Strength from Micromolar to Millimolar Con- centrations. Polymers, 11 (1), 15. https://doi.org/10.3390/polym11010015 | |
dc.relation | Lesho, E., Clifford, R., Onmus-Leone, F., Appalla, L., Snesrud, E., Kwak, Y., Ong, A., May- bank, R., Waterman, P., Rohrbeck, P., Julius, M., Roth, A., Martinez, J., Nielsen, L., Steele, E., McGann, P., & Hinkle, M. (2016). The challenges of implementing next generation sequencing across a large healthcare system, and the molecular epidemiology and antibiotic susceptibilities of carbapenemase-producing bacteria in the healthcare system of the U.S. Department of Defense. PLoS One, 11 (5), 1–12. https: //doi.org/10.1371/journal.pone.0155770 | |
dc.relation | Leung, A. K. Y., Kwok, T. P., Wan, R., Xiao, M., Kwok, P. Y., Yip, K. Y., & Chan, T. F. (2017). OMBlast: Alignment tool for optical mapping using a seed-and-extend approach. Bioinformatics, 33 (3), 311–319. https://doi.org/10.1093/bioinformatics/ btw620 | |
dc.relation | Li, Y., Zhou, S., Schwartz, D. C., & Ma, J. (2016). Allele-Specific Quantification of Structural Variations in Cancer Genomes. Cell Systems, 3 (1), 21–34. https://doi.org/10.1016/j.cels.2016.05.007 | |
dc.relation | Louie, E., Ott, J., & Majewski, J. (2003). Nucleotide Frequency Variation Across Human Genes. Genome Res., 2594–2601. https://doi.org/10.1101/gr.1317703. | |
dc.relation | Majewski, J., Majewski, J., Ott, J., & Ott, J. (2002). Distribution and characterization of regulatory elements in the human genome. Genome Res., 12 (212), 1827–1836. https: //doi.org/10.1101/gr.606402.12 | |
dc.relation | Marie, R., Pedersen, J. N., Bauer, D. L., Rasmussen, K. H., Yusuf, M., Volpi, E., Flyvbjerg, H., Kristensen, A., & Mir, K. U. (2013). Integrated view of genome structure and sequence of a single DNA molecule in a nanofluidic device. Proceedings of the National Academy of Sciences of the United States of America, 110 (13), 4893–4898. https://doi.org/10.1073/pnas.1214570110 | |
dc.relation | Marie, R., Pedersen, J. N., Bærlocher, L., Koprowska, K., Pødenphant, M., Sabatel, C., Za- lkovskij, M., Mironov, A., Bilenberg, B., Ashley, N., Flyvbjerg, H., Bodmer, W. F., Kristensen, A., & Mir, K. U. (2018). Single-molecule DNA-mapping and whole-genome sequencing of individual cells. Proceedings of the National Academy of Sciences of the United States of America, 115 (44), 11192–11197. https://doi.org/10.1073/pnas.1804194115 | |
dc.relation | Matsumoto, M., & Nishimura, T. (1998). Mersenne twister: A 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans. on Modeling and Computer Simulation, 8 (1), 3–30. | |
dc.relation | Min, S., Lee, B., & Yoon, S. (2017). Deep learning in bioinformatics. Brief. Bioinform., 18 (5), arXiv 1603.06430, 851–869. https://doi.org/10.1093/bib/bbw068 | |
dc.relation | M ̈uller, V., Dvirnas, A., Andersson, J., Singh, V., KK, S., Johansson, P., Ebenstein, Y., Ambj ̈ornsson, T., & Westerlund, F. (2019). Enzyme-free optical DNA mapping of the human genome using competitive binding. Nucleic Acids Research, 47 (15), e89. https://doi.org/10.1093/nar/gkz489 | |
dc.relation | Nagarajan, N., Read, T. D., & Pop, M. (2008). Scaffolding and validation of bacterial genome assemblies using optical restriction maps. Bioinformatics, 24 (10), 1229–1235. https://doi.org/10.1093/bioinformatics/btn102 | |
dc.relation | Nandi, S. (2017). Statistical Learning Methods for Fluroroscanning (Ph.D. Thesis). University of Wisconsin-Madison. | |
dc.relation | Netzel, T. L., Nafisi, K., Zhao, M., Lenhard, J. R., & Johnson, I. (1995). Base-Content Dependence of Emission Enhancements, Quantum Yields, and Lifetimes for Cyanine Dyes Bound to Double-Strand DNA: Photophysical Properties of Monomeric and Bichromomphoric DNA Stains. J. Phys. Chem., 99 (51), 17936–17947. https://doi.org/10.1021/j100051a019 | |
dc.relation | Nyberg, L., Persson, F., ̊Akerman, B., & Westerlund, F. (2013). Heterogeneous staining: a tool for studies of how fluorescent dyes affect the physical properties of DNA. Nucleic Acids Research, 41 (19), e184–e184. https://doi.org/10.1093/nar/gkt755 | |
dc.relation | Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9 (1), 62–66. https://doi.org/ 10 .1109/TSMC.1979.4310076 | |
dc.relation | Park, J., Lee, S., Won, N., Shin, E., Kim, S.-H., Chun, M.-Y., Gu, J., Jung, G.-Y., Lim, K.-I., & Jo, K. (2019). Single-molecule DNA visualization using AT-specific red and non-specific green DNA-binding fluorescent proteins. Analyst, 144 (3), 921–927. https://doi.org/10.1039/C8AN01426D | |
dc.relation | Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J., Fernandes, J. P., & Saraiva, J. (2021). Ranking programming languages by energy efficiency. Science of Computer Programming, 205, 102609. https://doi.org/https://doi.org/10.1016/j.scico.2021. 102609 | |
dc.relation | Precision Medicine Initiative (PMI) Working Group. (2015). The precision medicine initia- tive cohort program – building a research foundation for 21st century medicine (tech.rep.). http://www.nih.gov/precisionmedicine | |
dc.relation | Ravindran, P., & Gupta, A. (2015). Image processing for optical mapping. Gigascience, 4 (1), 1–8. https://doi.org/10.1186/s13742-015-0096-z | |
dc.relation | Reisner, W., Larsen, N. B., Silahtaroglu, A., Kristensen, A., Tommerup, N., Tegenfeldt, J. O., & Flyvbjerg, H. (2010). Single-molecule denaturation mapping of DNA in nanofluidic channels. Proceedings of the National Academy of Sciences, 107 (30), 13294–13299. https://doi.org/10.1073/pnas.1007081107 | |
dc.relation | Roy, A., Diao, Y., Evani, U., Abhyankar, A., Howarth, C., Le Priol, R., & Bloom, T. (2017). Massively Parallel Processing of Whole Genome Sequence Data, In Proc. 2017 acm int. conf. manag. data - sigmod ’17. https://doi.org/10.1145/3035918.3064048 | |
dc.relation | Rye, H. S., Yue, S., Wemmer, D. E., Quesada, M. A., Haugland, R. P., Mathies, R. A., & Glazer, A. N. (1992). Stable fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes: Properties and applications. Nucleic Acids Research, 20 (11), 2803–2812. | |
dc.relation | Schwartz, D., Li, X., Hernandez, L., Ramnarain, S., Huff, E., & Wang, Y. (1993). Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping. Science 262 (5130), 110–114. https://doi.org/10.1126/science. 8211116 | |
dc.relation | Shapiro, H. (2004). Excitation and emission spectra of common dyes. Current Protocols in Cytometry, Chapter 1, Unit 1.19. https://doi.org/10.1002/0471142956.cy0119s26 | |
dc.relation | Shiguo, Z., Herscheleb, J., & Schwartz, D. C. (2007). A single molecule system for whole genome analysis., In New high throughput technol. dna seq. genomics. | |
dc.relation | Shit, S., Paetzold, J. C., Sekuboyina, A., Zhylka, A., Ezhov, I., Unger, A., Pluim, J. P. W., Tetteh, G., & Menze, B. H. (2020). clDice – a Topology-Preserving Loss Function for Tubular Structure Segmentation, arXiv 2003.07311, 1–23. http://arxiv.org/abs/ 2003.07311 | |
dc.relation | Spielmann, H. P., Wemmer, D. E., & Jacobsen, J. P. (1995). Solution structure of a DNA complex with the fluorescent bis-intercalator TOTO determined by NMR spectroscopy. Biochemistry, 34 (27), 8542–8553. | |
dc.relation | Tang, H., Lyons, E., & Town, C. D. (2015). Optical mapping in plant comparative genomics. Gigascience, 4 (1), 1–6. https://doi.org/10.1186/s13742-015-0044-y | |
dc.relation | Teague, B., Waterman, M. S., Goldstein, S., Potamousis, K., Zhou, S., Reslewic, S., Sarkar, D., Valouev, A., Churas, C., Kidd, J. M., Kohn, S., Runnheim, R., Lamers, C., Forrest, D., Newton, M. A., Eichler, E. E., Kent-First, M., Surti, U., Livny, M., & Schwartz, D. C. (2010). High-resolution human genome structure by single-molecule analysis. Proc. Natl. Acad. Sci., 107 (24), 10848–10853. https://doi.org/10.1073/ pnas.0914638107 | |
dc.relation | Valouev, A., Schwartz, D. C., Zhou, S., & Waterman, M. S. (2006). An algorithm for assembly of ordered restriction maps from single DNA molecules. Proc. Natl. Acad. Sci., 103 (43), 15770–15775. https://doi.org/10.1073/pnas.0604040103 | |
dc.relation | Valouev, A., Li, L., Liu, Y.-C., Schwartz, D. C., Yang, Y., Zhang, Y., & Waterman, M. S. (2006). Alignment of Optical Maps. J. Comput. Biol., 13 (2), 442–462. https://doi. org/10.1089/cmb.2006.13.442 | |
dc.relation | Valouev, A., Zhang, Y., Schwartz, D. C., & Waterman, M. S. (2006). Refinement of optical map assemblies. Bioinformatics, 22 (10), 1217–1224. https://doi.org/10.1093/ bioinformatics/btl063 | |
dc.relation | Van der Walt, S., Sch ̈onberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, E., & Yu, T. (2014). Scikit-image: Image processing in python. PeerJ, 2, e453. | |
dc.relation | Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., . . . SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17, 261–272. https://doi.org/ 10.1038/s41592-019-0686-2 | |
dc.relation | Voigtl ̈ander, B. (2015). Data Representation and Image Processing (P. Avouris, B. Bhushan, D. Bimberg, H. Sakaki, K. von Klitzing, & R. Wiesendanger, Eds.; 1st ed.). In P. Avouris, B. Bhushan, D. Bimberg, H. Sakaki, K. von Klitzing, & R. Wiesendanger (Eds.), Scanning probe microsc. at. force microsc. scanning tunneling microsc. (1st ed.). Berlin, Heidelberg, Springer-Verlag GmbH Berlin Heidelberg. https://doi.org/10.1016/B978-0-12-814182-3.00005-5 | |
dc.relation | Zhou, S., & Schwartz, D. C. (2004). The Optical Mapping of Microbial Genomes. ASM News, 70 (7), 323–330. | |
dc.rights | Reconocimiento 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | A computational methodology for the generation of genomic maps from fluoroscanning images | |
dc.type | Trabajo de grado - Maestría |