dc.contributorRafael Germán, Hurtado Heredia
dc.contributorDiego Alejandro, Milanes Carreño
dc.contributorEconofisica y Sociofisica
dc.contributorGrupo de Física Teórica de Altas Energías
dc.creatorNaizaque Gomez, Camilo Andres
dc.date.accessioned2022-09-28T14:08:41Z
dc.date.accessioned2023-06-07T00:04:15Z
dc.date.available2022-09-28T14:08:41Z
dc.date.available2023-06-07T00:04:15Z
dc.date.created2022-09-28T14:08:41Z
dc.date.issued2022-09-27
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/82337
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6651717
dc.description.abstractComprender el estado final de colisiones de partículas de altas energías es un problema teórico y experimental extremadamente difícil, por esta razón, la comunidad de física de altas energías (High Energy Physics) (HEP) ha ido recurriendo a herramientas informáticas, entre ellas se encuentran bases de datos que describen los procesos de desintegración de las partículas subatómicas. Gracias a esta información las relaciones de partículas se pueden explorar bajo análisis de redes. Por medio de la representación gráfica como también el método de análisis estructural para dar explicación de las relaciones entre comunidades e individuos con las relaciones entre partículas subatómicas descubiertas en el contexto de procesos de desintegración. (Texto tomado de la fuente)
dc.description.abstractUnderstanding the nal state of high energy phisics collisions is an extremely di cult theoretical and experimental problem because it has been found that the interrelationships of particles during collisions can lead to complex problems. Because of this, many techniques have been developed to solve these types of problems, leading to the development of Monte Carlo simulations to be used to compare the collisions and determine the geometry and other parameters of the detector positions. For these reasons, the high-energy physics (HEP) community has been looking for software tools, including EvtGen, which contains databases describing decay processes, and more. On EvtGen, there are process explaining the transition of the particle state into a series of resulting states that are generally stable relative to the original state. Considering one of those database, a set of relationships between particles, which led to the starting point of this work, as particle relationships can be studied under network analysis. The relationship between subatomic particles found in decay processes is described and measured through graphical representations, as well as structural analysis methods studied in many branches of research, primarily to describe and measure the relationship between communities and individuals. By looking for possible rules that describe intrinsic physical properties in new ways, measures are sought that provide information about these transformation processes and allow direct and indirect relationships to be established within the measurement framework.
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Física
dc.publisherDepartamento de Física
dc.publisherFacultad de Ciencias Exactas y Naturales
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationRedCol
dc.relationLaReferencia
dc.relationErnesto Estrada and Philip A. Knight. A First Course in Network Theory. ., 3 2015.
dc.relationVito Latora, Vincenzo Nicosia, and Giovanni Russo. Complex Networks: Principles, Methods and Applications. ., 09 2017.
dc.relationM. Newman. Networks: An Introduction. OUP Oxford, 2010.
dc.relationRiazuddin Fayyazuddin. A Modern Introduction to Particle Physics, 3rd edition, volu me 53. 07 2012.
dc.relationE.M. Henley and A. Garcia. Subatomic Physics. World Scienti c, 2008.
dc.relationDaniel Guest, Julian Collado, Pierre Baldi, Shih-Chieh Hsu, Gregor Urban, and Daniel Whiteson. Jet avor classi cation in high-energy physics with deep neural networks. Physical Review D, 94(11):112002, 2016.
dc.relationRobert N. Cahn and Gerson Goldhaber. The Experimental Foundations of Particle Physics. Cambridge University Press, 2 edition, 2009.
dc.relationL. da F. Costa, F. A. Rodrigues, G. Travieso, and P. R. Villas Boas. Characterization of complex networks: A survey of measurements. In ADVANCES IN PHYSICS, 2005.
dc.relationLucas Lacasa, Bartolo Luque, Fernando Ballesteros, Jordi Luque, and Juan Carlos Nuño. From time series to complex networks: The visibility graph. Proceedings of the National Academy of Sciences, 105(13):4972 4975, 2008.
dc.relationM. K. Suleymanov, M. Sumbera, and I. Zborovsky. Entropy and multifractal analysis of multiplicity distributions from pp simulated events up to LHC energies. arXiv e-prints, pages hep ph/0304206, Apr 2003.
dc.relationDavid J Gri ths. Introduction to elementary particles; 2nd rev. version. Physics text book. Wiley, New York, NY, 2008.
dc.relationK. A. Olive et al. Review of Particle Physics. Chin. Phys., C38:090001, 2014.
dc.relationB.R. Martin. Nuclear and Particle Physics: An Introduction. Wiley, 2006.
dc.relationGordon L. Kane. Modern elementary particle physics: the fundamental particles and forces? Addison-Wesley Pub, updated ed edition, 1993.
dc.relationT. Sonoda. Application of Self-Similar Symmetry Model to Dark Energy. Preprints 2018, 2018.
dc.relationM. Herrero. The Standard model. NATO Sci. Ser. C, 534:1 59, 1999.
dc.relationThomas E Browder, Nilendra G Deshpande, Rusa Mandal, and Rahul Sinha. Impact of b −→ kν−ν measurements on beyond the standard model theories. Physical Review D, 104, 2021.
dc.relationD. Boyanovsky and H. J. de Vega. Particle decay in in ationary cosmology. Phys. Rev. D, 70:063508, Sep 2004.
dc.relationM. Thomson. Modern Particle Physics. Modern Particle Physics. Cambridge University Press, 2013.
dc.relationDavid J Grifiths. Introduction to elementary particles; 2nd rev. version. Physics textbook. Wiley, New York, NY, 2008.
dc.relationOvidiu Ivanciuc and Alexandru T. Balaban. Graph Theory in Chemistry, chapter . American Cancer Society, 2002.
dc.relationA.T. Balaban. Chemical applications of graph theory. Academic Press, 1976.
dc.relationM. E. J. Newman. The Structure and Function of Complex Networks. SIAM Review, 45:167 256, January 2003.
dc.relationA. Bondy and U.S.R. Murty. Graph Theory. Graduate Texts in Mathematics. Springer London, 2011.
dc.relationSergei N Dorogovtsev and José FF Mendes. Evolution of networks: From biological nets to the Internet and WWW. OUP Oxford, 2013.
dc.relationStanley Wasserman and Katherine Faust. Social Network Analysis: Methods and Appli cations. Structural Analysis in the Social Sciences. Cambridge University Press, 1994.
dc.relationAdrian Wüthrich. The Genesis of Feynman Diagrams. Archimedes: New Studies in the History and Philosophy of Science and Technology 26. Springer, 2011.
dc.relationMarco Cariglia. Hidden symmetries of dynamics in classical and quantum physics. Reviews of Modern Physics, 86(4):1283, 2014.
dc.relationAntonio Pich. Electroweak symmetry breaking and the higgs boson. arXiv preprint arXiv:1512.08749, 2015.
dc.relationSamuel S. M. Wong. Introductory Nuclear Physics. Wiley-VCH, 2 edition, 1999.
dc.relationStephen P Borgatti, Martin G Everett, and Linton C Freeman. Ucinet for windows: Software for social network analysis. Harvard, MA: analytic technologies, 6, 2002.
dc.relationIndira Hamulic, Goran Skondric, and Emina Junuz. Dynamic social network analysis visualization software: A comparative review. In ., 11 2021.
dc.relationSimone Alioli, Paolo Nason, Carlo Oleari, and Emanuele Re. Published for sissa by springer a general framework for implementing nlo calculations in shower monte carlo programs: the powheg box. JHEP06, page 43, 2010.
dc.relationT Gleisberg, S Höche, F Krauss, M Schönherr, S Schumann, F Siegert, and J Winter. Event generation with sherpa. Technical report, ., 2009.
dc.relationTorbjörn Sjöstrand, Stephen Mrenna, and Peter Skands. A brief introduction to pythia 8.1. ., 2007.
dc.relationJohannes Bellm, Stefan Gieseke, David Grellscheid, Simon Plätzer, Michael Rauch, Christian Reuschle, Peter Richardson, Peter Schichtel, Michael H Seymour, Andrzej Siódmok, Alexandra Wilcock, Nadine Fischer, Marco A Harrendorf, Graeme Nail, An dreas Papaefstathiou, and Daniel Rauch. Herwig 7.0/herwig++ 3.0 release note. Eur. Phys. J. C, 76:196, 2016.
dc.relationD. J. Lange. The EvtGen particle decay simulation package. Nucl. Instrum. Meth. A, 462:152 155, 2001.
dc.relationMatt Dobbs and Jørgen Beck Hansen. The hepmc c++ monte carlo event record for high energy physics.
dc.relationAndy Buckley, Frank Krauss, Simon Plätzer, Michael Seymour, Simone Alioli, Jeppe Andersen, Johannes Bellm, Jon Butterworth, Mrinal Dasgupta, Claude Duhr, et al. Monte carlo event generators for high energy particle physics event simulation. arXiv preprint arXiv:1902.01674, 2019.
dc.relationPhillip Bonacich. Some unique properties of eigenvector centrality. Social Networks, 29:555 564, 10 2007.
dc.relationLaurens Van Der Maaten. Barnes-hut-sne. arXiv preprint arXiv:1301.3342, 2013.
dc.relationYifan Hu. E cient and high quality force-directed graph drawing. Mathematica Journal, 10:37 71, 01 2005.
dc.relationMathieu Jacomy, Tommaso Venturini, Sebastien Heymann, and Mathieu Bastian. For ceatlas2, a continuous graph layout algorithm for handy network visualization designed for the gephi software. PloS one, 9(6):e98679, 2014.
dc.relationDevangana Khokhar. Gephi cookbook : over 90 hands-on recipes to master the art of network analysis and visualization with gephi, 10.
dc.relationYifan Hu. E cient, high-quality force-directed graph drawing. Mathematica journal, 10(1):37 71, 2005.
dc.relationDerek Hansen, Ben Shneiderman, and Marc A Smith. Analyzing social media networks with NodeXL: Insights from a connected world. Morgan Kaufmann, 2010.
dc.relationThomas M J Fruchterman and Edward M Reingold. Graph drawing by force-directed placement. ., 21:1129 1164, 1991.
dc.relationQiwu Wu, Lingzhi Jiang, and Mingzhu Zheng. Visualization study of terrorist activities in asia based on ucinet. In Proceedings of the 6th Annual International Conference on Social Science and Contemporary Humanity Development (SSCHD 2020), pages 43 46. Atlantis Press, 2021.
dc.relationYing Wu and Zhiguang Duan. Social network analysis of international scienti c colla boration on psychiatry research. International Journal of Mental Health Systems, 9, 1 2015.
dc.relationMathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi: an open source software for exploring and manipulating networks. In Proceedings of the international AAAI conference on web and social media, volume 3, pages 361 362, 2009.
dc.relationPeter F. Kolb, Josef Sollfrank, and Ulrich W. Heinz. Anisotropic transverse ow and the quark hadron phase transition. Phys. Rev., C62:054909, 2000.
dc.relationRudolph C. Hwa and Qing-hui Zhang. Fluctuation of voids in hadronization at phase transition. Phys. Rev. C, 62:054902, Sep 2000.
dc.relationChun-Wang Ma and Yu-Gang Ma. Shannon Information Entropy in Heavy-ion Colli sions. Prog. Part. Nucl. Phys., 99:120 158, 2018.
dc.relationRudolph C. Hwa. Observable measures of critical behavior in high-energy nuclear colli sions. Nucl. Phys., A681:49 55, 2001.
dc.relationZhen Cao and Rudolph C Hwa. In search for signs of chaos in branching processes. Physical review letters, 75(7):1268, 1995.
dc.relationZhen Cao and Rudolph C. Hwa. Chaotic behavior of particle production in branching processes. Phys. Rev. D, 53:6608 6618, Jun 1996.
dc.relationV. imák, M. umbera, and I. Zborovský. Entropy in multiparticle production and ultimate multiplicity scaling. Physics Letters B, 206(1):159 162, 1988.
dc.relationI. M. Dremin and J. W. Gary. Hadron multiplicities. Phys. Rept., 349:301 393, 2001.
dc.relationJ. Callaway. Quantum Theory of Solid State. Academic Press,Inc., 2 nd edition, 1991.
dc.relationShawn Martin, W. Michael Brown, Richard Klavans, and Kevin W. Boyack. Openord: an open-source toolbox for large graph layout. Visualization and Data Analysis 2011, 7868:786806, 1 2011.
dc.relationPeter F. Kolb, Josef Sollfrank, and Ulrich W. Heinz. Anisotropic transverse ow and the quark hadron phase transition. Phys. Rev., C62:054909, 2000.
dc.relationR. Aaij, C. Abellán Beteta, B. Adeva, M. Adinol , C. A. Aidala, Z. Ajaltouni, S. Akar, P. Albicocco, J. Albrecht, F. Alessio, M. Alexander, A. Alfonso Albero, G. Alkhazov, P. Alvarez Cartelle, A. A. Alves, and S. Amplitude analysis of the b +π+π +π− decay. Physical Review D, 101, 1 2020.
dc.relationGiovanni Scardoni and Carlo Laudanna. Centralities based analysis of complex net works. In Yagang Zhang, editor, New Frontiers in Graph Theory, chapter 16. IntechO pen, Rijeka, 2012.
dc.relationSusmita Bhaduri, Anirban Bhaduri, and Dipak Ghosh. Symmetry-Scaling Based Com plex Network Approach to Explore Exotic Hadronic States in High-Energy Collision. Physics of Particles and Nuclei Letters, 2019.
dc.relationSusmita Bhaduri, Anirban Bhaduri, and Dipak Ghosh. A new approach of chaos and complex network method to study uctuation and phase transition in nuclear collision at high energy. The European Physical Journal A, 53(6):135, Jun 2017.
dc.relationY. X. ZHANG, W. Y. QIAN, and C. B. YANG. Multifractal structure of pseudorapidity and azimuthal distributions of the shower particles in au + au collisions at 200 a gev. International Journal of Modern Physics A, 23:2809 2816, 7 2008.
dc.relationM. V. Tokarev and I. Zborovský. Self-similarity of proton spin and asymmetry of jet production. Physics of Particles and Nuclei Letters, 12(2):214 220, Mar 2015.
dc.relationMikhail Tokarev, I Zborovsk, and A Aparin. Fractal structure of hadrons in processes with polarized protons at spd nica (proposal for experiment). Physics of Particles and Nuclei Letters, 12:48 58, 01 2015.
dc.relationS. Bhaduri, A. Bhaduri, and D. Ghosh. Clan-model of particle production process revisited in chaos-based complex network scenario. Physics of Particles and Nuclei Letters, 15(4):446 455, Jul 2018.
dc.relationR. Aaij, C. Abellán Beteta, B. Adeva, M. Adinol , C. A. Aidala, and Z. Observation of several sources of cp violation in b + → π +π +π− decays. Physical Review Letters, 124, 1 2020. Comparacion de resultados sobre la <b>invarianza CP</b>respecto la desintegracion reportada para estas particulas respecto las que ya habían sido detectadas antes.
dc.relationOmid Dorostkar, Karen E Daniels, Dominik Strebel, and Jan Carmeliet. Bet weenness centrality illuminates intermittent frictional dynamics. arXiv preprint ar Xiv:2102.01851, 2021.
dc.relationYoshitaka Kuno and Yasuhiro Okada. Muon decay and physics beyond the standard model. Reviews of Modern Physics, 73(1):151, 2001.
dc.relationSusmita Bhaduri, Anirban Bhaduri, and Dipak Ghosh. Study of di-muon production process in pp collision in cms data from symmetry scaling perspective. Advances in High Energy Physics, 2020, 2020.
dc.relationB Abelev, J Adam, D Adamová, MM Aggarwal, G Aglieri Rinella, M Agnello, A Agos tinelli, N Agrawal, Z Ahammed, N Ahmad, et al. Production of charged pions, kaons and protons at large transverse momenta in pp and pb pb collisions at snn= 2.76 tev. Physics Letters B, 736:196 207, 2014.
dc.relationMichal Koval, R Aliberti, F Ambrosino, R Ammendola, B Angelucci, A Antonelli, G Anzivino, R Arcidiacono, T Bache, M Barbanera, J Bernhard, A Biagioni, L Bi cian, C Biino, A Bizzeti, T Blazek, and B Bloch-Devaux. Kaon Physics in Europe. JPS Conf. Proc, page 11106, 2021.
dc.relationAi-Jun Ma and Wen-Fei Wang. Contributions of the kaon pair from ρ (770) for the three-body decays b → dkk. Physical Review D, 103(1):016002, 2021.
dc.relationWilliam Detmold and Stefan Meinel. λb → λℓ+ℓ − form factors, di erential branching fraction, and angular observables from lattice qcd with relativistic b quarks. Physical Review D, 93, 2 2016.
dc.relationAbdel Nasser Taw k. Out-of-equilibrium transverse momentum spectra of pions at lhc energies. Advances in High Energy Physics, 2019, 1 2019.
dc.relationAnisa Khatun, Dhananjaya Thakur, Suman Deb, and Raghunath Sahoo. J/ψ produc tion dynamics: event shape, multiplicity and rapidity dependence in proton+proton collisions at LHC energies using PYTHIA8. J. Phys. G, 47(5):055110, 2020.
dc.relationAlessio Mangoni and Simone Pacetti Livio Fanò. Hadronic decays of the j/ψ meson candidate. Technical report, Università degli Studi di Perugia, 2018.
dc.relationDean J Robinson. Lepton universality violation from neutral pion decays in r k ðÃÞ measurements. Physical Review D, 105, 2021.
dc.relationPaola Boito and Roberto Grena. Quantum hub and authority centrality measures for directed networks based on continuous-time quantum walks. Journal of Complex Net works, 9(6):cnab038, 2021.
dc.relationDavid Dekker, David Krackhardt, and Tom A.B. Snijders. Transitivity correlation: A descriptive measure of network transitivity. NWS Network Science, 7:353 375, 9 2019.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleRepresentación y análisis de los procesos de desintegración de las partículas subatómicas aplicando el formalismo del Análisis de Redes
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución