dc.contributor | Paredes López, Jairo Andrés | |
dc.contributor | Diseño y Análisis de Métodos Numéricos | |
dc.contributor | Soto Pineda, Diana Yulieth [0000000283739702] | |
dc.contributor | Soto Pineda, Diana Yulieth | |
dc.creator | Soto Pineda, Diana Yulieth | |
dc.date.accessioned | 2022-11-28T14:10:25Z | |
dc.date.accessioned | 2023-06-06T23:58:22Z | |
dc.date.available | 2022-11-28T14:10:25Z | |
dc.date.available | 2023-06-06T23:58:22Z | |
dc.date.created | 2022-11-28T14:10:25Z | |
dc.date.issued | 2022 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/82788 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6651659 | |
dc.description.abstract | A nivel industrial, se usan recipientes a presión para ejecutar diversos servicios, desde almacenar gases a altas presiones, transportar líquidos, intercambiadores de calor, tuberías, tanques de combustible, fuselajes, calderas entre otros. La presión aplicada al recipiente depende del tipo de uso, su geometría puede ser cilíndrica o esférica, comúnmente se fabrican en aceros aleados, pese a que este material es pesado y vulnerable a la corrosión. En la actualidad, se estudian los materiales compuestos, que presentan alta resistencia, sin problemas de corrosión y bajo peso. En un material compuesto, hay un material simple que es más ligero y resistente que hace las veces de matriz, y se une con material fibra de resistencia mayor, su combinación da lugar al compuesto. Esta tesis de investigación estudia los esfuerzos que experimenta un recipiente a presión cilíndrico vertical, hecho de un material compuesto de matriz metálica de aluminio y fibras de boro, y se compara con un recipiente de acero. El material compuesto consta de tres capas, cada capa con una participación de un tercio, se diseñó empleando la teoría de mezclas serie/paralelo, una importante teoría que permite predecir el comportamiento del compuesto y obtener una matriz constitutiva del mismo. Se crearon dos modelos para calibración de parámetros, con la teoría de mezclas serie/paralelo se diseñó el material compuesto y se estimaron los esfuerzos teóricamente, que posteriormente se compararon con los resultados obtenidos en las herramientas de análisis por elementos finitos en APDL. Con la teoría de membrana en cáscaras, se estimaron teóricamente los esfuerzos tangenciales y longitudinales a una presión interna de 15 MPa, se contrastaron con los resultados del modelo en acero y el modelo en el material compuesto calibrado. De los resultados, se identificó mejor rendimiento del recipiente a presión en material compuesto frente al recipiente a presión de acero, se estimó una reducción del peso total en el modelo en material compuesto respecto al modelo en acero y adicionalmente se eliminó la vulnerabilidad a la corrosión. Finalmente, se concluye que, sí se cumplieron con los objetivos propuestos al inicio de la investigación, aportando una metodología de análisis que aplica teoría con modelado numérico en conjunto para el análisis y puede ser fácilmente replicada por otros estudios. (Texto tomado de la fuente) | |
dc.description.abstract | At an industrial level, pressure vessels are used to perform various services, from storing gases at high pressures, transporting liquids, heat exchangers, pipes, fuel tanks, fuselages, boilers, among others. The pressure applied to the container depends on the type of use, its geometry can be cylindrical or spherical, they are commonly made of alloy steel, despite the fact that this material is heavy and vulnerable to corrosion. At present, composite materials are being studied, which present high resistance, without corrosion problems and low weight. In a composite material, there is a simple material that is lighter and more resistant than acts as a matrix, and joins with fiber material of greater resistance, their combination gives rise to the composite. This research thesis studies the stresses experienced by a vertical cylindrical pressure vessel, made of a composite material of aluminum metal matrix and boron fibers, and compares it with a steel vessel. The composite material consists of three layers, each layer with a participation of one third, was designed using the series/parallel mixing theory, an important theory that allows predicting the behavior of the composite and obtaining a constitutive matrix of it. Two models were created for parameter calibration, with the theory of series/parallel mixtures, the composite material was designed and the efforts were estimated theoretically, which were later compared with the results obtained in the finite element analysis tools in APDL. With the shell membrane theory, the tangential and longitudinal stresses at an internal pressure of 15 MPa were theoretically estimated, contrasted with the results of the steel model and the model in the calibrated composite material. From the results, a better performance of the pressure vessel in composite material was identified compared to the steel pressure vessel, a reduction in total weight was estimated in the model in composite material compared to the model in steel and additionally the vulnerability to corrosion was eliminated. Finally, it is concluded that the objectives proposed at the beginning of the investigation were met, providing an analysis methodology that applies theory with numerical modeling together for the analysis and can be easily replicated by other studies. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Estructuras | |
dc.publisher | Facultad de Ingeniería y Arquitectura | |
dc.publisher | Manizales, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Manizales | |
dc.relation | M. Maleki, G. H. Farrahi, B. Haghpanah Jahromi, and E. Hosseinian, “Residual stress analysis of autofrettaged thick-walled spherical pressure vessel,” Int. J. Press. Vessel. Pip., vol. 87, no. 7, pp. 396–401, 2010, doi: 10.1016/j.ijpvp.2010.04.002. | |
dc.relation | M. D. Actis and J. P. Durruty, “Apunte - Estructuras IV - Análisis de Estructuras Cilindricas: Cilindros de Paredes Delgadas Sometidos a Compresión y Presión Interna.” Facultad de Ingeniería Universidad Nacional de La Plata, La Plata, pp. 20–30, 2009. | |
dc.relation | E. L. E. Pennec and A. Rondeau, “Les Equipements Sous Pression ( ESP ),” 2018. | |
dc.relation | P. Fernández Díez, “Diseño y Análisis Estructural de Recipientes a Presión,” Cent. Térmicas, pp. 1–32, 2008. | |
dc.relation | API, “Pressure Vessel Inspection Code: In-Service Inspection, Rating, Repair, and Alteration,” Api 510, vol. 552, no. 1, p. iii, 2006. | |
dc.relation | A. C. Ugural and S. K. Fenster, Advanced Mechanics of Materials and Applied Elasticity. Wesford: Pearson Education, 2012. | |
dc.relation | A. Toudehdehghan and T. W. Hong, “A critical review and analysis of pressure vessel structures,” IOP Conf. Ser. Mater. Sci. Eng., vol. 469, no. 1, pp. 1–12, 2019, doi: 10.1088/1757-899X/469/1/012009. | |
dc.relation | M. Kovář, “Numerical analysis for optimization of pressure vessel,” no. September, pp. 166–169, 2017. | |
dc.relation | V. Shaterian-alghalandis and A. Paykani, “Finite Element Analysis of a Spherical Pressure Vessel under Simultaneous Thermal and Pressure Loadings,” Int. J. Eng. Appl. Sci., vol. 3, no. 4, pp. 43–55, 2011. | |
dc.relation | J. Zeman, F. Rauscher, and S. Schindler, Pressure Vessel Design: The Direct Route. San Diego: Elsevier, 2006. | |
dc.relation | R. L. Cloud, S. S. Gill, S. Kendrick, and R. Kitching, The Stress Analysis of Pressure Vessels and Pressure Vessel Components, vol. 1. Hungary: Pergamon Press Ltd, 1970. | |
dc.relation | D. R. Moss and M. Basic, Pressure Vessel Design Manual, 4th ed. Oxford: Elsevier, 2013. | |
dc.relation | J. I. Mantilla Daza and J. Padilla Sánchez, “Análisis y Estudio De Esfuerzos y Deformaciones En Recipientes Metálicos Cilíndricos De Pared Delgada Sometidos a Presión Utilizando Una Herramienta Computacional (Ansys 5.5),” Universidad Tecnológica de Bolívar, 2004. | |
dc.relation | L. Wolf, M. S. Kazimi, and N. E. Todreas, “Engineering of Nuclear Reactors Note L . 4 ‘ Introduction To Structural Mechanics ,’” 2003, [Online]. Available: https://ocw.mit.edu/courses/nuclear-engineering/22-312-engineering-of-nuclear-reactors-fall-2015/readings-and-assignments/MIT22_312F15_note_L4.pdf. | |
dc.relation | A. Kalnins, “Stress Classification in Pressure Vessels and Piping,” Press. Vessel. Pipping Syst., pp. 1–7, 2017. | |
dc.relation | R. Eggers, Industrial High Pressure Applications: Processes, Equipment and Safety. Hamburg: Wiley, 2012. | |
dc.relation | Y. Murakami, Theory of elasticity and stress concentration, 1st ed. West Sussex, United Kingdom: John Wiley & Sons, Ltd, 2017. | |
dc.relation | S. A. Peñaloza-Peña, C. Galvis G., and J. Quiroga M., “Failure detection in a pressure vessel using acoustic emissions technology,” Rev. UIS Ing., vol. 18, no. 4, pp. 147–156, 2019, doi: 10.18273/revuin.v18n4-2019014. | |
dc.relation | H. Altenbach and V. Eremeyev, “Thin-walled structural elements: Classification, classical and advanced theories, new applications,” CISM Int. Cent. Mech. Sci. Courses Lect., vol. 572, pp. 1–62, 2017, doi: 10.1007/978-3-319-42277-0_1. | |
dc.relation | S. V. Kailas, “Mechanical Properties of Metals,” Bangalore India, 2015. doi: 10.1115/1.3636604. | |
dc.relation | W. KJ, “Constitutive models for engineering materials,” Encycl. Phys. Sci. Technol., vol. 3, no. Academic Press, pp. 603–633, 2002, [Online]. Available: http://civil.colorado.edu/~willam/matl01.pdf. | |
dc.relation | J. R. Rice, “Solid Mechanics,” Cambridge, MA, 2010. doi: 10.1007/978-94-007-2739-7_100588. | |
dc.relation | N. Espinoza, “Constitutive equations,” 2021. https://dnicolasespinoza.github.io/node17.html (accessed Jan. 03, 2022). | |
dc.relation | A. S. Frolov, I. V. Fedotov, and B. A. Gurovich, “Evaluation of the true-strength characteristics for isotropic materials using ring tensile test,” Nucl. Eng. Technol., vol. 53, no. 7, pp. 2323–2333, 2021, doi: 10.1016/j.net.2021.01.033. | |
dc.relation | J. R. Vinson, The behavior of Shells Composed of Isotropic and Composite Materials. Waterloo: Springer, 1993. | |
dc.relation | P. Kelly, Solid Mechanics, University. Auckland, 2019. | |
dc.relation | M. A. Savi, “Continuum Mechanics,” Dyn. Smart Syst. Struct. Concepts Appl., no. November 2017, 2016, doi: 10.1007/978-3-319-29982-2. | |
dc.relation | P. Prat, Ecuaciones Constitutivas, Elasticidad y Plasticidad. Barcelona, 2006. | |
dc.relation | R. L. Mott and J. A. Untener, Applied strength of materials, 6th ed., vol. 263, no. 5. Boca: CRC Press Taylor & Francis Group, 2017. | |
dc.relation | A. Bertram and R. Glüge, Solid mechanics: Theory, modeling, and problems, 1st ed., no. Febrero. Berlin: Springer International Publishing, 2013. | |
dc.relation | J. N. Périé, H. Leclerc, S. Roux, and F. Hild, “Digital image correlation and biaxial test on composite material for anisotropic damage law identification,” Int. J. Solids Struct., vol. 46, no. 11–12, pp. 2388–2396, 2009, doi: 10.1016/j.ijsolstr.2009.01.025. | |
dc.relation | K. K. Chawla, Composite Materials Science and Engineering, 3rd ed., no. EM74-118 Apr 29-May 3 974. Birmingham: Springer, 2013. | |
dc.relation | J. Massa and A. Giudici, “Capítulo 16. Recipientes de presión,” Compend. Cálculo Estructural II - FCEFyN-UNC, pp. 371–397, 2015, [Online]. Available: http://www.cat.calc_est_2_im.efn.uncor.edu/wp-content/uploads/2013/10/Cap-16_RECIPIENTES_Parte-1.pdf. | |
dc.relation | N. Fantuzzi, P. Trovalusci, and S. Dharasura, “Mechanical Behavior of Anisotropic Composite Materials as Micropolar Continua,” Front. Mater., vol. 6, no. April, 2019, doi: 10.3389/fmats.2019.00059. | |
dc.relation | S. Hess, Tensors for Physics, vol. 3. Berlin: Springer, 2015. | |
dc.relation | J. J. Skrzypek and A. W. Ganczarski, Mechanics of Anisotropic Materials. Switzerland: Springer, 2015. | |
dc.relation | V. Šerifi, M. Tarić, D. Jevtić, A. Ristovski, and M. šahinagić Isović, “Historical Development of Composite Materials,” Ann. Oradea Univ. Fascicle Manag. Technol. Eng., vol. Volume XXV, no. 3, 2018, doi: 10.15660/auofmte.2018-3.3392. | |
dc.relation | S. Rana and R. Fanguerio, Advanced Composite Materials for Aerospace Engineering: Processing, Properties, and Applications. Hampshire: Elsevier, 2016. | |
dc.relation | R. Joachim, H. Harders, and M. Baeker, Mechanical Behaviour of Engineering Materials. Berlin: Servicio Geológico Colombiano, 2006. | |
dc.relation | S. Czarnecki, T. Łukasiak, and L. Tomasz, “The Isotropic and Cubic Material Designs. Recovery of the Underlying Microstructures Appearing in the Least Compliant Continuum Bodies Sławomir,” MDPI, no. September, 2017, doi: 10.3390/ma10101137. | |
dc.relation | R. Abeyaratne, Continuum Mechanics, vol. II, no. May. 2012. | |
dc.relation | Ç. Dinçkal, “On The Properties of Anisotropic Engineering Materials Based upon Orthonormal Representations,” Int. J. Appl. Math., no. August, 2012. | |
dc.relation | J. Aboudi, S. Arnold, and B. Bednarcyk, Micromechanics of Composite Materials: A generalized multiscale analysis approach, 1st ed., no. July. Elsevier, 2013. | |
dc.relation | R. F. Gibson, Priciples of Composite Material Mechanics, 3rd ed. Ohio: CRC Press Taylor & Francis Group, 2012. | |
dc.relation | F. T. Pujol, “Análisis y Optimización de una Estructura Naval de Material Compuesto Mediante Cálculo Multiescala,” Universidad Politécnica de Cataluña, 2017. | |
dc.relation | S. W. T sai, Introductionto Composite Materials, 1st ed. Westport: Tecnomic Publishing Company, 1980. | |
dc.relation | E. J. Barbero, Finite Element Analysis of Composite Materials Using ANSYS, 2nd ed. Boca Raton: CRC Press Taylor & Francis Group, 2014. | |
dc.relation | G. F. Smith, Constitutive Equations for Anisotropic and Isotropic Materials, 3rd ed. Bethlehem: North Holland, 1994. | |
dc.relation | A. N. Gastelum, M. S. Hernández, B. Gonzalez, Y. Vega, and I. M. Muñoz, “Análisis comparativo de las propiedades mecánicas de un material compuesto reforzado con fibras de carbono y las de su matriz polimérica de resina epóxica,” Matéria (Rio Janeiro), vol. 23, no. 2, 2018, doi: 10.1590/s1517-707620180002.0428. | |
dc.relation | D. Kim, Solid Mechanics: Anisotropic elasticity. 2020. | |
dc.relation | M. Würkner, H. Berger, and U. Gabbert, “On numerical evaluation of effective material properties for composite structures with rhombic arrangements,” Int. J. Eng. Sci., vol. 49, pp. 322–332, 2011. | |
dc.relation | B. Liu, X. Feng, and S. M. Zhang, “The effective Young’s modulus of composites beyond the Voigt estimation due to the Poisson effect,” Compos. Sci. Technol., vol. 69, pp. 2198–2204, 2009. | |
dc.relation | A. P. S. Selvadurai and H. Nikopour, “Transverse elasticity of a unidirectionally reinforced composite with an irregular fibre arrangement: Experiments, theory and computations,” Compos. Struct., vol. 94, no. 6, pp. 1973–1981, 2012, doi: 10.1016/j.compstruct.2012.01.019. | |
dc.relation | C. T. Sun and R. S. Vaidya, “Prediction of composite properties from a representative volume element,” Compos. Sci. Technol., vol. 56, pp. 171–179, 1996. | |
dc.relation | H. Gan, C. E. Orozco, and C. T. Herkovich, “A strain-compatible method for micromechanical analysis of multi-phase composites,” Solids Struct., vol. 37, pp. 2097–5122, 2000. | |
dc.relation | C. P. Jiang, Y. L. Xu, Y. K. Chueng, and S. H. Lo, “A rigorous analytical method for doubly periodic cylindrical inclusions under longitudinal shear and its application,” Mech. Mater., vol. 36, pp. 225–237, 2004, [Online]. Available: http://eprints.uanl.mx/5481/1/1020149995.PDF. | |
dc.relation | S. G. Lekhnitskii, “Theory of Elasticity of an Anisotropic Body,” Mir Publishers. Moscow Russia, 1981. | |
dc.relation | M. H. Sadd, Elasticity, Theory, Applications, and Numerics, 2nd ed. Oxford, 2009. | |
dc.relation | X. Martinez, “Micro Mechanical Simulation of Composite Materials Using the Serial / Parallel Mixing Theory,” Universidad Politécnica de Cataluña, 2008. | |
dc.relation | X. Martínez, S. Oller, and E. Barbero, “Study of delamination in composites by using the serial/parallel mixing theory and a damage formulation,” Comput. Methods Appl. Sci., vol. 10, no. September, pp. 119–140, 2008, doi: 10.1007/978-1-4020-8584-0_6. | |
dc.relation | J. Betten, Creep mechanics. Aachen: Springer, 2002. | |
dc.relation | F. Rastellini, S. Oller, and E. Oñate, Modelización numérica de la no-linealidad constitutiva de laminados compuestos. Barcelona: Centro Internacional de Métodos Numéricos en Ingeniería, 2007. | |
dc.relation | E. Car, S. Oller, and E. Oñate, Materiales Compuestos-Simulación del Comportamiento Anisótropo, no. CIMNE. Barcelona,España, 2002, pp. 96–144. | |
dc.relation | X. Martinez, S. Oller, and E. Barbero, “Caracterización de la delaminación en materiales compuestos mediante la teoría de mezclas serie/paralelo,” Rev. Int. Metod. Numer. para Calc. y Disen. en Ing., vol. 27, no. 3, pp. 189–199, 2011, doi: 10.1016/j.rimni.2011.07.001. | |
dc.relation | F. Otero Gruer, “Multiscale numerical modelling of microstructured reinforced composites,” Universidad Politécnica de Cataluña, 2015. | |
dc.relation | F. Rastellini, S. Oller, O. Salomón, and E. Oñate, “Composite materials non-linear modelling for long fibre-reinforced laminates. Continuum basis, computational aspects and validations,” Comput. Struct., vol. 86, no. 9, pp. 879–896, 2008, doi: 10.1016/j.compstruc.2007.04.009. | |
dc.relation | [67] M. Molina, J. J. Cruz, S. Oller, A. H. Barbat, and L. Gil, “Estudio de la Interfaz Hormigón-Epoxi-FRP de un Ensayo de Doble Cortante por Medio de la Teoría de Mezclas Serie/Paralelo,” Rev. Int. Ing. Estructuras, pp. 1–18, 2009, [Online]. Available: https://upcommons.upc.edu/bitstream/handle/2117/6480/RP_DE_U_%3D N ENSAYO DE DOBLE CORTANTE POR MEDIO DE LA TEORÍA DE MEZCLAS SERIEPARALELO .pdf. | |
dc.relation | E. J. Barbero, Introduction to Composite Materials Design, 2nd ed. UP Catalunya: CRC Press Taylor & Francis Group, 2010. | |
dc.relation | F. Otero, S. Oller, X. Martinez, and O. Salomón, “Numerical homogenization for composite materials analysis. Comparison with other micro mechanical formulations,” Compos. Struct., vol. 122, pp. 405–416, 2015, doi: 10.1016/j.compstruct.2014.11.041. | |
dc.relation | J. A. Paredes, “Modelización numérica del comportamiento constitutivo del daño local y global y su correlación con la evolución de las frecuencias naturales en estructuras de hormigón reforzado,” Universidad Politécnica de Cataluña, 2013. | |
dc.relation | X. Martinez and S. Oller, “Numerical simulation of matrix reinforced composite materials subjected to compression loads,” Arch. Comput. Methods Eng., vol. 16, no. 4, pp. 357–397, 2009, doi: 10.1007/s11831-009-9036-3. | |
dc.relation | F. Otero, S. Oller, X. Martínez, and O. Salomon, “Numerical modelling of behaviour of carbon nanotube-reinforced composites,” Comput. Plast. XI - Fundam. Appl. COMPLAS XI, no. January, pp. 941–952, 2011. | |
dc.relation | B. Ren, J. Noda, and K. Goda, “Effects of fiber orientation angles and fluctuation on the stiffness and strength of sliver-based green composites,” J. Soc. Mater. Sci. Japan, vol. 59, no. 7, pp. 1–9, 2010, doi: 10.2472/jsms.59.567. | |
dc.relation | F. Otero, “Rotación de Coordenadas,” pp. 1–14, 2010. | |
dc.relation | F. Laranjeira de Oliveira, A. de la Fuente Antequera, A. Aguado De Cea, and C. Molins Borrell, “Nueva metodología para la evaluación de la orientación de las fibras,” V Congr. ACHE, no. March 2015, pp. 1–10, 2015, [Online]. Available: https://futur.upc.edu/8626535. | |
dc.relation | T. Chandrupatla and A. D. Belegundu, Introduction to Finite Elements in Engineering, 3rd ed. Prentice Hall, 2002. | |
dc.relation | E. Madenci and I. Guven, The Finite Element Method and Applications in Engineering Using ANSYS, 2nd ed. Richmond: Springer, 2015. | |
dc.relation | E. M. Alawadhi, Finite Element Simulations Using ANSYS. Broken Sound Parkway: CRC Press Taylor & Francis Group, 2010. | |
dc.relation | E. Oñate, Structural Analysis with the Finite: Linear Statics, vol. 1. Barcelona: Springer, CIMNE, 2009. | |
dc.relation | J. A. Paredes López, “Métodos Variacionales,” 2017. | |
dc.relation | K. Bathe Jurgen, Finite Element Procedures, 2nd ed. Watertown: Prentice Hall Pearson Education Inc, 2014. | |
dc.relation | E. I. Celis Imbajoa, “Comportamiento no lineal de losas compuestas por lámina colaborante, con y sin refuerzo convencional. Modelación experimental y númerica.,” Universidad Nacional de Colombia Sede Manizales, 2020. | |
dc.relation | H. P. Langtangen, “Introduction to Finite Element Methods,” Oslo, 2014. doi: 10.1017/cbo9781139025508.005. | |
dc.relation | ANSYS, “ANSYS Mechanical APDL Element Reference,” 2010. [Online]. Available: http://inside.mines.edu/~apetrell/ENME442/Documents/SOLID187.pdf. | |
dc.relation | ANSYS, Theory Reference for the Mechanical APDL and Mechanical Applications, 12th ed., vol. 3304, no. April. Canonsburg: Ansys Icn, 2009. | |
dc.relation | ANSYS, ANSYS Mechanical APDL Basic Analysis Guide, vol. 15. 2013. | |
dc.relation | Ansys inc., “Mechanical APDL Element Reference,” vol. 15317, no. November, p. 9, 2010, [Online]. Available: http://inside.mines.edu/~apetrell/ENME442/Documents/SOLID187.pdf. | |
dc.relation | ANSYS, ANSYS MECHANICAL APDL Introductory Tutorials, vol. 15. 2013. | |
dc.relation | ANSYS, Theory Reference for the Mechanical APDL and Mechanical Applications, vol. 12. 2018. | |
dc.relation | Y. Liu and G. Glass, “Effects of mesh density on finite element analysis,” SAE Tech. Pap., vol. 2, no. April 2013, pp. 2–8, 2013, doi: 10.4271/2013-01-1375. | |
dc.relation | R. Saxena and A. Seth, “Methodology for Mesh Type and Mesh Density Selection,” Int. J. Aerosp. Mech. Eng., vol. 3, no. 2, pp. 26–29, 2016. | |
dc.relation | ANSYS, “ANSYS Modeling and Meshing Guide,” Canonsburg, 2004. | |
dc.relation | O. C. Zienkiewicz, “The Finite Element Method: Its Basis and Fundamentals,” Finite Elem. Method its Basis Fundam., p. iii, 2013, doi: 10.1016/b978-1-85617-633-0.00020-4. | |
dc.relation | ANSYS, ANSYS APDL Verification Manual 2.0, vol. 15. Canonsburg, 2013. | |
dc.relation | R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt, Concepts and Applicacions of Finite Element Analysis, 4th ed. Hoboken: John Wiley & Sons, Inc, 2002. | |
dc.relation | N. M. Abbasi, “EMA 471 Intermediate Problem Solving for Engineers,” Madison, 2019. doi: 10.1016/b978-0-12-373621-5.00021-0. | |
dc.relation | F. Murillo Martínez, “Análisis mediante elementos finitos del comportamiento de perfiles combinados de estructuras de autobuses,” 2018. | |
dc.relation | ANSYS, Elements Reference ANSYS Release 11.0. Canonsburg, 2007. | |
dc.relation | Air Liquide creative oxygen, “Catalogue Air Liquide Creative Oxigen,” Singapore, 2020. [Online]. Available: https://industry.airliquide.sg/sites/industry_sg/files/2020/05/04/alsg_product_catalogue_2020_v5.0.pdf. | |
dc.relation | SolidWorks, “Introducción a Solidworks,” Massachusetts, 2015. [Online]. Available: https://my.solidworks.com/solidworks/guide/SOLIDWORKS_Introduction_ES.pdf. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Modelación numérica por elementos finitos de un recipiente a presión cilíndrico de material compuesto | |
dc.type | Trabajo de grado - Maestría | |