dc.contributor | Garcia Castañeda, Javier Eduardo | |
dc.creator | Salamanca Saavedra, Yeimy Cristina | |
dc.date.accessioned | 2023-03-06T20:51:25Z | |
dc.date.accessioned | 2023-06-06T23:57:56Z | |
dc.date.available | 2023-03-06T20:51:25Z | |
dc.date.available | 2023-06-06T23:57:56Z | |
dc.date.created | 2023-03-06T20:51:25Z | |
dc.date.issued | 2022 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/83594 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6651651 | |
dc.description.abstract | La emergencia provocada por la resistencia microbiana a los medicamentos disponibles actualmente ha motivado el desarrollo de agente terapéuticos que superen esta limitación. Los péptidos antimicrobianos (PAMs) son una alternativa que ha ganado relevancia ya que poseen actividad antimicrobiana contra un amplio espectro de microorganismos y, anticancerígena contra líneas celulares de diferentes tipos de cáncer a través de mecanismos de acción únicos. Una de las alternativas que permite potenciar la actividad biológica de los PAMs es la síntesis de quimeras peptídicas, que permite la obtención de moléculas que no son producidas de forma natural y actúan a través de mecanismos de acción combinados generando aumento de la selectividad y actividad biológica entre 1,5 y 10 veces. En este sentido, el diseño de las quimeras puede combinar péptidos penetrantes en las células con péptidos activos biológicamente para generar péptidos híbridos con doble función. Dentro de la revisión bibliográfica se incluyen también diferentes métodos de obtención de PAMs como la obtención a partir de fuentes naturales, que se considera costosa y de baja aplicación en el campo industrial, la producción a través del método recombinante mediante la manipulación genética de microorganismos como E. Coli que se convierten en productores de PAMs, lo que lo hace un método económico y rápido, aunque presenta limitaciones en el diseño de secuencias con AA no naturales, y por último el método de síntesis química en fase sólida (SPPS) que es el de mayor popularidad ya que permite obtener péptidos sin limitaciones en el diseño de las secuencias, es un método escalable y que genera altos rendimientos. (Texto tomado de la fuente). | |
dc.description.abstract | The emergence caused by microbial resistance to currently available drugs has motivated the development of therapeutic agents that overcome this limitation. Antimicrobial peptides (AMPs) are an alternative that has gained relevance because they have antimicrobial activity against a wide spectrum of microorganisms and anticancer activity against cell lines of different types of cancer through unique mechanisms of action. One of the alternatives that allows enhancing the biological activity of PAMs is synthesis of peptide chimeras, which allows obtaining molecules that are not produced naturally and act through combined mechanisms of action, generating an increase in selectivity and biological activity. between 1.5 and 10 times. In this regard, the design of chimeras can combine cell-penetrating peptides with biologically active peptides to generate hybrid peptides with dual functions. Within the bibliographic review, different methods of obtaining PAMs are also included, such as obtaining from natural sources, which is considered expensive and of low application in the industrial field, production through the recombinant method through the genetic manipulation of microorganisms such as E. Coli that become producers of PAMs, which makes it an economical and fast method, although it has limitations in the design of sequences with non-natural AA, and finally the solid phase chemical synthesis method (SPPS) that is the most popular since it allows obtaining peptides without limitations in the design of the sequences, it is a scalable method that generates high yields. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Química | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | M. Zorko y R. Jerala, «Production of recombinant antimicrobial peptides in bacteria,» Methods in Molecular Biology, vol. 618, pp. 61-76, 2010 | |
dc.relation | D. Wibowo y C.-X. Zhao, «Recent achievements and perspectives for large-scale recombinant production of antimicrobial peptides,» Applied Microbiology and Biotechnology, vol. 103, nº 2, pp. 659-671, 2019 | |
dc.relation | V. Rodríguez, J. A. Asenjo y B. A. Andrews, «Design and implementation of a high yield production system for recombinant expression of peptides,» Microbial Cell Factories, vol. 13, p. 65, 2014 | |
dc.relation | G. V. Heeke, J. S. Stout y F. W. Wagner, «Synthesis of Recombinant Peptides,» Methods in molecular biology, vol. 36, pp. 245-260, 1994 | |
dc.relation | Universidad de Chile, «Diseño de un sistema de producción recombinante de péptidos con potencial terapéutico,» 2013. [En línea]. Available: https://repositorio.uchile.cl/handle/2250/115378. [Último acceso: 26 Abril 2022] | |
dc.relation | K. B. Sampaio de Oliveira, M. L. Leite, G. R. Rodrigues, H. Duque, R. Da Costa, V. Cunha, L. De Loiola, N. Da Cunha, O. L. Franco y S. Dias, «Strategies for recombinant production of antimicrobial peptides with pharmacological potential,» Expert review of clinical pharmacology, vol. 13, nº 4, pp. 367-390, 2020 | |
dc.relation | A. R. Mitchell, «Bruce Merrifield and solid-phase peptide synthesis: a historical assessment,» Biopolymers, vol. 90, nº 3, pp. 175-184, 2008 | |
dc.relation | M. Amblard, J.-A. Fehrentz, J. Martinez y J. Subra, «Methods and protocols of modern solid phase Peptide synthesis,» Molecular Biotechnology, vol. 33, nº 3, pp. 239-254, 2006 | |
dc.relation | G. Kungulovski, I. Kycia, R. Mauser y A. Jeltsch, «Specificity Analysis of Histone Modification-Specific Antibodies or Reading Domains on Histone Peptide Arrays,» de Peptide Antibodies, Nueva York, Springer, 2015, pp. 275-284 | |
dc.relation | F. Bédard y E. Biron, «Recent Progress in the Chemical Synthesis of Class II and S-Glycosylated Bacteriocins,» Frontiers in Microbiology, vol. 9, p. 1048, 2018 | |
dc.relation | S. W. Pedersen, C. J. Armishaw y K. Strømgaard, «Synthesis of peptides using tert-butyloxycarbonyl (Boc) as the α-amino protection group,» Methods in Molecular Biology, vol. 1047, pp. 65-80, 2013 | |
dc.relation | A. Isidro-Llobet, M. N. Kenworthy, S. Mukherjee, M. E. Kopach, K. Wegner, F. Gallou, A. G. Smith y F. Roschangar, «Sustainability Challenges in Peptide Synthesis and Purification: From R&D to Production,» Journal of Organic Chemistry, vol. 84, nº 8, pp. 4615-4628, 2019 | |
dc.relation | Y. Li, R. L. Hunter y R. T. McIver, «High-resolution mass spectrometer for protein chemistry,» Nature, vol. 370, pp. 393-395, 1994 | |
dc.relation | S. L. Pedersen y K. J. Jensen, «Peptide release, side-chain deprotection, work-up, and isolation,» Methods in Molecular Biology, vol. 1047, pp. 43-63, 2013 | |
dc.relation | K. A. Dave, M. J. Headlam, T. P. Wallis y J. J. Gorman, «Preparation and analysis of proteins and peptides using MALDI TOF/TOF mass spectrometry,» Current Protocols in Protein Science, vol. 2011, p. 16.13, 2011 | |
dc.relation | D. M. Jaradat, «Thirteen decades of peptide synthesis: key developments in solid phase peptide synthesis and amide bond formation utilized in peptide ligation,» Amino Acids, vol. 50, pp. 39-68, 2018 | |
dc.relation | J. A. Moss, «Guide for resin and linker selection in solid-phase peptide synthesis,» Current Protocols in Protein Science, vol. 2005, p. 18.7, 2005 | |
dc.relation | P. T. Shelton y K. J. Jensen, «Linkers, resins, and general procedures for solid-phase peptide synthesis,» Methods in Molecular Biology, vol. 1047, pp. 23-41, 2013 | |
dc.relation | C. Petrou y Y. Sarigiannis, «Peptide synthesis: Methods, trends, and challenges,» Peptide Applications in Biomedicine, Biotechnology and Bioengineering, vol. 2018, pp. 1-21, 2018 | |
dc.relation | P. R. Hansen y A. Oddo, «Fmoc Solid-Phase Peptide Synthesis,» Methods in Molecular Biology, vol. 1348, pp. 33-50, 2015 | |
dc.relation | F. Guillier, D. Orain y M. Bradley, «Linkers and cleavage strategies in solid-phase organic synthesis and combinatorial chemistry,» Chemical Reviews, vol. 100, nº 6, pp. 2091-2158, 2000 | |
dc.relation | L.-y. Qin, L. Z. Hao-ting Zhu, Z. Yong-qiang y L. Yu, «An improved and practical synthesis of Fmoc Rink linker,» Journal of Chemical Research, vol. 43, nº 3-4, pp. 81-85, 2019 | |
dc.relation | T. Narancic, S. A. Almahboub y K. E. O'Connor, «Unnatural amino acids: production and biotechnological potential,» World Journal of Microbiology and Biotechnology, vol. 35, nº 4, p. 67, 2019 | |
dc.relation | G. Cardillo, L. Gentilucci y A. Tolomelli, «Unusual amino acids: synthesis and introduction into naturally occurring peptides and biologically active analogues,» Mini-Reviews in Medicinal Chemistry, vol. 6, nº 3, pp. 293-304, 2006 | |
dc.relation | P. R. Hansen y J. K. Munk, «Synthesis of antimicrobial peptoids,» Methods in Molecular Biology, vol. 1047, pp. 151-159, 2013 | |
dc.relation | R. T. ISSUEPREVARTICLENEXT, «Pribylka, Adam; Krchnak, Viktor; Schutxnerova, Eva,» The Journal of Organic Chemistry, vol. 85, nº 14, pp. 8798-8811, 2020 | |
dc.relation | J. M. Collins, K. A. Porter, S. K. Singh y G. S. Vanier, «High-efficiency solid phase peptide synthesis (HE-SPPS),» Organic Letters, vol. 16, nº 3, pp. 940-943, 2014 | |
dc.relation | E. Valeur y M. Bradley, «Amide bond formation: Beyond the myth of coupling reagents,» Chemical Society reviews, vol. 38, pp. 606-631, 2009 | |
dc.relation | L.-J. Zhang y R. L. Gallo, «Antimicrobial peptides,» Current Biology, vol. 26, nº 1, pp. R14-9, 2016 | |
dc.relation | F. Albericio y A. El-Faham, «Choosing the Right Coupling Reagent for Peptides. A Twenty-Five-Year Journey,» Organic Process Research & Development, vol. 22, nº 7, pp. 760-772, 2018 | |
dc.relation | D. Pires, M. Bemquerer y C. Nascimento, «Some Mechanistic Aspects on Fmoc Solid Phase Peptide Synthesis,» International Journal of Peptide Research and Therapeutics, vol. 20, pp. 53-69, 2013 | |
dc.relation | A. El-Faham y F. Albericio, «Peptide coupling reagents, more than a letter soup,» Chemical Reviews, vol. 111, nº 11, pp. 6757-6602, 2011 | |
dc.relation | T. Al-Warhi, H. Al-Hazimi y A. El-Faham, «Recent development in peptide coupling reagents,» Journal of Saudi Chemical Society, vol. 16, nº 2, pp. 97-116, 2012 | |
dc.relation | F. Vergel, Z. Rivera, J. Pérez y J. Castañeda, «Efficient Synthesis of Peptides with 4-Methylpiperidine as Fmoc Removal Reagent by Solid Phase Synthesis,» Journal of the Mexican Chemical Society, vol. 58, pp. 386-392, 2014 | |
dc.relation | O. F. Luna, J. Gomez, C. Cárdenas, F. Albericio, S. H. Marshall y F. Guzmán, «Deprotection Reagents in Fmoc Solid Phase Peptide Synthesis: Moving Away from Piperidine?,» Molecules, vol. 21, nº 11, p. 1542, 2016 | |
dc.relation | V. Mäde, S. Els-Heindl y A. G. Beck-Sickinger, «Automated solid-phase peptide synthesis to obtain therapeutic peptides,» Beilstein journal of organic chemistry, vol. 10, pp. 1197-1212, 2014 | |
dc.relation | W. Hou, X. Zhang y C.-F. Liu, «Progress in Chemical Synthesis of Peptides and Proteins,» Transactions of Tianjin University, vol. 23, pp. 401-419, 2017 | |
dc.relation | I. Coin, M. Beyermann y M. Bienert, «Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences,» Nature Protocols, vol. 2, nº 12, pp. 3247-3256, 2007 | |
dc.relation | A. El-Faham y F. Albericio, «Carpino's protecting groups, beyond the Boc and the Fmoc,» Peptide Science, vol. 112, nº 4, 2020 | |
dc.relation | M. Muttenthaler, F. Albericio y P. E. Dawson, «Methods, setup and safe handling for anhydrous hydrogen fluoride cleavage in Boc solid-phase peptide synthesis,» Nature Protocols, vol. 10, nº 7, pp. 1067-1083, 2015 | |
dc.relation | W. M. Hussein, M. Skwarczynski y I. Toth, Peptide Synthesis: Methods and Protocols, Nueva York: Springer, 2020 | |
dc.relation | W. C. Chan y P. D. White, «Basic Procedures,» de Fmoc Solid Phase Peptide Synthesis, Nottingham, Oxford University Press, 2020, pp. 41-74 | |
dc.relation | A. Kluczyk, M. Rudowska, P. Stefanowicz y Z. Szewczuk, «Microwave-assisted TFA cleavage of peptides from Merrifield resin,» Journal of Peptide Science, vol. 16, nº 1, pp. 31-39, 2010 | |
dc.relation | O. Maurin, P. Verdié, G. Subra, F. Lamaty, J. Martinez y T.-X. Métro, «Peptide synthesis: Ball-milling, in solution, or on solid support, what is the best strategy?,» Beilstein Journal of Organic Chemistry, vol. 13, pp. 2087-2093, 2017 | |
dc.relation | Y. Tsuda y Y. Okada, «Solution-Phase Peptide Synthesis,» de Amino Acids, Peptides and Proteins in Organic Chemistry: Building Blocks, Catalysis and Coupling Chemistry, Nueva York, Wiley-VCH, 2010, pp. 201-251 | |
dc.relation | A. Mahindra, K. K. Sharma y R. Jain, «Rapid microwave-assisted solution-phase peptide synthesis,» Tetrahedron Letters, vol. 53, nº 51, pp. 6931-6935, 2012 | |
dc.relation | S. B. A. R. Lawrenson y M. North, «The Greening of Peptide Synthesis,» Green Chemistry, vol. 19, nº 7, 2017 | |
dc.relation | F. Guzmán, A. Gauna, T. Roman, O. Luna, C. Álvarez, C. Pareja-Barrueto, L. Mercado, F. Albericio y C. Cárdenas, «Tea Bags for Fmoc Solid-Phase Peptide Synthesis: An Example of Circular Economy,» Molecules, vol. 26, nº 16, p. 5035, 2021 | |
dc.relation | E. Abrahám, C. Hourton-Cabassa, L. Erdei y L. Szabados, «Methods for determination of proline in plants,» Methods in Molecular Biology, vol. 639, pp. 317-331, 2010 | |
dc.relation | A. Luther, M. Urfer, M. Zahn, M. Müller, S.-Y. Wang, M. Mondal, A. Vitale, J.-B. Hartmann, T. Sharpe, F. Lo Monte, H. Kocherla, E. Cline, G. Pessi y P. Rath, «Chimeric peptidomimetic antibiotics against Gram-negative bacteria,» Nature, vol. 576, nº 7787, pp. 452-458, 2019 | |
dc.relation | B. J. Burkhart, N. Kakkar, G. A. Hudson, G. A. Van der Donk y D. A. Mitchell, «Chimeric Leader Peptides for the Generation of Non-Natural Hybrid RiPP Products,» ACS Central Science, vol. 3, nº 6, pp. 629-638, 2017 | |
dc.relation | A. R. Ferreira, C. Teixeira, C. F. Sousa, L. J. Bessa, P. Gomes y P. Gameiro, «How Insertion of a Single Tryptophan in the N-Terminus of a Cecropin A-Melittin Hybrid Peptide Changes Its Antimicrobial and Biophysical Profile,» Membranes, vol. 11, nº 1, p. 48, 2021 | |
dc.relation | Z. Wang, X. Liu, D. Teng, R. Mao, Y. Hao, N. Yang, X. Wang, Z. Li, X. Wang y J. Wang, «Development of chimeric peptides to facilitate the neutralisation of lipopolysaccharides during bactericidal targeting of multidrug-resistant Escherichia coli,» Communications Biology, vol. 3, nº 1, p. 41, 2020 | |
dc.relation | M. Tonk, J. J. Valdés, A. Cabezas-Cruz y A. Vilcinskas, «Potent Activity of Hybrid Arthropod Antimicrobial Peptides Linked by Glycine Spacers,» International Journal of Molecular Sciences, vol. 22, nº 16, p. 8919, 2021 | |
dc.relation | L. Ma, C. Wang, Z. He, B. Cheng, L. Zheng y K. Huang, «Peptide-Drug Conjugate: A Novel Drug Design Approach,» Current Medicinal Chemistry, vol. 24, nº 31, pp. 3373-3396, 2017 | |
dc.relation | M. Kawamoto, M. Kohno, T. Horibe y K. Kawakami, «Immunogenicity and toxicity of transferrin receptor-targeted hybrid peptide as a potent anticancer agent,» Cancer Chemotherapy and Pharmacology, vol. 71, nº 3, pp. 799-807, 2013 | |
dc.relation | H. Oh, M. Hedberg, D. Wade y C. Edlund, «Activities of synthetic hybrid peptides against anaerobic bacteria: aspects of methodology and stability,» Antimicrobial agents and chemotherapy, vol. 44, nº 1, pp. 68-72, 2000 | |
dc.relation | M. D. Libardo, T. J. Paul, R. Prabhakar y A. M. Angeles-Boza, «Hybrid peptide ATCUN-sh-Buforin: Influence of the ATCUN charge and stereochemistry on antimicrobial activity,» Biochimie, vol. 113, pp. 143-155, 2015 | |
dc.relation | X. Zhao, D. Yu, H. Gong, L. Meng, J. Li, S. Zhang, X. Cao y X. Feng, «Design, synthesis and antibacterial activity of a novel hybrid antimicrobial peptide LFM 23,» African Journal of Biotechnology, vol. 11, nº 8, pp. 2107-2112, 2012 | |
dc.relation | Y.-M. Kim, N.-H. Kim, J.-W. Lee, J.-S. Jang, Y.-H. Park, S.-C. Park y M.-K. Jang, «Novel chimeric peptide with enhanced cell specificity and anti-inflammatory activity,» Biochemical and Biophysical Research Communications, vol. 463, nº 3, pp. 322-328, 2015 | |
dc.relation | J. R. Luque-Ortega, J. M. Saugar, C. Chiva, D. Andreu y L. Rivas, «Identification of new leishmanicidal peptide lead structures by automated real-time monitoring of changes in intracellular ATP,» Biochemical Journal, vol. 375(P1), pp. 221-230, 2003 | |
dc.relation | S. Y. Shin, M. K. Lee, K. L. Kim y K. S. Hahm, «Structure-antitumor and hemolytic activity relationships of synthetic peptides derived from cecropin A-magainin 2 and cecropin A-melittin hybrid peptides,» Journal of Peptide Research, vol. 50, nº 4, pp. 279-285, 1997 | |
dc.relation | R. Gopal, Y. Kim, J. H. Lee, S. K. Lee, J. D. Chae, B. K. Son, C. H. Seo y Y. Park, «Synergistic effects and antibiofilm properties of chimeric peptides against multidrug-resistant Acinetobacter baumannii strains,» Antimicrobial Agents and Chemotherapy, vol. 58, nº 3, pp. 1622-1629, 2014 | |
dc.relation | Z.-g. Tian, T.-t. Dong, D. Teng, Y.-l. Yang y ,. J.-h. Wang, «Design and characterization of novel hybrid peptides from LFB15(W4,10), HP(2-20), and cecropin A based on structure parameters by computer-aided method,» Applied Microbiology and Biotechnology, vol. 82, nº 6, pp. 1097-1103, 2009 | |
dc.relation | C. Ajish, S. Yang, S. D. Kumar, E. Y. Kim, H. J. Min, C. W. Lee, S.-H. Shin y S. Y. Shin, «A novel hybrid peptide composed of LfcinB6 and KR-12-a4 with enhanced antimicrobial, anti-inflammatory and anti-biofilm activities,» Scientific Reports, vol. 12, nº 1, p. 4365, 2022 | |
dc.relation | Y. Liu, X. Xia, L. Xub y Y. Wang, «Design of hybrid β-hairpin peptides with enhanced cell specificity and potent anti-inflammatory activity,» Biomaterials, vol. 34, nº 1, pp. 237-250, 2013 | |
dc.relation | Y. Cao, R. Q. Yu, Y. Liu, H. X. Zhou, L. L. Song, Y. Cao y D. R. Qiao, «Design, recombinant expression, and antibacterial activity of the cecropins-melittin hybrid antimicrobial peptides,» Current Microbiology, vol. 61, nº 3, pp. 169-175, 2010 | |
dc.relation | R. Wu, Q. Wang, Z. Zheng, L. Zhao, Y. Shang, W. Xubiao, X. Liao y R. Zhang, «Design, characterization and expression of a novel hybrid peptides melittin (1-13)-LL37 (17-30),» Molecular Biology Reports, vol. 41, nº 7, pp. 4163-4169, 2014 | |
dc.relation | X. Jiang, K. Qian, G. Liu, L. Sun, G. Zhou, J. Li, X. Fang, H. Ge y Z. Lv, « Design and activity study of a melittin-thanatin hybrid peptide,» AMB Express, vol. 9, p. 14, 2019 | |
dc.relation | X.-J. Feng, L.-W. Xing, D. Liu, X.-Y. Song, C.-L. Liu, J. Li, W.-S. Xu y Z.-Q. Li, «Design and high-level expression of a hybrid antimicrobial peptide LF15-CA8 in Escherichia coli,» Journal of Industrial Microbiology and Biotechnology, vol. 41, nº 3, pp. 527-534, 2014 | |
dc.relation | X. Feng, C. Liu, J. Guo, X. Song, J. Li, W. Xu y Z. Li, «Recombinant expression, purification, and antimicrobial activity of a novel hybrid antimicrobial peptide LFT33,» Applied Microbiology and Biotechnology, vol. 95, nº 5, pp. 1191-1198, 2012 | |
dc.relation | X. Nie, L. Zhang, S. Wang, J. Ding y Z. Zhao, «Hybrid antimicrobial peptide buforin II-cecropin B exhibits antimicrobial activity,» Agricultural Biotechnology, vol. 4, nº 1, pp. 55-58, 2015 | |
dc.relation | H. Sato y J. B. Feix, «Lysine-enriched cecropin-mellitin antimicrobial peptides with enhanced selectivity,» Antimicrobial agents and chemotherapy, vol. 52, nº 12, pp. 4463-4465, 2008 | |
dc.relation | A. Milani, M. Benedusi, M. Aquila y G. Rispoli, «Pore forming properties of cecropin-melittin hybrid peptide in a natural membrane,» Molecules, vol. 14, nº 12, pp. 5179-5188, 2009 | |
dc.relation | M. Arias, L. J. McDonald, E. F. Haney, K. Nazmi, J. G. Bolscher y H. J. Vogel, «Bovine and human lactoferricin peptides: chimeras and new cyclic analogs,» Biometals, vol. 27, nº 5, pp. 935-948, 2014 | |
dc.relation | J. Bolscher, K. Nazmi, J. van Marle, W. van 't Hof y E. Veerman, «Chimerization of lactoferricin and lactoferrampin peptides strongly potentiates the killing activity against Candida albicans,» Biochemistry and Cell Biology, vol. 90, nº 3, pp. 378-388, 2012 | |
dc.relation | S. Ji, W. Li, L. Zhang, Y. Zhang y B. Cao, «Cecropin A-melittin mutant with improved proteolytic stability and enhanced antimicrobial activity against bacteria and fungi associated with gastroenteritis in vitro,» Biochemical and Biophysical Research Communications, vol. 451, nº 4, pp. 650-655, 2014 | |
dc.relation | D. G. Lee, J. H. Park, S. Y. Shin, S. G. Lee, M. K. Lee, K. L. Kim y K. S. Hahm, «Design of novel analogue peptides with potent fungicidal but low hemolytic activity based on the cecropin A-melittin hybrid structure,» Biochemistry and Molecular Biology International, vol. 43, nº 3, pp. 489-498, 1997 | |
dc.relation | W. Wang, S. Liu, L. Deng, J. Ming, S. Yao y K. Zeng, «Control of Citrus Post-harvest Green Molds, Blue Molds, and Sour Rot by the Cecropin A-Melittin Hybrid Peptide BP21,» Frontiers in microbiology, vol. 9, p. 2455, 2018 | |
dc.relation | J. Han, M. A. Jyoti, H.-Y. Song y W. S. Jang, «Antifungal Activity and Action Mechanism of Histatin 5-Halocidin Hybrid Peptides against Candida ssp,» PLoS One, vol. 11, nº 2, p. e0150196, 2016 | |
dc.relation | W. Hongbiao, N. Baolong, X. Mengkui, H. Lihua, S. Weifeng y M. Zhiqi, «Biological activities of cecropin B-thanatin hybrid peptides,» Journal of Peptide Research, vol. 66, nº 6, pp. 382-386, 2005 | |
dc.relation | J.-Y. Kim, S.-C. Park, G. Noh, H. Kim, S.-H. Yoo, I. R. Kim, J. R. Lee y M.-K. Jang, «Antifungal Effect of A Chimeric Peptide Hn-Mc against Pathogenic Fungal Strains,» Antibiotics, vol. 9, nº 8, p. 454, 2020 | |
dc.relation | S. Y. Shin, S. H. Lee, S. T. Yang, E. J. Park, D. G. Lee, M. K. Lee, S. H. Eom, W. K. Song, Y. Kim, K. S. Hahm y J. I. Kim, «Antibacterial, antitumor and hemolytic activities of alpha-helical antibiotic peptide, P18 and its analogs,» Journal of Peptide Research, vol. 58, nº 6, pp. 504-514, 2001 | |
dc.relation | H. Zhao, X. Feng, W. Han, Y. Diao, D. Han, X. Tian, Y. Gao, S. Liu, S. Zhu, C. Yao, J. Gu, C. Sun y L. Lei, «Enhanced binding to and killing of hepatocellular carcinoma cells in vitro by melittin when linked with a novel targeting peptide screened from phage display,» Journal of Peptide Science, vol. 19, nº 10, pp. 639-650, 2013 | |
dc.relation | S. Liu, H. Yang, L. Wan, H.-w. Cai, S.-f. Li, Y.-p. Li, J.-q. Cheng y X.-f. Lu, «Enhancement of cytotoxicity of antimicrobial peptide magainin II in tumor cells by bombesin-targeted delivery,» Acta Pharmacologica Sinica, vol. 32, nº 1, pp. 79-88, 2010 | |
dc.relation | T. Horibe, M. Kohno, M. Haramoto, K. Ohara y K. Kawakami, «Designed hybrid TPR peptide targeting Hsp90 as a novel anticancer agent,» Journal of translational medicine, vol. 9, p. 8, 2011 | |
dc.relation | O. M. d. l. Salud, «¿Qué es la resistencia a los antimicrobianos?,» [En línea]. Available: https://who.int/features/qa/75/es/. [Último acceso: 14 Agosto 2020] | |
dc.relation | M. Unemo y R. Nicholas, «Emergence of multidrug-resistant, extensively drug-resistant and untreatable gonorrhea,» Future Microbiology, vol. 7, nº 12, pp. 1401-1422, 2012 | |
dc.relation | K. Greber y M. Dawgul, «Antimicrobial Peptides Under Clinical Trials,» Current Topics in Medicinal Chemistry, vol. 17, nº 5, pp. 620-628, 2017 | |
dc.relation | O. M. d. l. Salud, «Antibacterial agents in clinical development,» [En línea]. Available: https://apps.who.int/iris/bitstream/handle/10665/258965/WHO-EMP-IAU-2017.11-eng.pdf. [Último acceso: 18 Agosto 2020] | |
dc.relation | B. S. f. A. Chemotherapy, «Antimicrobial resistance poses ‘catastrophic threat’, says chief medical officer,» [En línea]. Available: https://www.gov.uk/government/news/antimicrobial-resistance-poses-catastrophic-threat-says-chief-medical-officer--2. [Último acceso: 25 Agosto 2020] | |
dc.relation | J. Guevara, M. Maldonado, D. Valadez, R. Muro y I. Matsumoto, «Resistencia bacteriana: Organismos del grupo ESKAPE,» Enfermedades Infecciosas y Microbiología, vol. 41, nº 3, pp. 111-117, 2021 | |
dc.relation | M. Mulani, E. Kamble, S. Kumkar, M. Tawre y K. Pardesi, «Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review,» Frontiers in Microbiology, vol. 10, 2019 | |
dc.relation | R. Ben-Ami y D. Kontoyiannis, «Resistance to Antifungal Drugs. Infectious Disease Clinics of North Amaerica,» Infectious Disease Clinics of North America, vol. 35, nº 2, pp. 279-311, 2021 | |
dc.relation | O. M. d. l. Salud, «Resistencia a los antimicrobianos,» [En línea]. Available: https://www.who.int/es/news-room/fact-sheets/detail/antimicrobial-resistance. [Último acceso: 14 Agosto 2020] | |
dc.relation | C. Adamson, K. Chibale, R. Goss, M. Jaspars, D. Newman y R. Dorrington, «Antiviral drug discovery: preparing for the next pandemic,» Chemical Society Reviews, vol. 50, nº 16, p. 9346, 2021 | |
dc.relation | T. Skinner-Adams, S. Sumanadasa, G. Fisher, R. Davis, D. Doolan y K. Andrews, «Defining the targets of antiparasitic compounds,» Drug Discovery Today, vol. 21, nº 5, pp. 725-739, 2016 | |
dc.relation | J. Ferlay, M. Colombet, I. Soerjomataram, D. Parkin, M. Piñeros, A. Znaor y F. Bray, «Cancer statistics for the year 2020: An overview,» International Journal of Cancer, vol. 149, nº 4, pp. 778-789, 2021 | |
dc.relation | R. Basha, Z. Mohiuddin, A. Rahim y S. Ahmad, «Ovarian Cancer and Resistance to Therapies: Clinical and Laboratory Perspectives,» de Drug Resistance in Bacteria, Fungi, Malaria, and Cancer, Gewerbestrasse, Springer, 2017, pp. 511-537 | |
dc.relation | J. Mwangi, X. Hao, R. Lai y Z.-Y. Zhang, «Antimicrobial peptides: new hope in the war against multidrug resistance,» Zoological Research, vol. 40, nº 6, pp. 488-505, 2019 | |
dc.relation | B. Mihaela y M. Radu, «Cationic antimicrobial peptides cytotoxicity on mammalian cells: an analysis using therapeutic index integrative concept,» International Journal of Peptide Research and Therapeutics, vol. 21, pp. 47-55, 2015 | |
dc.relation | A. Bin Hafeez, X. Jiang, P. Bergen y Y. Zhu, «Antimicrobial Peptides: An Update on Classifications and Databases,» International journal of molecular sciences, vol. 22, nº 21, 2021 | |
dc.relation | J. Sierra, E. Fusté, F. Rabanal, T. Vinuesa y M. Viñas, «An overview of antimicrobial peptides and the latest advances in their development,» Expert Opinion on Biological Therapy, vol. 17, nº 6, pp. 663-676, 2017 | |
dc.relation | J. Wang, X. Dou, J. Song, Y. Lyu, X. Zhu, L. Xu, W. Li y A. Shan, «Antimicrobial peptides: Promising alternatives in the postfeeding antibiotic era,» Medicinal Research Reviews, vol. 39, pp. 831-859, 2018 | |
dc.relation | P. Kumar, J. Kizhakkedathu y S. Straus, «Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo,» Biomolecules, vol. 8, nº 1, 2018 | |
dc.relation | H. Pineda, K. Huertas, A. Leal, Y. Vargas, C. Parra, J. García y Z. Rivera, «Designing Chimeric Peptides: A Powerful Tool for Enhancing Antibacterial Activity,» Chemistry and Biodiversity, vol. 18, nº 2, 2021 | |
dc.relation | C. Wang, C. Yang, Y.-C. Chen, L. Ma y K. Huang, «Rational Design of Hybrid Peptides: A Novel Drug Design Approach,» Current Medical Science, vol. 39, nº 3, pp. 349-355, 2019 | |
dc.relation | M. Akbarian, A. Khani, S. Eghbalpour y V. Uversky, «Bioactive Peptides: Synthesis, Sources, Applications, and Proposed Mechanisms of Action,» International Journal of Molecular Science, vol. 23, nº 3, 2022 | |
dc.relation | K. Varnava y V. Sarojini, «Making Solid-Phase Peptide Synthesis Greener: A Review of the Literature,» Chemistry An Asian Journal, vol. 14, nº 8, pp. 1088-1097, 2019 | |
dc.relation | R. Behrendt, P. White y J. Offer, «Advances in Fmoc solid-phase peptide synthesis,» Journal of Peptide Science, vol. 22, nº 1, pp. 4-27, 2016 | |
dc.relation | R. Gaur, «Antibiotic resistance: Alternative approaches,» Indian journal of pharmacology, vol. 49, nº 2, pp. 208-210, 2017 | |
dc.relation | C. Varga y M. Butnariu, «Properties / Characteristics of Antimicrobial Peptides,» Journal of Evidence Based Medicine and Healthcare, vol. 4, pp. 1-6, 2022 | |
dc.relation | S. Nayab, M. Aslam, S. Rahman, Z. Sindhu, S. Sajid, N. Zafar, M. Razaq y R. Kanwar, «A Review of Antimicrobial Peptides: Its Function, Mode of Action and Therapeutic Potential,» International Journal of Peptide Research and Therapeutics, vol. 28, 2022 | |
dc.relation | M. Pushpanathan, P. Gunasekaran y J. Rajendhran, «Antimicrobial peptides: versatile biological properties,» International Journal of Peptides, vol. 2013, 675391, 2013 | |
dc.relation | M. Malmsten, «Antimicrobial peptides,» Upsala Journal of Medical Sciences, vol. 19, nº 2, pp. 199-204, 2014 | |
dc.relation | A. Sultana, H. Luo y S. Ramakrishna, «Antimicrobial Peptides and Their Applications in Biomedical Sector,» Antibiotics, vol. 10, nº 9, 2021 | |
dc.relation | W. Szlasa, I. Zendran, A. Zalesińska, M. Tarek y J. Kulbacka, «Lipid composition of the cancer cell membrane.,» Journal of Bioenergetics and Biomembranes, vol. 52, nº 5, pp. 321-342, 2020 | |
dc.relation | J. Willdigg y J. Helmann, «Mini Review: Bacterial Membrane Composition and Its Modulation in Response to Stress,» Frontiers in Molecular Biosciences, vol. 8, 2021 | |
dc.relation | E. Kościuczuk, P. Lisowski, J. Jarczak, N. Strzałkowska, A. Jóźwik, J. Horbańczuk, J. Krzyżewski, L. Zwierzchowski y E. Bagnicka, «Cathelicidins: family of antimicrobial peptides. A review,» Molecular Biology Reports, vol. 39, nº 12, pp. 10957-10970, 2012 | |
dc.relation | Y. Wang, M. Wang, A. Shan y X. Feng, «Avian host defense cathelicidins: structure, expression, biological functions, and potential therapeutic applications,» Poultry Science, vol. 99, nº 12, pp. 6434-6445, 2020 | |
dc.relation | P. Askari, M. Yousefi, M. Foadoddini, A. Neshani, M. Aganj, N. Lotfi, A. Movaqar, K. Ghazvini y M. Namaei, «Antimicrobial Peptides as a Promising Therapeutic Strategy for Neisseria Infections,» Current Microbiology, vol. 79, nº 4, 2022 | |
dc.relation | M. Mousavi, M. Rostamian y H. Madanchi, «Antimicrobial peptides and other peptide-like therapeutics as promising candidates to combat SARS-CoV-2,» Expert Review of Anti-infective Therapy, vol. 19, nº 10, pp. 1-13, 2021 | |
dc.relation | H.-K. Kang, C. Kim, C. Seo y Y. Park, «The therapeutic applications of antimicrobial peptides (AMPs): a patent review,» Journal of Microbiology, vol. 55, nº 1, pp. 1-12, 2017 | |
dc.relation | C. Zhang y M. Yang, «The Role and Potential Application of Antimicrobial Peptides in Autoimmune Diseases,» Frontiers in immunology, vol. 11, 2020 | |
dc.relation | M. Erdem y Z. Kesmen, «Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds,» Journal of Applied Microbiology, vol. 132, nº 3, pp. 1573-1596, 2022 | |
dc.relation | K. Kavanagh y S. Dowd, «Histatins: antimicrobial peptides with therapeutic potential,» Journal of Pharmacy and Pharmacology, vol. 56, nº 3, pp. 285-289, 2004 | |
dc.relation | J. Parada, C. Caron, A. Medeiros y C. Soccol, «Bacteriocins from Lactic Acid Bacteria: purification, properties and use as biopreservatives,» Brazilian Archives of Biology and Technology, vol. 50, pp. 512-542, 2007 | |
dc.relation | S.-C. Yang, C.-H. Lin, C. Sung y J.-Y. Fang, «Antibacterial activities of bacteriocins: application in foods and pharmaceuticals,» Frontiers in microbiology, vol. 5, 2014 | |
dc.relation | D. Kormilets, A. Polyanovsky, V. Dadali y A. Maryanovich, «Antibiotic peptides,» Journal of Evolutionary Biochemistry and Physiology, vol. 55, nº 4, pp. 242-248, 2019 | |
dc.relation | D. Takahashi, S. Shukla, O. Prakash y G. Zhang, «Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity,» Biochimie, vol. 92, nº 9, pp. 1236-1241, 2010 | |
dc.relation | A. Bahar y D. Ren, «Antimicrobial peptides,» Pharmaceuticals, vol. 6, pp. 1543-1575, 2013 | |
dc.relation | K. Yaakobi, Y. Liebes-Peer, A. Kushmaro y H. Rapaport, «Designed amphiphilic β-sheet peptides as templates for paraoxon adsorption and detection,» Langmuir, vol. 29, pp. 6840-6848, 2013 | |
dc.relation | C. Park, K.-S. Yi, K. Matsuzaki, M. Kim y S. Kim, «Structure–activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: The proline hinge is responsible for the cell-penetrating ability of buforin II,» Proceedings of the National Academy of Sciences, vol. 97, nº 15, pp. 8245-8250, 2000 | |
dc.relation | L. Smith, K. Fiebig, H. Schwalbe y C. Dobson, «The concept of a random coil: Residual structure in peptides and denatured proteins,» Folding and Design, vol. 1, nº 5, pp. 95-106, 1996 | |
dc.relation | M. Tincho, T. Morris, M. Meyer y A. Pretorius, «Antibacterial Activity of Rationally Designed Antimicrobial Peptides,» International Journal of Microbiology, vol. 8, p. 2131535, 2020 | |
dc.relation | S. Saran, N. Rao y A. Azim, «New and promising anti-bacterials: Can this promise be sustained?,» Journal of anaesthesiology, clinical pharmacology, vol. 36, nº 1, pp. 13-19, 2020 | |
dc.relation | M. Moghaddam, F. Abolhassani, H. Babavalian, R. Mirnejad, A. Barjini y J. Amani, «Comparison of in vitro antibacterial activities of two cationic peptides CM15 and CM11 against five pathogenic bacteria: Pseudomonas aeruginosa, Staphylococcus aureus, Vibrio cholerae, Acinetobacter baumannii, and Escherichia coli,» Probiotics and Antimicrobial Proteins, vol. 4, nº 2, pp. 133-139, 2012 | |
dc.relation | C. B. Park, M. S. Kim y S. C. Kim, «A novel antimicrobial peptide from Bufo bufo gargarizans,» Biochemical and Biophysical Research Communications, vol. 218, nº 1, pp. 408-413, 1996 | |
dc.relation | J. H. Cho, B. H. Sung y S. C. Kim, «Buforins: histone H2A-derived antimicrobial peptides from toad stomach,» Biochimica et biophysica acta, vol. 1788, nº 8, pp. 1564-1569, 2008 | |
dc.relation | N. d. J. Huertas, Z. J. Rivera, R. Fierro y J. E. García, «Antimicrobial Activity of Truncated and Polyvalent Peptides Derived from the FKCRRQWQWRMKKGLA Sequence against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923,» Molecules, vol. 22, nº 6, p. 987, 2017 | |
dc.relation | L. T. Nguyen, J. K. Chau, N. A. Perry, N. A. De Boer, S. Zaat y H. J. Vogel, «Serum stabilities of short tryptophan- and arginine-rich antimicrobial peptide analogs,» PloS one, vol. 5, nº 9, p. e12684, 2010 | |
dc.relation | M. A. León, A. L. Leal, G. A. Almanzar, J. E. Rosas, J. E. García y Z. J. Rivera, «Antibacterial activity of synthetic peptides derived from lactoferricin against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212,» Biomed Research International, vol. 2015, p. 453826, 2015 | |
dc.relation | S. Hossen, S. Gan y M. Khalil, «Melittin, a Potential Natural Toxin of Crude Bee Venom: Probable Future Arsenal in the Treatment of Diabetes Mellitus,» Journal of Chemistry, vol. 2017, pp. 1-7, 2017 | |
dc.relation | M. Ceremuga, M. Stela, E. Janik, L. Gorniak, E. Synowiec, T. Sliwinski, P. Sitarek, J. Saluk-Bijak y M. Bijak, «Melittin-A Natural Peptide from Bee Venom Which Induces Apoptosis in Human Leukaemia Cells,» Biomolecules, vol. 10, nº 2, p. 247, 2020 | |
dc.relation | S. Dosler, E. Karaaslan y A. Gerceker, «Antibacterial and anti-biofilm activities of melittin and colistin, alone and in combination with antibiotics against Gram-negative bacteria,» Journal of Chemotherapy, vol. 28, nº 2, pp. 95-103, 2016 | |
dc.relation | H. Yan, S. Li, X. Sun, H. Mi y B. He, «Individual substitution analogs of Mel(12-26), melittin's C-terminal 15-residue peptide: their antimicrobial and hemolytic actions,» FEBS Letters, vol. 554, nº 1-2, pp. 100-104, 2003 | |
dc.relation | Y. Huan, Q. Kong, H. Mou y H. Yi, «Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields,» Frontiers in microbiology, vol. 11, p. 582779, 2020 | |
dc.relation | Y. Vargas, A. Ceballos, P. Le Pape, J. Villamil, R. Medina, J. García, Z. Rivera y C. Parra, «Palindromic Peptide LfcinB (21-25) Pal Exhibited Antifungal Activity against Multidrug-Resistant Candida,» ChemistrySelect, vol. 5, pp. 7236-7242, 2020 | |
dc.relation | A. Muñoz y J. F. Marcos, «Activity and mode of action against fungal phytopathogens of bovine lactoferricin-derived peptides,» Journal of Applied Microbiology, vol. 101, nº 6, pp. 1199-1207, 2006 | |
dc.relation | G. Ramamourthy, J. Park, C. Seo, H. Vogel y Y. Park, «Antifungal and Antibiofilm Activities and the Mechanism of Action of Repeating Lysine-Tryptophan Peptides against Candida albicans,» Microorganisms, vol. 8, nº 5, p. 758, 2020 | |
dc.relation | H. Memariani y M. Memariani, «Anti-fungal properties and mechanisms of melittin,» Applied Microbiology and Biotechnology, vol. 104, nº 15, pp. 6513-6526, 2020 | |
dc.relation | H. Jenssen, P. Hamill y R. E. Hancock, «Peptide antimicrobial agents,» Clinical Microbiology Reviews, vol. 19, nº 3, pp. 491-511, 2006 | |
dc.relation | H. Memariani, M. Memariani, H. Moravvej y M. Shahidi-Dadras, «Melittin: a venom-derived peptide with promising anti-viral properties,» European Journal of Clinical Microbiology & Infectious Diseases, vol. 39, nº 1, pp. 5-17, 2020 | |
dc.relation | J. Andersen, H. Jenssen y T. J. Gutteberg, «Lactoferrin and lactoferricin inhibit Herpes simplex 1 and 2 infection and exhibit synergy when combined with acyclovir,» Antiviral Research, vol. 58, nº 3, pp. 209-215, 2003 | |
dc.relation | H. Jenssen, J. H. Andersen, L. Uhlin-Hansen, T. J. Gutteberg y O. Rekdal, «Anti-HSV activity of lactoferricin analogues is only partly related to their affinity for heparan sulfate,» Antiviral Research, vol. 61, nº 2, pp. 101-109, 2004 | |
dc.relation | L. C. Vilas Boas, L. M. Pinto de Lima, L. Migliolo, G. Dos Santos, M. Gonçalves de Jesus, O. Franco y P. Silva, «Linear antimicrobial peptides with activity against herpes simplex virus 1 and Aichi virus,» Biopolymers, vol. 108, nº 2, 2017 | |
dc.relation | V. Albiol y V. Castilla, «Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus,» International Journal of Antimicrobial Agents, vol. 23, nº 4, pp. 382-389, 2004 | |
dc.relation | M. Wachinger, A. Kleinschmidt, D. Winder, N. Von Pechmann, A. Ludvigsen, M. Neumann, R. Holle, B. Salmons, V. Erfle y R. Brack-Werner, «Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression,» Journal of General Virology, vol. 79, nº 4, pp. 731-740, 1998 | |
dc.relation | H. S. Lee, C. B. Park, J. M. Kim, S. A. Jang, I. Y. Park, M. S. Kim, J. H. Cho y S. C. Kim, «Mechanism of anticancer activity of buforin IIb, a histone H2A-derived peptide,» Cancer Letters, vol. 271, nº 1, pp. 47-55, 2008 | |
dc.relation | I. Rady, I. A. Siddiqui, M. Rady y H. Mukhtar, «Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy,» Cancer Letters, vol. 402, pp. 16-31, 2017 | |
dc.relation | M. D. Torres, S. Sothiselvam, T. K. Lu y C. De la Fuente-Nunez, «Peptide Design Principles for Antimicrobial Applications,» Journal of Molecular Biology, vol. 431, nº 18, pp. 3547-3567, 2019 | |
dc.relation | J. Lei, L. Sun, S. Huang, C. Zhu, P. Li, J. He, V. Mackey, D. H. Coy y Q. He, «The antimicrobial peptides and their potential clinical applications,» Journal of American Translational Research, vol. 11, nº 7, pp. 3919-3931, 2019 | |
dc.relation | M. Rahnamaeian, «Antimicrobial peptides: modes of mechanism, modulation of defense responses,» Plant Signaling & Behavior, vol. 6, nº 9, pp. 1325-1332, 2011 | |
dc.relation | K. Browne, S. Chakraborty, R. Chen, M. D. Willcox, D. Black, W. R. Walsh y N. Kumar, «A New Era of Antibiotics: The Clinical Potential of Antimicrobial Peptides,» International journal of molecular sciences, vol. 21, nº 19, p. 7047, 2020 | |
dc.relation | G. Buda De Cesare, C. Shane, G. Danielle y L. Michael, «Antimicrobial peptides: a new frontier in antifungal therapy,» American Society for Microbiology, vol. 11, 2020 | |
dc.relation | M. Stawikowski y G. B. Fields, «Introduction to peptide synthesis,» Current Protocols in Protein Science, vol. 18, 2012 | |
dc.relation | L. C. Vilas Boas, M. Campos, R. Berlanda, N. De Carvalho y O. Franco, «Antiviral peptides as promising therapeutic drugs,» Cellular and Molecular Life Sciences, vol. 76, nº 18, pp. 3525-3542, 2019 | |
dc.relation | S. Datta y A. Roy, «Antimicrobial Peptides as Potential Therapeutic Agents: A Review,» International Journal of Peptide Research and Therapeutics, vol. 27, 2021 | |
dc.relation | J. K. Boparai y P. K. Sharma, «Mini Review on Antimicrobial Peptides, Sources, Mechanism and Recent Applications,» Protein and Peptide Letters, vol. 27, nº 1, pp. 4-16, 2020 | |
dc.relation | A. Borah, B. Deb y S. Chakraborty, «A Crosstalk on Antimicrobial Peptides,» International Journal of Peptide Research and Therapeutics, vol. 27, 2021 | |
dc.relation | A. Sahoo, S. S. Swain, A. Behera, G. Sahoo, P. K. Mahapatra y S. K. Panda, «Antimicrobial Peptides Derived From Insects Offer a Novel Therapeutic Option to Combat Biofilm: A Review,» Frontiers in Microbiology, vol. 12, p. 661195, 2021 | |
dc.relation | Q. Wu, J. Patočka y K. Kuča, «Insect Antimicrobial Peptides, a Mini Review.,» Toxins (Basel), vol. 10, nº 11, p. 461, 2018 | |
dc.relation | K. N. Sorensen, A. A. Wanstrom, S. D. Allen y J. Y. Takemoto, «Efficacy of syringomycin E in a murine model of vaginal candidiasis,» The Journal of Antibiotics, vol. 51, nº 8, pp. 743-749, 1998 | |
dc.relation | G. F. Oliveira, T. Fornari y B. Hernández, «A Review on the Extraction and Processing of Natural Source-Derived Proteins through Eco-Innovative Approaches,» Processes, vol. 9, nº 9, p. 1626, 2021 | |
dc.relation | University of Nebraska Medical Center, «Antimicrobial Peptide Database,» 2021. [En línea]. Available: https://aps.unmc.edu/database/peptide. [Último acceso: 13 Marzo 2022 | |
dc.relation | S. Wegmüller y S. Schmid, «Recombinant Peptide Production in Microbial Cells,» Current Organic Chemistry, vol. 18, 2014 | |
dc.relation | T. V. Ovchinnikova, Z. O. Shenkarev, K. D. Nadezhdin, S. V. Balandin, M. N. Zhmak, I. A. Kudelina, E. I. Finkina, V. N. Kokryakov y A. S. Arseniev, «Recombinant expression, synthesis, purification, and solution structure of arenicin,» Biochemical and Biophysical Research Communications, vol. 360, nº 1, pp. 156-162, 2007 | |
dc.relation | Y. Li, «Recombinant production of antimicrobial peptides in Escherichia coli: a review,» Protein Expression and Purification, vol. 80, nº 2, pp. 260-267, 2011 | |
dc.rights | Reconocimiento 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Quimeras peptídicas: una alternativa sintética para potenciar la actividad antimicrobiana de péptidos | |
dc.type | Trabajo de grado - Maestría | |