dc.contributorGarcia Castañeda, Javier Eduardo
dc.creatorSalamanca Saavedra, Yeimy Cristina
dc.date.accessioned2023-03-06T20:51:25Z
dc.date.accessioned2023-06-06T23:57:56Z
dc.date.available2023-03-06T20:51:25Z
dc.date.available2023-06-06T23:57:56Z
dc.date.created2023-03-06T20:51:25Z
dc.date.issued2022
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/83594
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6651651
dc.description.abstractLa emergencia provocada por la resistencia microbiana a los medicamentos disponibles actualmente ha motivado el desarrollo de agente terapéuticos que superen esta limitación. Los péptidos antimicrobianos (PAMs) son una alternativa que ha ganado relevancia ya que poseen actividad antimicrobiana contra un amplio espectro de microorganismos y, anticancerígena contra líneas celulares de diferentes tipos de cáncer a través de mecanismos de acción únicos. Una de las alternativas que permite potenciar la actividad biológica de los PAMs es la síntesis de quimeras peptídicas, que permite la obtención de moléculas que no son producidas de forma natural y actúan a través de mecanismos de acción combinados generando aumento de la selectividad y actividad biológica entre 1,5 y 10 veces. En este sentido, el diseño de las quimeras puede combinar péptidos penetrantes en las células con péptidos activos biológicamente para generar péptidos híbridos con doble función. Dentro de la revisión bibliográfica se incluyen también diferentes métodos de obtención de PAMs como la obtención a partir de fuentes naturales, que se considera costosa y de baja aplicación en el campo industrial, la producción a través del método recombinante mediante la manipulación genética de microorganismos como E. Coli que se convierten en productores de PAMs, lo que lo hace un método económico y rápido, aunque presenta limitaciones en el diseño de secuencias con AA no naturales, y por último el método de síntesis química en fase sólida (SPPS) que es el de mayor popularidad ya que permite obtener péptidos sin limitaciones en el diseño de las secuencias, es un método escalable y que genera altos rendimientos. (Texto tomado de la fuente).
dc.description.abstractThe emergence caused by microbial resistance to currently available drugs has motivated the development of therapeutic agents that overcome this limitation. Antimicrobial peptides (AMPs) are an alternative that has gained relevance because they have antimicrobial activity against a wide spectrum of microorganisms and anticancer activity against cell lines of different types of cancer through unique mechanisms of action. One of the alternatives that allows enhancing the biological activity of PAMs is synthesis of peptide chimeras, which allows obtaining molecules that are not produced naturally and act through combined mechanisms of action, generating an increase in selectivity and biological activity. between 1.5 and 10 times. In this regard, the design of chimeras can combine cell-penetrating peptides with biologically active peptides to generate hybrid peptides with dual functions. Within the bibliographic review, different methods of obtaining PAMs are also included, such as obtaining from natural sources, which is considered expensive and of low application in the industrial field, production through the recombinant method through the genetic manipulation of microorganisms such as E. Coli that become producers of PAMs, which makes it an economical and fast method, although it has limitations in the design of sequences with non-natural AA, and finally the solid phase chemical synthesis method (SPPS) that is the most popular since it allows obtaining peptides without limitations in the design of the sequences, it is a scalable method that generates high yields.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Química
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationM. Zorko y R. Jerala, «Production of recombinant antimicrobial peptides in bacteria,» Methods in Molecular Biology, vol. 618, pp. 61-76, 2010
dc.relationD. Wibowo y C.-X. Zhao, «Recent achievements and perspectives for large-scale recombinant production of antimicrobial peptides,» Applied Microbiology and Biotechnology, vol. 103, nº 2, pp. 659-671, 2019
dc.relationV. Rodríguez, J. A. Asenjo y B. A. Andrews, «Design and implementation of a high yield production system for recombinant expression of peptides,» Microbial Cell Factories, vol. 13, p. 65, 2014
dc.relationG. V. Heeke, J. S. Stout y F. W. Wagner, «Synthesis of Recombinant Peptides,» Methods in molecular biology, vol. 36, pp. 245-260, 1994
dc.relationUniversidad de Chile, «Diseño de un sistema de producción recombinante de péptidos con potencial terapéutico,» 2013. [En línea]. Available: https://repositorio.uchile.cl/handle/2250/115378. [Último acceso: 26 Abril 2022]
dc.relationK. B. Sampaio de Oliveira, M. L. Leite, G. R. Rodrigues, H. Duque, R. Da Costa, V. Cunha, L. De Loiola, N. Da Cunha, O. L. Franco y S. Dias, «Strategies for recombinant production of antimicrobial peptides with pharmacological potential,» Expert review of clinical pharmacology, vol. 13, nº 4, pp. 367-390, 2020
dc.relationA. R. Mitchell, «Bruce Merrifield and solid-phase peptide synthesis: a historical assessment,» Biopolymers, vol. 90, nº 3, pp. 175-184, 2008
dc.relationM. Amblard, J.-A. Fehrentz, J. Martinez y J. Subra, «Methods and protocols of modern solid phase Peptide synthesis,» Molecular Biotechnology, vol. 33, nº 3, pp. 239-254, 2006
dc.relationG. Kungulovski, I. Kycia, R. Mauser y A. Jeltsch, «Specificity Analysis of Histone Modification-Specific Antibodies or Reading Domains on Histone Peptide Arrays,» de Peptide Antibodies, Nueva York, Springer, 2015, pp. 275-284
dc.relationF. Bédard y E. Biron, «Recent Progress in the Chemical Synthesis of Class II and S-Glycosylated Bacteriocins,» Frontiers in Microbiology, vol. 9, p. 1048, 2018
dc.relationS. W. Pedersen, C. J. Armishaw y K. Strømgaard, «Synthesis of peptides using tert-butyloxycarbonyl (Boc) as the α-amino protection group,» Methods in Molecular Biology, vol. 1047, pp. 65-80, 2013
dc.relationA. Isidro-Llobet, M. N. Kenworthy, S. Mukherjee, M. E. Kopach, K. Wegner, F. Gallou, A. G. Smith y F. Roschangar, «Sustainability Challenges in Peptide Synthesis and Purification: From R&D to Production,» Journal of Organic Chemistry, vol. 84, nº 8, pp. 4615-4628, 2019
dc.relationY. Li, R. L. Hunter y R. T. McIver, «High-resolution mass spectrometer for protein chemistry,» Nature, vol. 370, pp. 393-395, 1994
dc.relationS. L. Pedersen y K. J. Jensen, «Peptide release, side-chain deprotection, work-up, and isolation,» Methods in Molecular Biology, vol. 1047, pp. 43-63, 2013
dc.relationK. A. Dave, M. J. Headlam, T. P. Wallis y J. J. Gorman, «Preparation and analysis of proteins and peptides using MALDI TOF/TOF mass spectrometry,» Current Protocols in Protein Science, vol. 2011, p. 16.13, 2011
dc.relationD. M. Jaradat, «Thirteen decades of peptide synthesis: key developments in solid phase peptide synthesis and amide bond formation utilized in peptide ligation,» Amino Acids, vol. 50, pp. 39-68, 2018
dc.relationJ. A. Moss, «Guide for resin and linker selection in solid-phase peptide synthesis,» Current Protocols in Protein Science, vol. 2005, p. 18.7, 2005
dc.relationP. T. Shelton y K. J. Jensen, «Linkers, resins, and general procedures for solid-phase peptide synthesis,» Methods in Molecular Biology, vol. 1047, pp. 23-41, 2013
dc.relationC. Petrou y Y. Sarigiannis, «Peptide synthesis: Methods, trends, and challenges,» Peptide Applications in Biomedicine, Biotechnology and Bioengineering, vol. 2018, pp. 1-21, 2018
dc.relationP. R. Hansen y A. Oddo, «Fmoc Solid-Phase Peptide Synthesis,» Methods in Molecular Biology, vol. 1348, pp. 33-50, 2015
dc.relationF. Guillier, D. Orain y M. Bradley, «Linkers and cleavage strategies in solid-phase organic synthesis and combinatorial chemistry,» Chemical Reviews, vol. 100, nº 6, pp. 2091-2158, 2000
dc.relationL.-y. Qin, L. Z. Hao-ting Zhu, Z. Yong-qiang y L. Yu, «An improved and practical synthesis of Fmoc Rink linker,» Journal of Chemical Research, vol. 43, nº 3-4, pp. 81-85, 2019
dc.relationT. Narancic, S. A. Almahboub y K. E. O'Connor, «Unnatural amino acids: production and biotechnological potential,» World Journal of Microbiology and Biotechnology, vol. 35, nº 4, p. 67, 2019
dc.relationG. Cardillo, L. Gentilucci y A. Tolomelli, «Unusual amino acids: synthesis and introduction into naturally occurring peptides and biologically active analogues,» Mini-Reviews in Medicinal Chemistry, vol. 6, nº 3, pp. 293-304, 2006
dc.relationP. R. Hansen y J. K. Munk, «Synthesis of antimicrobial peptoids,» Methods in Molecular Biology, vol. 1047, pp. 151-159, 2013
dc.relationR. T. ISSUEPREVARTICLENEXT, «Pribylka, Adam; Krchnak, Viktor; Schutxnerova, Eva,» The Journal of Organic Chemistry, vol. 85, nº 14, pp. 8798-8811, 2020
dc.relationJ. M. Collins, K. A. Porter, S. K. Singh y G. S. Vanier, «High-efficiency solid phase peptide synthesis (HE-SPPS),» Organic Letters, vol. 16, nº 3, pp. 940-943, 2014
dc.relationE. Valeur y M. Bradley, «Amide bond formation: Beyond the myth of coupling reagents,» Chemical Society reviews, vol. 38, pp. 606-631, 2009
dc.relationL.-J. Zhang y R. L. Gallo, «Antimicrobial peptides,» Current Biology, vol. 26, nº 1, pp. R14-9, 2016
dc.relationF. Albericio y A. El-Faham, «Choosing the Right Coupling Reagent for Peptides. A Twenty-Five-Year Journey,» Organic Process Research & Development, vol. 22, nº 7, pp. 760-772, 2018
dc.relationD. Pires, M. Bemquerer y C. Nascimento, «Some Mechanistic Aspects on Fmoc Solid Phase Peptide Synthesis,» International Journal of Peptide Research and Therapeutics, vol. 20, pp. 53-69, 2013
dc.relationA. El-Faham y F. Albericio, «Peptide coupling reagents, more than a letter soup,» Chemical Reviews, vol. 111, nº 11, pp. 6757-6602, 2011
dc.relationT. Al-Warhi, H. Al-Hazimi y A. El-Faham, «Recent development in peptide coupling reagents,» Journal of Saudi Chemical Society, vol. 16, nº 2, pp. 97-116, 2012
dc.relationF. Vergel, Z. Rivera, J. Pérez y J. Castañeda, «Efficient Synthesis of Peptides with 4-Methylpiperidine as Fmoc Removal Reagent by Solid Phase Synthesis,» Journal of the Mexican Chemical Society, vol. 58, pp. 386-392, 2014
dc.relationO. F. Luna, J. Gomez, C. Cárdenas, F. Albericio, S. H. Marshall y F. Guzmán, «Deprotection Reagents in Fmoc Solid Phase Peptide Synthesis: Moving Away from Piperidine?,» Molecules, vol. 21, nº 11, p. 1542, 2016
dc.relationV. Mäde, S. Els-Heindl y A. G. Beck-Sickinger, «Automated solid-phase peptide synthesis to obtain therapeutic peptides,» Beilstein journal of organic chemistry, vol. 10, pp. 1197-1212, 2014
dc.relationW. Hou, X. Zhang y C.-F. Liu, «Progress in Chemical Synthesis of Peptides and Proteins,» Transactions of Tianjin University, vol. 23, pp. 401-419, 2017
dc.relationI. Coin, M. Beyermann y M. Bienert, «Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences,» Nature Protocols, vol. 2, nº 12, pp. 3247-3256, 2007
dc.relationA. El-Faham y F. Albericio, «Carpino's protecting groups, beyond the Boc and the Fmoc,» Peptide Science, vol. 112, nº 4, 2020
dc.relationM. Muttenthaler, F. Albericio y P. E. Dawson, «Methods, setup and safe handling for anhydrous hydrogen fluoride cleavage in Boc solid-phase peptide synthesis,» Nature Protocols, vol. 10, nº 7, pp. 1067-1083, 2015
dc.relationW. M. Hussein, M. Skwarczynski y I. Toth, Peptide Synthesis: Methods and Protocols, Nueva York: Springer, 2020
dc.relationW. C. Chan y P. D. White, «Basic Procedures,» de Fmoc Solid Phase Peptide Synthesis, Nottingham, Oxford University Press, 2020, pp. 41-74
dc.relationA. Kluczyk, M. Rudowska, P. Stefanowicz y Z. Szewczuk, «Microwave-assisted TFA cleavage of peptides from Merrifield resin,» Journal of Peptide Science, vol. 16, nº 1, pp. 31-39, 2010
dc.relationO. Maurin, P. Verdié, G. Subra, F. Lamaty, J. Martinez y T.-X. Métro, «Peptide synthesis: Ball-milling, in solution, or on solid support, what is the best strategy?,» Beilstein Journal of Organic Chemistry, vol. 13, pp. 2087-2093, 2017
dc.relationY. Tsuda y Y. Okada, «Solution-Phase Peptide Synthesis,» de Amino Acids, Peptides and Proteins in Organic Chemistry: Building Blocks, Catalysis and Coupling Chemistry, Nueva York, Wiley-VCH, 2010, pp. 201-251
dc.relationA. Mahindra, K. K. Sharma y R. Jain, «Rapid microwave-assisted solution-phase peptide synthesis,» Tetrahedron Letters, vol. 53, nº 51, pp. 6931-6935, 2012
dc.relationS. B. A. R. Lawrenson y M. North, «The Greening of Peptide Synthesis,» Green Chemistry, vol. 19, nº 7, 2017
dc.relationF. Guzmán, A. Gauna, T. Roman, O. Luna, C. Álvarez, C. Pareja-Barrueto, L. Mercado, F. Albericio y C. Cárdenas, «Tea Bags for Fmoc Solid-Phase Peptide Synthesis: An Example of Circular Economy,» Molecules, vol. 26, nº 16, p. 5035, 2021
dc.relationE. Abrahám, C. Hourton-Cabassa, L. Erdei y L. Szabados, «Methods for determination of proline in plants,» Methods in Molecular Biology, vol. 639, pp. 317-331, 2010
dc.relationA. Luther, M. Urfer, M. Zahn, M. Müller, S.-Y. Wang, M. Mondal, A. Vitale, J.-B. Hartmann, T. Sharpe, F. Lo Monte, H. Kocherla, E. Cline, G. Pessi y P. Rath, «Chimeric peptidomimetic antibiotics against Gram-negative bacteria,» Nature, vol. 576, nº 7787, pp. 452-458, 2019
dc.relationB. J. Burkhart, N. Kakkar, G. A. Hudson, G. A. Van der Donk y D. A. Mitchell, «Chimeric Leader Peptides for the Generation of Non-Natural Hybrid RiPP Products,» ACS Central Science, vol. 3, nº 6, pp. 629-638, 2017
dc.relationA. R. Ferreira, C. Teixeira, C. F. Sousa, L. J. Bessa, P. Gomes y P. Gameiro, «How Insertion of a Single Tryptophan in the N-Terminus of a Cecropin A-Melittin Hybrid Peptide Changes Its Antimicrobial and Biophysical Profile,» Membranes, vol. 11, nº 1, p. 48, 2021
dc.relationZ. Wang, X. Liu, D. Teng, R. Mao, Y. Hao, N. Yang, X. Wang, Z. Li, X. Wang y J. Wang, «Development of chimeric peptides to facilitate the neutralisation of lipopolysaccharides during bactericidal targeting of multidrug-resistant Escherichia coli,» Communications Biology, vol. 3, nº 1, p. 41, 2020
dc.relationM. Tonk, J. J. Valdés, A. Cabezas-Cruz y A. Vilcinskas, «Potent Activity of Hybrid Arthropod Antimicrobial Peptides Linked by Glycine Spacers,» International Journal of Molecular Sciences, vol. 22, nº 16, p. 8919, 2021
dc.relationL. Ma, C. Wang, Z. He, B. Cheng, L. Zheng y K. Huang, «Peptide-Drug Conjugate: A Novel Drug Design Approach,» Current Medicinal Chemistry, vol. 24, nº 31, pp. 3373-3396, 2017
dc.relationM. Kawamoto, M. Kohno, T. Horibe y K. Kawakami, «Immunogenicity and toxicity of transferrin receptor-targeted hybrid peptide as a potent anticancer agent,» Cancer Chemotherapy and Pharmacology, vol. 71, nº 3, pp. 799-807, 2013
dc.relationH. Oh, M. Hedberg, D. Wade y C. Edlund, «Activities of synthetic hybrid peptides against anaerobic bacteria: aspects of methodology and stability,» Antimicrobial agents and chemotherapy, vol. 44, nº 1, pp. 68-72, 2000
dc.relationM. D. Libardo, T. J. Paul, R. Prabhakar y A. M. Angeles-Boza, «Hybrid peptide ATCUN-sh-Buforin: Influence of the ATCUN charge and stereochemistry on antimicrobial activity,» Biochimie, vol. 113, pp. 143-155, 2015
dc.relationX. Zhao, D. Yu, H. Gong, L. Meng, J. Li, S. Zhang, X. Cao y X. Feng, «Design, synthesis and antibacterial activity of a novel hybrid antimicrobial peptide LFM 23,» African Journal of Biotechnology, vol. 11, nº 8, pp. 2107-2112, 2012
dc.relationY.-M. Kim, N.-H. Kim, J.-W. Lee, J.-S. Jang, Y.-H. Park, S.-C. Park y M.-K. Jang, «Novel chimeric peptide with enhanced cell specificity and anti-inflammatory activity,» Biochemical and Biophysical Research Communications, vol. 463, nº 3, pp. 322-328, 2015
dc.relationJ. R. Luque-Ortega, J. M. Saugar, C. Chiva, D. Andreu y L. Rivas, «Identification of new leishmanicidal peptide lead structures by automated real-time monitoring of changes in intracellular ATP,» Biochemical Journal, vol. 375(P1), pp. 221-230, 2003
dc.relationS. Y. Shin, M. K. Lee, K. L. Kim y K. S. Hahm, «Structure-antitumor and hemolytic activity relationships of synthetic peptides derived from cecropin A-magainin 2 and cecropin A-melittin hybrid peptides,» Journal of Peptide Research, vol. 50, nº 4, pp. 279-285, 1997
dc.relationR. Gopal, Y. Kim, J. H. Lee, S. K. Lee, J. D. Chae, B. K. Son, C. H. Seo y Y. Park, «Synergistic effects and antibiofilm properties of chimeric peptides against multidrug-resistant Acinetobacter baumannii strains,» Antimicrobial Agents and Chemotherapy, vol. 58, nº 3, pp. 1622-1629, 2014
dc.relationZ.-g. Tian, T.-t. Dong, D. Teng, Y.-l. Yang y ,. J.-h. Wang, «Design and characterization of novel hybrid peptides from LFB15(W4,10), HP(2-20), and cecropin A based on structure parameters by computer-aided method,» Applied Microbiology and Biotechnology, vol. 82, nº 6, pp. 1097-1103, 2009
dc.relationC. Ajish, S. Yang, S. D. Kumar, E. Y. Kim, H. J. Min, C. W. Lee, S.-H. Shin y S. Y. Shin, «A novel hybrid peptide composed of LfcinB6 and KR-12-a4 with enhanced antimicrobial, anti-inflammatory and anti-biofilm activities,» Scientific Reports, vol. 12, nº 1, p. 4365, 2022
dc.relationY. Liu, X. Xia, L. Xub y Y. Wang, «Design of hybrid β-hairpin peptides with enhanced cell specificity and potent anti-inflammatory activity,» Biomaterials, vol. 34, nº 1, pp. 237-250, 2013
dc.relationY. Cao, R. Q. Yu, Y. Liu, H. X. Zhou, L. L. Song, Y. Cao y D. R. Qiao, «Design, recombinant expression, and antibacterial activity of the cecropins-melittin hybrid antimicrobial peptides,» Current Microbiology, vol. 61, nº 3, pp. 169-175, 2010
dc.relationR. Wu, Q. Wang, Z. Zheng, L. Zhao, Y. Shang, W. Xubiao, X. Liao y R. Zhang, «Design, characterization and expression of a novel hybrid peptides melittin (1-13)-LL37 (17-30),» Molecular Biology Reports, vol. 41, nº 7, pp. 4163-4169, 2014
dc.relationX. Jiang, K. Qian, G. Liu, L. Sun, G. Zhou, J. Li, X. Fang, H. Ge y Z. Lv, « Design and activity study of a melittin-thanatin hybrid peptide,» AMB Express, vol. 9, p. 14, 2019
dc.relationX.-J. Feng, L.-W. Xing, D. Liu, X.-Y. Song, C.-L. Liu, J. Li, W.-S. Xu y Z.-Q. Li, «Design and high-level expression of a hybrid antimicrobial peptide LF15-CA8 in Escherichia coli,» Journal of Industrial Microbiology and Biotechnology, vol. 41, nº 3, pp. 527-534, 2014
dc.relationX. Feng, C. Liu, J. Guo, X. Song, J. Li, W. Xu y Z. Li, «Recombinant expression, purification, and antimicrobial activity of a novel hybrid antimicrobial peptide LFT33,» Applied Microbiology and Biotechnology, vol. 95, nº 5, pp. 1191-1198, 2012
dc.relationX. Nie, L. Zhang, S. Wang, J. Ding y Z. Zhao, «Hybrid antimicrobial peptide buforin II-cecropin B exhibits antimicrobial activity,» Agricultural Biotechnology, vol. 4, nº 1, pp. 55-58, 2015
dc.relationH. Sato y J. B. Feix, «Lysine-enriched cecropin-mellitin antimicrobial peptides with enhanced selectivity,» Antimicrobial agents and chemotherapy, vol. 52, nº 12, pp. 4463-4465, 2008
dc.relationA. Milani, M. Benedusi, M. Aquila y G. Rispoli, «Pore forming properties of cecropin-melittin hybrid peptide in a natural membrane,» Molecules, vol. 14, nº 12, pp. 5179-5188, 2009
dc.relationM. Arias, L. J. McDonald, E. F. Haney, K. Nazmi, J. G. Bolscher y H. J. Vogel, «Bovine and human lactoferricin peptides: chimeras and new cyclic analogs,» Biometals, vol. 27, nº 5, pp. 935-948, 2014
dc.relationJ. Bolscher, K. Nazmi, J. van Marle, W. van 't Hof y E. Veerman, «Chimerization of lactoferricin and lactoferrampin peptides strongly potentiates the killing activity against Candida albicans,» Biochemistry and Cell Biology, vol. 90, nº 3, pp. 378-388, 2012
dc.relationS. Ji, W. Li, L. Zhang, Y. Zhang y B. Cao, «Cecropin A-melittin mutant with improved proteolytic stability and enhanced antimicrobial activity against bacteria and fungi associated with gastroenteritis in vitro,» Biochemical and Biophysical Research Communications, vol. 451, nº 4, pp. 650-655, 2014
dc.relationD. G. Lee, J. H. Park, S. Y. Shin, S. G. Lee, M. K. Lee, K. L. Kim y K. S. Hahm, «Design of novel analogue peptides with potent fungicidal but low hemolytic activity based on the cecropin A-melittin hybrid structure,» Biochemistry and Molecular Biology International, vol. 43, nº 3, pp. 489-498, 1997
dc.relationW. Wang, S. Liu, L. Deng, J. Ming, S. Yao y K. Zeng, «Control of Citrus Post-harvest Green Molds, Blue Molds, and Sour Rot by the Cecropin A-Melittin Hybrid Peptide BP21,» Frontiers in microbiology, vol. 9, p. 2455, 2018
dc.relationJ. Han, M. A. Jyoti, H.-Y. Song y W. S. Jang, «Antifungal Activity and Action Mechanism of Histatin 5-Halocidin Hybrid Peptides against Candida ssp,» PLoS One, vol. 11, nº 2, p. e0150196, 2016
dc.relationW. Hongbiao, N. Baolong, X. Mengkui, H. Lihua, S. Weifeng y M. Zhiqi, «Biological activities of cecropin B-thanatin hybrid peptides,» Journal of Peptide Research, vol. 66, nº 6, pp. 382-386, 2005
dc.relationJ.-Y. Kim, S.-C. Park, G. Noh, H. Kim, S.-H. Yoo, I. R. Kim, J. R. Lee y M.-K. Jang, «Antifungal Effect of A Chimeric Peptide Hn-Mc against Pathogenic Fungal Strains,» Antibiotics, vol. 9, nº 8, p. 454, 2020
dc.relationS. Y. Shin, S. H. Lee, S. T. Yang, E. J. Park, D. G. Lee, M. K. Lee, S. H. Eom, W. K. Song, Y. Kim, K. S. Hahm y J. I. Kim, «Antibacterial, antitumor and hemolytic activities of alpha-helical antibiotic peptide, P18 and its analogs,» Journal of Peptide Research, vol. 58, nº 6, pp. 504-514, 2001
dc.relationH. Zhao, X. Feng, W. Han, Y. Diao, D. Han, X. Tian, Y. Gao, S. Liu, S. Zhu, C. Yao, J. Gu, C. Sun y L. Lei, «Enhanced binding to and killing of hepatocellular carcinoma cells in vitro by melittin when linked with a novel targeting peptide screened from phage display,» Journal of Peptide Science, vol. 19, nº 10, pp. 639-650, 2013
dc.relationS. Liu, H. Yang, L. Wan, H.-w. Cai, S.-f. Li, Y.-p. Li, J.-q. Cheng y X.-f. Lu, «Enhancement of cytotoxicity of antimicrobial peptide magainin II in tumor cells by bombesin-targeted delivery,» Acta Pharmacologica Sinica, vol. 32, nº 1, pp. 79-88, 2010
dc.relationT. Horibe, M. Kohno, M. Haramoto, K. Ohara y K. Kawakami, «Designed hybrid TPR peptide targeting Hsp90 as a novel anticancer agent,» Journal of translational medicine, vol. 9, p. 8, 2011
dc.relationO. M. d. l. Salud, «¿Qué es la resistencia a los antimicrobianos?,» [En línea]. Available: https://who.int/features/qa/75/es/. [Último acceso: 14 Agosto 2020]
dc.relationM. Unemo y R. Nicholas, «Emergence of multidrug-resistant, extensively drug-resistant and untreatable gonorrhea,» Future Microbiology, vol. 7, nº 12, pp. 1401-1422, 2012
dc.relationK. Greber y M. Dawgul, «Antimicrobial Peptides Under Clinical Trials,» Current Topics in Medicinal Chemistry, vol. 17, nº 5, pp. 620-628, 2017
dc.relationO. M. d. l. Salud, «Antibacterial agents in clinical development,» [En línea]. Available: https://apps.who.int/iris/bitstream/handle/10665/258965/WHO-EMP-IAU-2017.11-eng.pdf. [Último acceso: 18 Agosto 2020]
dc.relationB. S. f. A. Chemotherapy, «Antimicrobial resistance poses ‘catastrophic threat’, says chief medical officer,» [En línea]. Available: https://www.gov.uk/government/news/antimicrobial-resistance-poses-catastrophic-threat-says-chief-medical-officer--2. [Último acceso: 25 Agosto 2020]
dc.relationJ. Guevara, M. Maldonado, D. Valadez, R. Muro y I. Matsumoto, «Resistencia bacteriana: Organismos del grupo ESKAPE,» Enfermedades Infecciosas y Microbiología, vol. 41, nº 3, pp. 111-117, 2021
dc.relationM. Mulani, E. Kamble, S. Kumkar, M. Tawre y K. Pardesi, «Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review,» Frontiers in Microbiology, vol. 10, 2019
dc.relationR. Ben-Ami y D. Kontoyiannis, «Resistance to Antifungal Drugs. Infectious Disease Clinics of North Amaerica,» Infectious Disease Clinics of North America, vol. 35, nº 2, pp. 279-311, 2021
dc.relationO. M. d. l. Salud, «Resistencia a los antimicrobianos,» [En línea]. Available: https://www.who.int/es/news-room/fact-sheets/detail/antimicrobial-resistance. [Último acceso: 14 Agosto 2020]
dc.relationC. Adamson, K. Chibale, R. Goss, M. Jaspars, D. Newman y R. Dorrington, «Antiviral drug discovery: preparing for the next pandemic,» Chemical Society Reviews, vol. 50, nº 16, p. 9346, 2021
dc.relationT. Skinner-Adams, S. Sumanadasa, G. Fisher, R. Davis, D. Doolan y K. Andrews, «Defining the targets of antiparasitic compounds,» Drug Discovery Today, vol. 21, nº 5, pp. 725-739, 2016
dc.relationJ. Ferlay, M. Colombet, I. Soerjomataram, D. Parkin, M. Piñeros, A. Znaor y F. Bray, «Cancer statistics for the year 2020: An overview,» International Journal of Cancer, vol. 149, nº 4, pp. 778-789, 2021
dc.relationR. Basha, Z. Mohiuddin, A. Rahim y S. Ahmad, «Ovarian Cancer and Resistance to Therapies: Clinical and Laboratory Perspectives,» de Drug Resistance in Bacteria, Fungi, Malaria, and Cancer, Gewerbestrasse, Springer, 2017, pp. 511-537
dc.relationJ. Mwangi, X. Hao, R. Lai y Z.-Y. Zhang, «Antimicrobial peptides: new hope in the war against multidrug resistance,» Zoological Research, vol. 40, nº 6, pp. 488-505, 2019
dc.relationB. Mihaela y M. Radu, «Cationic antimicrobial peptides cytotoxicity on mammalian cells: an analysis using therapeutic index integrative concept,» International Journal of Peptide Research and Therapeutics, vol. 21, pp. 47-55, 2015
dc.relationA. Bin Hafeez, X. Jiang, P. Bergen y Y. Zhu, «Antimicrobial Peptides: An Update on Classifications and Databases,» International journal of molecular sciences, vol. 22, nº 21, 2021
dc.relationJ. Sierra, E. Fusté, F. Rabanal, T. Vinuesa y M. Viñas, «An overview of antimicrobial peptides and the latest advances in their development,» Expert Opinion on Biological Therapy, vol. 17, nº 6, pp. 663-676, 2017
dc.relationJ. Wang, X. Dou, J. Song, Y. Lyu, X. Zhu, L. Xu, W. Li y A. Shan, «Antimicrobial peptides: Promising alternatives in the postfeeding antibiotic era,» Medicinal Research Reviews, vol. 39, pp. 831-859, 2018
dc.relationP. Kumar, J. Kizhakkedathu y S. Straus, «Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo,» Biomolecules, vol. 8, nº 1, 2018
dc.relationH. Pineda, K. Huertas, A. Leal, Y. Vargas, C. Parra, J. García y Z. Rivera, «Designing Chimeric Peptides: A Powerful Tool for Enhancing Antibacterial Activity,» Chemistry and Biodiversity, vol. 18, nº 2, 2021
dc.relationC. Wang, C. Yang, Y.-C. Chen, L. Ma y K. Huang, «Rational Design of Hybrid Peptides: A Novel Drug Design Approach,» Current Medical Science, vol. 39, nº 3, pp. 349-355, 2019
dc.relationM. Akbarian, A. Khani, S. Eghbalpour y V. Uversky, «Bioactive Peptides: Synthesis, Sources, Applications, and Proposed Mechanisms of Action,» International Journal of Molecular Science, vol. 23, nº 3, 2022
dc.relationK. Varnava y V. Sarojini, «Making Solid-Phase Peptide Synthesis Greener: A Review of the Literature,» Chemistry An Asian Journal, vol. 14, nº 8, pp. 1088-1097, 2019
dc.relationR. Behrendt, P. White y J. Offer, «Advances in Fmoc solid-phase peptide synthesis,» Journal of Peptide Science, vol. 22, nº 1, pp. 4-27, 2016
dc.relationR. Gaur, «Antibiotic resistance: Alternative approaches,» Indian journal of pharmacology, vol. 49, nº 2, pp. 208-210, 2017
dc.relationC. Varga y M. Butnariu, «Properties / Characteristics of Antimicrobial Peptides,» Journal of Evidence Based Medicine and Healthcare, vol. 4, pp. 1-6, 2022
dc.relationS. Nayab, M. Aslam, S. Rahman, Z. Sindhu, S. Sajid, N. Zafar, M. Razaq y R. Kanwar, «A Review of Antimicrobial Peptides: Its Function, Mode of Action and Therapeutic Potential,» International Journal of Peptide Research and Therapeutics, vol. 28, 2022
dc.relationM. Pushpanathan, P. Gunasekaran y J. Rajendhran, «Antimicrobial peptides: versatile biological properties,» International Journal of Peptides, vol. 2013, 675391, 2013
dc.relationM. Malmsten, «Antimicrobial peptides,» Upsala Journal of Medical Sciences, vol. 19, nº 2, pp. 199-204, 2014
dc.relationA. Sultana, H. Luo y S. Ramakrishna, «Antimicrobial Peptides and Their Applications in Biomedical Sector,» Antibiotics, vol. 10, nº 9, 2021
dc.relationW. Szlasa, I. Zendran, A. Zalesińska, M. Tarek y J. Kulbacka, «Lipid composition of the cancer cell membrane.,» Journal of Bioenergetics and Biomembranes, vol. 52, nº 5, pp. 321-342, 2020
dc.relationJ. Willdigg y J. Helmann, «Mini Review: Bacterial Membrane Composition and Its Modulation in Response to Stress,» Frontiers in Molecular Biosciences, vol. 8, 2021
dc.relationE. Kościuczuk, P. Lisowski, J. Jarczak, N. Strzałkowska, A. Jóźwik, J. Horbańczuk, J. Krzyżewski, L. Zwierzchowski y E. Bagnicka, «Cathelicidins: family of antimicrobial peptides. A review,» Molecular Biology Reports, vol. 39, nº 12, pp. 10957-10970, 2012
dc.relationY. Wang, M. Wang, A. Shan y X. Feng, «Avian host defense cathelicidins: structure, expression, biological functions, and potential therapeutic applications,» Poultry Science, vol. 99, nº 12, pp. 6434-6445, 2020
dc.relationP. Askari, M. Yousefi, M. Foadoddini, A. Neshani, M. Aganj, N. Lotfi, A. Movaqar, K. Ghazvini y M. Namaei, «Antimicrobial Peptides as a Promising Therapeutic Strategy for Neisseria Infections,» Current Microbiology, vol. 79, nº 4, 2022
dc.relationM. Mousavi, M. Rostamian y H. Madanchi, «Antimicrobial peptides and other peptide-like therapeutics as promising candidates to combat SARS-CoV-2,» Expert Review of Anti-infective Therapy, vol. 19, nº 10, pp. 1-13, 2021
dc.relationH.-K. Kang, C. Kim, C. Seo y Y. Park, «The therapeutic applications of antimicrobial peptides (AMPs): a patent review,» Journal of Microbiology, vol. 55, nº 1, pp. 1-12, 2017
dc.relationC. Zhang y M. Yang, «The Role and Potential Application of Antimicrobial Peptides in Autoimmune Diseases,» Frontiers in immunology, vol. 11, 2020
dc.relationM. Erdem y Z. Kesmen, «Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds,» Journal of Applied Microbiology, vol. 132, nº 3, pp. 1573-1596, 2022
dc.relationK. Kavanagh y S. Dowd, «Histatins: antimicrobial peptides with therapeutic potential,» Journal of Pharmacy and Pharmacology, vol. 56, nº 3, pp. 285-289, 2004
dc.relationJ. Parada, C. Caron, A. Medeiros y C. Soccol, «Bacteriocins from Lactic Acid Bacteria: purification, properties and use as biopreservatives,» Brazilian Archives of Biology and Technology, vol. 50, pp. 512-542, 2007
dc.relationS.-C. Yang, C.-H. Lin, C. Sung y J.-Y. Fang, «Antibacterial activities of bacteriocins: application in foods and pharmaceuticals,» Frontiers in microbiology, vol. 5, 2014
dc.relationD. Kormilets, A. Polyanovsky, V. Dadali y A. Maryanovich, «Antibiotic peptides,» Journal of Evolutionary Biochemistry and Physiology, vol. 55, nº 4, pp. 242-248, 2019
dc.relationD. Takahashi, S. Shukla, O. Prakash y G. Zhang, «Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity,» Biochimie, vol. 92, nº 9, pp. 1236-1241, 2010
dc.relationA. Bahar y D. Ren, «Antimicrobial peptides,» Pharmaceuticals, vol. 6, pp. 1543-1575, 2013
dc.relationK. Yaakobi, Y. Liebes-Peer, A. Kushmaro y H. Rapaport, «Designed amphiphilic β-sheet peptides as templates for paraoxon adsorption and detection,» Langmuir, vol. 29, pp. 6840-6848, 2013
dc.relationC. Park, K.-S. Yi, K. Matsuzaki, M. Kim y S. Kim, «Structure–activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: The proline hinge is responsible for the cell-penetrating ability of buforin II,» Proceedings of the National Academy of Sciences, vol. 97, nº 15, pp. 8245-8250, 2000
dc.relationL. Smith, K. Fiebig, H. Schwalbe y C. Dobson, «The concept of a random coil: Residual structure in peptides and denatured proteins,» Folding and Design, vol. 1, nº 5, pp. 95-106, 1996
dc.relationM. Tincho, T. Morris, M. Meyer y A. Pretorius, «Antibacterial Activity of Rationally Designed Antimicrobial Peptides,» International Journal of Microbiology, vol. 8, p. 2131535, 2020
dc.relationS. Saran, N. Rao y A. Azim, «New and promising anti-bacterials: Can this promise be sustained?,» Journal of anaesthesiology, clinical pharmacology, vol. 36, nº 1, pp. 13-19, 2020
dc.relationM. Moghaddam, F. Abolhassani, H. Babavalian, R. Mirnejad, A. Barjini y J. Amani, «Comparison of in vitro antibacterial activities of two cationic peptides CM15 and CM11 against five pathogenic bacteria: Pseudomonas aeruginosa, Staphylococcus aureus, Vibrio cholerae, Acinetobacter baumannii, and Escherichia coli,» Probiotics and Antimicrobial Proteins, vol. 4, nº 2, pp. 133-139, 2012
dc.relationC. B. Park, M. S. Kim y S. C. Kim, «A novel antimicrobial peptide from Bufo bufo gargarizans,» Biochemical and Biophysical Research Communications, vol. 218, nº 1, pp. 408-413, 1996
dc.relationJ. H. Cho, B. H. Sung y S. C. Kim, «Buforins: histone H2A-derived antimicrobial peptides from toad stomach,» Biochimica et biophysica acta, vol. 1788, nº 8, pp. 1564-1569, 2008
dc.relationN. d. J. Huertas, Z. J. Rivera, R. Fierro y J. E. García, «Antimicrobial Activity of Truncated and Polyvalent Peptides Derived from the FKCRRQWQWRMKKGLA Sequence against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923,» Molecules, vol. 22, nº 6, p. 987, 2017
dc.relationL. T. Nguyen, J. K. Chau, N. A. Perry, N. A. De Boer, S. Zaat y H. J. Vogel, «Serum stabilities of short tryptophan- and arginine-rich antimicrobial peptide analogs,» PloS one, vol. 5, nº 9, p. e12684, 2010
dc.relationM. A. León, A. L. Leal, G. A. Almanzar, J. E. Rosas, J. E. García y Z. J. Rivera, «Antibacterial activity of synthetic peptides derived from lactoferricin against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212,» Biomed Research International, vol. 2015, p. 453826, 2015
dc.relationS. Hossen, S. Gan y M. Khalil, «Melittin, a Potential Natural Toxin of Crude Bee Venom: Probable Future Arsenal in the Treatment of Diabetes Mellitus,» Journal of Chemistry, vol. 2017, pp. 1-7, 2017
dc.relationM. Ceremuga, M. Stela, E. Janik, L. Gorniak, E. Synowiec, T. Sliwinski, P. Sitarek, J. Saluk-Bijak y M. Bijak, «Melittin-A Natural Peptide from Bee Venom Which Induces Apoptosis in Human Leukaemia Cells,» Biomolecules, vol. 10, nº 2, p. 247, 2020
dc.relationS. Dosler, E. Karaaslan y A. Gerceker, «Antibacterial and anti-biofilm activities of melittin and colistin, alone and in combination with antibiotics against Gram-negative bacteria,» Journal of Chemotherapy, vol. 28, nº 2, pp. 95-103, 2016
dc.relationH. Yan, S. Li, X. Sun, H. Mi y B. He, «Individual substitution analogs of Mel(12-26), melittin's C-terminal 15-residue peptide: their antimicrobial and hemolytic actions,» FEBS Letters, vol. 554, nº 1-2, pp. 100-104, 2003
dc.relationY. Huan, Q. Kong, H. Mou y H. Yi, «Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields,» Frontiers in microbiology, vol. 11, p. 582779, 2020
dc.relationY. Vargas, A. Ceballos, P. Le Pape, J. Villamil, R. Medina, J. García, Z. Rivera y C. Parra, «Palindromic Peptide LfcinB (21-25) Pal Exhibited Antifungal Activity against Multidrug-Resistant Candida,» ChemistrySelect, vol. 5, pp. 7236-7242, 2020
dc.relationA. Muñoz y J. F. Marcos, «Activity and mode of action against fungal phytopathogens of bovine lactoferricin-derived peptides,» Journal of Applied Microbiology, vol. 101, nº 6, pp. 1199-1207, 2006
dc.relationG. Ramamourthy, J. Park, C. Seo, H. Vogel y Y. Park, «Antifungal and Antibiofilm Activities and the Mechanism of Action of Repeating Lysine-Tryptophan Peptides against Candida albicans,» Microorganisms, vol. 8, nº 5, p. 758, 2020
dc.relationH. Memariani y M. Memariani, «Anti-fungal properties and mechanisms of melittin,» Applied Microbiology and Biotechnology, vol. 104, nº 15, pp. 6513-6526, 2020
dc.relationH. Jenssen, P. Hamill y R. E. Hancock, «Peptide antimicrobial agents,» Clinical Microbiology Reviews, vol. 19, nº 3, pp. 491-511, 2006
dc.relationH. Memariani, M. Memariani, H. Moravvej y M. Shahidi-Dadras, «Melittin: a venom-derived peptide with promising anti-viral properties,» European Journal of Clinical Microbiology & Infectious Diseases, vol. 39, nº 1, pp. 5-17, 2020
dc.relationJ. Andersen, H. Jenssen y T. J. Gutteberg, «Lactoferrin and lactoferricin inhibit Herpes simplex 1 and 2 infection and exhibit synergy when combined with acyclovir,» Antiviral Research, vol. 58, nº 3, pp. 209-215, 2003
dc.relationH. Jenssen, J. H. Andersen, L. Uhlin-Hansen, T. J. Gutteberg y O. Rekdal, «Anti-HSV activity of lactoferricin analogues is only partly related to their affinity for heparan sulfate,» Antiviral Research, vol. 61, nº 2, pp. 101-109, 2004
dc.relationL. C. Vilas Boas, L. M. Pinto de Lima, L. Migliolo, G. Dos Santos, M. Gonçalves de Jesus, O. Franco y P. Silva, «Linear antimicrobial peptides with activity against herpes simplex virus 1 and Aichi virus,» Biopolymers, vol. 108, nº 2, 2017
dc.relationV. Albiol y V. Castilla, «Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus,» International Journal of Antimicrobial Agents, vol. 23, nº 4, pp. 382-389, 2004
dc.relationM. Wachinger, A. Kleinschmidt, D. Winder, N. Von Pechmann, A. Ludvigsen, M. Neumann, R. Holle, B. Salmons, V. Erfle y R. Brack-Werner, «Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression,» Journal of General Virology, vol. 79, nº 4, pp. 731-740, 1998
dc.relationH. S. Lee, C. B. Park, J. M. Kim, S. A. Jang, I. Y. Park, M. S. Kim, J. H. Cho y S. C. Kim, «Mechanism of anticancer activity of buforin IIb, a histone H2A-derived peptide,» Cancer Letters, vol. 271, nº 1, pp. 47-55, 2008
dc.relationI. Rady, I. A. Siddiqui, M. Rady y H. Mukhtar, «Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy,» Cancer Letters, vol. 402, pp. 16-31, 2017
dc.relationM. D. Torres, S. Sothiselvam, T. K. Lu y C. De la Fuente-Nunez, «Peptide Design Principles for Antimicrobial Applications,» Journal of Molecular Biology, vol. 431, nº 18, pp. 3547-3567, 2019
dc.relationJ. Lei, L. Sun, S. Huang, C. Zhu, P. Li, J. He, V. Mackey, D. H. Coy y Q. He, «The antimicrobial peptides and their potential clinical applications,» Journal of American Translational Research, vol. 11, nº 7, pp. 3919-3931, 2019
dc.relationM. Rahnamaeian, «Antimicrobial peptides: modes of mechanism, modulation of defense responses,» Plant Signaling & Behavior, vol. 6, nº 9, pp. 1325-1332, 2011
dc.relationK. Browne, S. Chakraborty, R. Chen, M. D. Willcox, D. Black, W. R. Walsh y N. Kumar, «A New Era of Antibiotics: The Clinical Potential of Antimicrobial Peptides,» International journal of molecular sciences, vol. 21, nº 19, p. 7047, 2020
dc.relationG. Buda De Cesare, C. Shane, G. Danielle y L. Michael, «Antimicrobial peptides: a new frontier in antifungal therapy,» American Society for Microbiology, vol. 11, 2020
dc.relationM. Stawikowski y G. B. Fields, «Introduction to peptide synthesis,» Current Protocols in Protein Science, vol. 18, 2012
dc.relationL. C. Vilas Boas, M. Campos, R. Berlanda, N. De Carvalho y O. Franco, «Antiviral peptides as promising therapeutic drugs,» Cellular and Molecular Life Sciences, vol. 76, nº 18, pp. 3525-3542, 2019
dc.relationS. Datta y A. Roy, «Antimicrobial Peptides as Potential Therapeutic Agents: A Review,» International Journal of Peptide Research and Therapeutics, vol. 27, 2021
dc.relationJ. K. Boparai y P. K. Sharma, «Mini Review on Antimicrobial Peptides, Sources, Mechanism and Recent Applications,» Protein and Peptide Letters, vol. 27, nº 1, pp. 4-16, 2020
dc.relationA. Borah, B. Deb y S. Chakraborty, «A Crosstalk on Antimicrobial Peptides,» International Journal of Peptide Research and Therapeutics, vol. 27, 2021
dc.relationA. Sahoo, S. S. Swain, A. Behera, G. Sahoo, P. K. Mahapatra y S. K. Panda, «Antimicrobial Peptides Derived From Insects Offer a Novel Therapeutic Option to Combat Biofilm: A Review,» Frontiers in Microbiology, vol. 12, p. 661195, 2021
dc.relationQ. Wu, J. Patočka y K. Kuča, «Insect Antimicrobial Peptides, a Mini Review.,» Toxins (Basel), vol. 10, nº 11, p. 461, 2018
dc.relationK. N. Sorensen, A. A. Wanstrom, S. D. Allen y J. Y. Takemoto, «Efficacy of syringomycin E in a murine model of vaginal candidiasis,» The Journal of Antibiotics, vol. 51, nº 8, pp. 743-749, 1998
dc.relationG. F. Oliveira, T. Fornari y B. Hernández, «A Review on the Extraction and Processing of Natural Source-Derived Proteins through Eco-Innovative Approaches,» Processes, vol. 9, nº 9, p. 1626, 2021
dc.relationUniversity of Nebraska Medical Center, «Antimicrobial Peptide Database,» 2021. [En línea]. Available: https://aps.unmc.edu/database/peptide. [Último acceso: 13 Marzo 2022
dc.relationS. Wegmüller y S. Schmid, «Recombinant Peptide Production in Microbial Cells,» Current Organic Chemistry, vol. 18, 2014
dc.relationT. V. Ovchinnikova, Z. O. Shenkarev, K. D. Nadezhdin, S. V. Balandin, M. N. Zhmak, I. A. Kudelina, E. I. Finkina, V. N. Kokryakov y A. S. Arseniev, «Recombinant expression, synthesis, purification, and solution structure of arenicin,» Biochemical and Biophysical Research Communications, vol. 360, nº 1, pp. 156-162, 2007
dc.relationY. Li, «Recombinant production of antimicrobial peptides in Escherichia coli: a review,» Protein Expression and Purification, vol. 80, nº 2, pp. 260-267, 2011
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleQuimeras peptídicas: una alternativa sintética para potenciar la actividad antimicrobiana de péptidos
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución