dc.contributorRodríguez Hernández, Pedro
dc.contributorMejía de Tafur, María Sara
dc.creatorLópez Rendón, Juan Fernando
dc.date.accessioned2022-10-31T19:16:08Z
dc.date.accessioned2023-06-06T23:54:37Z
dc.date.available2022-10-31T19:16:08Z
dc.date.available2023-06-06T23:54:37Z
dc.date.created2022-10-31T19:16:08Z
dc.date.issued2022
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/82581
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6651610
dc.description.abstractEl cultivo de papa es de gran importancia a nivel mundial ya que contribuye a la seguridad alimentaria siendo el cuarto cultivo mayormente consumido en el mundo, en Colombia presenta grandes áreas sembradas principalmente en los departamentos de Cundinamarca, Boyacá y Nariño, este último se caracteriza por ser producciones de pequeños productores en minifundios con baja tecnológica y uso de cultivares locales y nativos en las siembras; por efectos del cambio climático cada vez se presenta mayor incidencia de eventos climáticos extremos entre esos las sequias intensas, se destaca que los pequeños productores tendrán mayor efectos negativos por su bajas capacidades técnicas. Objetivo. Caracterizar las repuesta fisiológica de los cultivares locales de Solanum phureja y sus estrategias de adaptación. Resultados. Cómo efecto del déficit hídrico se evidenció una reducción en rendimiento desde el 20 % a 75 % dependiendo de la severidad del estrés, se identificó Mambera como un cultivar con buena respuesta a efectos del estrés hídrico manteniendo rendimiento aceptables, de igual manera ratona morada con mayor uso eficiente del agua, Criolla Colombia como más susceptible, pero con alta concentraciones de clorofila bajo estrés y altas tasas de recuperación bajo rehidratación, a su vez se identificó como se correlacionan el potencial hídrico positivamente con intercambio gases y acumulación de materia seca pero inversamente con la concentración de clorofila, de igual manera se evidencia como la fase de senescencia y los contenidos de clorofila claves para seleccionar genotipos con tolerancia al estrés . Conclusiones. La papa presenta una estrategia integra para resistir el estrés la cual es aplicada a corto, mediano y largo plazo, lo primero afectado es el potencial hídrico de la planta causando reducciones inmediatas en las tasas de intercambio de gases, a mediano plazo se ve el aumento de la clorofila y reducción del área foliar, y finalizando con la afecciones en el rendimiento; se presentaron comportamientos diferenciales entre cultivares, la intensidad y severidad del estrés y la etapa fenológica donde ocurre, lo cual ayudo a comprender mejor el fenómeno fisiológico y se postula de gran interés para realizar trabajos más profundos sobre el tema en miras a establecer estrategias de manejo agronómico y mejoramiento genético. (Texto tomado de la fuente)
dc.description.abstractThe potato crop is of great importance worldwide as it contributes to food security and is the fourth most consumed crop in the world. In Colombia, large areas are planted mainly in the departments of Cundinamarca, Boyacá and Nariño, the latter being characterized by smallholder production on small farms with low technology and the use of local and native cultivars in planting; because of climate change, there is an increasing incidence of extreme weather events, including intense droughts, and small producers will have greater negative effects due to their low technical capacities. Objective. To characterize the physiological response of local cultivars of Solanum phureja and their adaptation strategies. Results. As an effect of water deficit, a reduction in yield from 20% to 75% was evidenced depending on the severity of stress, Mambera was identified as a cultivar with good response to the effects of water stress while maintaining acceptable yields, as well as purple mouse with more efficient use of water, Criolla Colombia as more susceptible, but with high concentrations of chlorophyll and high concentrations of chlorophyll, but with high chlorophyll concentrations under stress and high recovery rates under rehydration. It was also identified how water potential correlates positively with gas exchange and dry matter accumulation but inversely with chlorophyll concentration, and how senescence stage and chlorophyll contents are key to select genotypes with stress tolerance. Conclusions. Potato presents an integrated strategy to resist stress which is applied in the short, medium and long term, the first affected is the water potential of the plant causing immediate reductions in gas exchange rates, in the medium term there is an increase in chlorophyll and reduction of leaf area, and ending with affectations in yield; Differential behaviors among cultivars, the intensity and severity of stress and the phenological stage where it occurs were presented, which helped to better understand the physiological phenomenon and is of great interest for further work on the subject in order to establish strategies for agronomic management and genetic improvement.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherPalmira - Ciencias Agropecuarias - Maestría en Ciencias Agrarias
dc.publisherFacultad de Ciencias Agropecuarias
dc.publisherUniversidad Nacional de Colombia - Sede Palmira
dc.relationAtkin, O., Mackerel, D. (2009). The crucial role of plant mitochondria in orchestrating drought tolerance. Annnals of Botany 103(4): 581-597. doi:10.1093/aob/mcn094
dc.relationAhmadi, S. H., Andersen, M., Plauborg, F., Poulsen, R., Jensen, C., Sepaskhah, A., Hansen, S. (2010). Effects of irrigation strategies and soils on field-grown potatoes: Gas exchange and xylem [ABA], Agricultural Water Management.97(10),1486–1494. https://doi.org/10.1016/j.agwat.2010.05.002"
dc.relationAlarcón, J., Zafra, C., y Echeverry, L. 2019. Cambio climático y recursos hídricos en Colombia. DOI: 10.31910/rudca.v22.n2.2019.1368
dc.relationAlvarado, L.F. 1986. Crecimiento del cultivo de la papa. pp. 161- 169. En: Memorias del curso “Control integrado de plagas en papa”. Centro Internacional de la Papa (CIP) e Instituto Colombiano Agropecuario (ICA).
dc.relationÁlvarez, S., Navarro, A., Nicolás, E., Sánchez-Blanco, J. (2011) Transpiration, photosynthetic responses, tissue water relations and dry mass partitioning in Callistemon plants during drought conditions. Sci Hort 129(2): 306–312. https://doi.org/10.1016/j.scienta.2011.03.031
dc.relationAndreev, I. (2001) Functions of the vacuole in higher plants cells. Russian J Plant Physiology 48 (5): 672-680. DOI:10.1023/A:1016776523371
dc.relationAnirban, G., Debashree, S., Girish, K. R., Attipalli, R. R. (2010). An integrated diagnostic approach to understand drought tolerance in mulberry (Morus indica L.). Flora - Morphology Distribution Functional Ecology of Plants 205(2):144-151. DOI:10.1016/j.flora.2009.01.004.
dc.relationAriza, W.A. 2017.Respuestas fisiológicas, bioquímicas y rendimiento en tres variedades de papa criolla (Solanum tuberosum grupo Phureja) en déficit hídrico, [Tesis de maestría Universidad nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/62084
dc.relationBanco Mundial. 2010. Informe Anual 2010 del Banco Mundial: Reseña del Ejercicio. 56795. DOI: 10.1596/978-0-8213-8530-2.
dc.relationBaracaldo, A,. Carvajal, R,. Romero, A., Prieto, A,. García, F., Fischer, G,. Miranda, D. (2014).El anegamiento afecta el crecimiento y producción de biomasa en tomate chonto (Solanum lycopersicum L.), cultivado bajo sombrío, Revista Colombiana de Ciencias Hortícolas, 8(1), 92–102. doi: 10.17584/rcch.2014v8i1.2803.
dc.relationBarbosa, E. (2011) Evaluación del desarrollo del cultivo de papa bajo escenarios de variabilidad climática interanual y cambio climático, en el sur oeste de la Sabana de Bogotá. [Tesis de maestría, universidad nacional de Colombia]. Archivo Digital. https://repository.agrosavia.co/bitstream/handle/20.500.12324/22219/65055_65013.pdf?sequence=1&isAllowed=y
dc.relationBartels, D., Sunkar, R. (2005). Drought and salt tolerance in plants. Critical Reviews in Plant Sciences, 24 (1), 23–58. https://doi.org/10.1080/07352680590910410
dc.relationBasu, P. S., Sharma, A., Sukumaran, N. (1999). Tuber sink modifies photosynthetic response in potato under water stress, Environmental and Experimental Botany, 42(1),25–39. doi: 10.1016/S0098-8472(99)00017-9.
dc.relationBauwe, H., Hagemann, M., Fernie, A.R. (2010). Photorespiration: players, partners and origin. Trends in Plant Sci, 15(6), 330-336. https://doi.org/10.1016/j.tplants.2010.03.006
dc.relationBecerra, J.J., y Montero, C. 2017. Papa: Características de la Producción Nacional y de la Comercialización en Lima Metropolitana. MINISTERIO DE AGRICULTURA Y RIEGO. DIRECCIÓN GENERAL DE POLÍTICAS AGRARIAS Dirección de Estudios Económicos e Información Agrario, Mayo 2017 file:///D:/Descargas/boletin-prod-nacional-papa.pdf
dc.relationBello, M.L., y Pinzón B.N. (1997). Evaluación del efecto del tamaño del tubérculo semilla sobre el rendimiento de la papa criolla, variedad ‘Yema de huevo’ Solanum phureja Juz et Buk. [Tesis de pregrado., Universidad Nacional de Colombia]. Archivo digital .https://repository.unad.edu.co/bitstream/handle/10596/21118/1144180430.pdf;jsessionid=24153FA573F3B7A543D1B7C0A9112F5A.jvm1?sequence=1
dc.relationBenam, M. B. K., and Hassanpanah, D. (2007). Evaluation of different potato cultivars at different irrigation periods and different drought stages. acta horticulturae, 729(28),183–188. https://doi.org/10.17660/ActaHortic.2007.729.28
dc.relationBenavides, M.A.(2002).Ecofisiología y química del estrés en plantas. Departamento de agricultura/UAAAN.https://www.researchgate.net/profile/Adalberto_Benavides-Mendoza/publication/305346608_Ecofisiologia_y_bioquimica_del_estres _en_plantas/links/57893ca808ae59aa6675e204/Ecofisiologia-y-bioquimica-del-estres-en-plantas.pdf
dc.relationBenjamin, J. G., Nielsen, D. C. (2006). Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crops Research, 97 (2-3), 248–253. DOI:10.1016/j.fcr.2005.10.005
dc.relationBerger, B., Parent, B., and Tester, M. (2010). High-throughput shoot imaging to study drought responses. Journal of Experimental Botany, 61(13),3519–3528. doi: 10.1093/jxb/erq201.
dc.relationBernstein Lenny; Bosch Peter; Canziani Osvaldo; Chen Zhenlin; Christ Renate, Ogunlade Davidson; William Hare, Saleemul Huq; David Karoly; Vladimir Kattsov; Zbigniew Kundzewicz; Jian Liu; Ulrike Lohmann; Martin Manning; Taroh Matsuno, B. M. B. M. and Yohe, G. (2007) Climate Change 2007. Core Writi. Edited by A., Pachauri, R.K and Reisingereficiva.
dc.relationBita, C., y Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress tolerant crops, Frontiers in plant science. 4, 273. https://doi.org/10.3389/fpls.2013.00273
dc.relationBlum, A. (2009). Effective use of water (EUW) and not water-use efficiency (WUE) is thetarget of crop yield improvement under drought stress. Field Crops Research ,112(2-3): 119-123. https://doi.org/10.1016/j.fcr.2009.03.009
dc.relationBorrell, A.K., Hammer, G.L., Douglas, C.L., (2000). Does maintaining green leaf area in sorghum improve yield under drought. Leaf growth and senescence. Crop Science.40, 1037–1048. DOI:10.2135/cropsci2000.4041026x
dc.relationBoutra, T., Akhkha, A., Al-Shoaibi, A., Alhejeli, A.M. (2010). Effect of water stress on growth and water use efficiency (WUE) of some wheat cultivars (Triticum durum) grown in Saudi Arabia. Journal of Taibah University for Science 3,39-48. https://doi.org/10.1016/s1658-3655(12)60019-3
dc.relationBrown, C.R. (1993). Origin and history of potato. American Journal of Potato Research,70 (5):363-375
dc.relationBudak, H., Kantar, M., Kurtoglu, K. Y. (2013). Drought tolerance in modern and wild wheat. The Scientific World Journal, 2013 (10), 548246. DOI:10.1155/2013/548246
dc.relationBüssis, D., Kauder, F., Heineke, D., (1998). Acclimation of potato plants to polyethyleneglycol-induced water deficit. I. Photosynthesis and metabolism. Journal of experimental botany. 49,(325) 1349–1360. https://doi.org/10.1093/jxb/49.325.1349
dc.relationCabello, R., Monneveux, P., De Mendiburu, F., and Bonierbale, M. (2013). Comparison of yield based drought tolerance indices in improved varieties, genetic stocks and landraces of potato (Solanum tuberosum L.). Euphytica, 193(2), 147-156. https://doi.org/10.1007/s10681-013-0887-1
dc.relationCanny, M. (2001). Contributions to the debate on water transport. Am J Bot 88(1), 43-46. https://pubmed.ncbi.nlm.nih.gov/11159124/
dc.relationCasierra- Posada F. (2007). Fotoinhibición: Respuesta fisiológica de los vegetales al estrés por exceso de luz. Revista Colombiana de Ciencias Hortícolas, 1(1), 114-123. DOI: 10.17584/rcch.2007v1i1.1150
dc.relationChartzoulakis, K., and Psarras, G. (2005). Global change effects on crop photosynthesis and production in Mediterranean: The case of Crete, Greece. Agriculture, Ecosystems and Environment, 106(2),147–157. DOI:10.1016/j.agee.2004.10.004
dc.relationChaves, M. M., Flexas, J., and Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of botany, 103(4), 551–560. https://doi.org/10.1093/aob/mcn125
dc.relationChaves,M.M.,Pereira,J.S.,Maroco,J.,Rodrigues,M.L.,Ricardo,C.P.P.,Osorio,M.L.,Carvalho,I., Faria,T., y Pinheiro, C. (2002). How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot. 89(7), 907-916. Doi: 10.1093 / aob / mcf105.
dc.relationChenu, K., Cooper, M., Hammer, G. L., Mathews, K. L., Dreccer, M. F., and Chapman, S. C. (2011). Environment characterization as an aid to wheat improvement: interpreting genotype environment interactions by modelling water-deficit patterns in North-Eastern Australia. Journal of Experimental Botany, 62(6), 1743-1755. DOI: 10.1093/jxb/erq459
dc.relationColeman, W.K. (2008). Evaluation of wild Solanum species for drought resistance Solanum gandarillasii. Environmental and Experimental Botany, 62(3): 221-230. https://doi.org/10.1016/j.envexpbot.2007.08.007
dc.relationCooper, P., Rao, K.P.C., Singh, P., Dimes, J., Traore, P.S., Rao, K., Dixit, P., and Twomlow, S. (2009). Farming with current and future climate risk: Advancing a ‘Hypothesis of Hope’ for rainfed agriculture in the semi-arid tropics. Journal of SAT Agricultural Research, 7, 1–19. https://www.researchgate.net/publication/270753722_Farming_with_current_and_future_climate_risk_Advancing_a_%27Hypothesis_of_Hope%27_for_rainfed_agriculture_in_the_semi-arid_tropics
dc.relationCorchuelo G. 2005. Ecofisiología de la papa. Trabajo presentado en: I taller nacional sobre suelos, fisiología y nutrición vegetal en el cultivo de la papa. Bogotá, Colombia.4-27. https://repository.agrosavia.co/bitstream/handle/20.500.12324/17441/41887_44470.pdf?sequence=1&isAllowed=y
dc.relationCordoba, M.E. (2019). Comportamiento fisiologico y rendimiento de semilla básica y registrada de papa (Solanum tuberosum L. spp. andigena y Solanum phureja), [Tesis de Maestría Universidad de Nariño]
dc.relationCruz, R.V., Harasawa,H., Lal, M., Wu, S., Anokhin, Y., Punsalmaa, B., Honda, Y., Jafari, M., Li C., and Huu Ninh,N., 2007: Asia. En M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E Hanson,. Eds. Climate Change 2007: Impacts, Adaptation and Vulnerability.456-506. Cambridge University Press, Cambridge, UK.
dc.relationDaccache, A., Weatherheada E.K., Stalhamb, M.A., and Knoxa, J.W .(2011). Impacts of climate change on irrigated potato production in a humid climate. Agricultural and Forest Meteorology, 151(12), 1641–1653. doi: 10.1016/j.agrformet.2011.06.018.
dc.relationDalla-Costa, L., Delle-Vedove G., Gianquinto, G., Giovanardi, R., and Peressottiet, A. (1997). Yield, water use efficiency and nitrogen uptake in potato: Influence of drought stress. Potato Research, 40(1), 19–34. https://doi.org/10.1007/BF02407559.
dc.relationDarwish, T.M., Atallah, T.W., Hajhasan, S., Haidar, A. (2006). Nitrogen and water use efficiency of fertirrigated processing potato. Agricultural Water Management, 85, 95-104. doi:10.1016/j.agwat.2006.03.012
dc.relationDe Paula, F.L.M., Streck, N.A., Helwein, A.B., Bisognin, D.A., Paula, A.L., Dellai, J., (2005).Thermal time of some developmental phases in potato (Solanum tuberosum L.). Ciencia Rural,35, 1034–1042. https://doi.org/10.1590/S0103-84782005000500008.
dc.relationDeblonde, P. M. K., and Ledent, J. F. (2001). Effects of moderate drought conditions on green leaf number, stem height, leaf length and tuber yield of potato cultivars. European Journal of Agronomy, 14(1), 31-41. DOI:10.1016/S1161-0301(00)00081-2
dc.relationDeblonde, P. M. K., Haverkort, A. J., and Ledent, J. F. (1999). Responses of early and late potato cultivars to moderate drought conditions: agronomic parameters and carbon isotope discrimination. European Journal of Agronomy, 11(2), 91-105. https://doi.org/10.1016/S1161-0301(99)00019-2
dc.relationDeeba, F., Pandey, A.K., Ranjan, S., Mishra, A., Singh, R., Sharma, Y.K., Shirke, P.A., Pandey, V. (2012). Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress. Plant Physiol Bioch 53,6-18. DOI: 10.1016/j.plaphy.2012.01.002
dc.relationDemirel, U., Morris, W. L., Ducreux, L.J. M., Yavuz,C., Asim, A.,Tindas, I., Campbell, R., Morris, J.A., Verrall, S.R., Hedley, P.E., Gokce, Z. N. O., Caliskan, S., Aksoy, E., Caliskan, M.E., Taylor, M.A., Hancock. R.D. (2020). Physiological, Biochemical, and Transcriptional Responses to Single and Combined Abiotic Stress in Stress-Tolerant and Stress-Sensitive Potato Genotypes. Frontiers in Plant Science.11.169 DOI=10.3389/fpls.2020.00169
dc.relationDevaux, A., Kromann, P., y Ortiz, O. (2014). Papas para la seguridad alimentaria mundial sostenible. Potato Res. 57 (3), 185-199. Doi: 10.1007 / s11540-014-9265-1.
dc.relationDevaux, A., Ordinola, M., Hibon, H., Flores, R. (2010). El sector papa en la región andina: diagnóstico y elementos para una visión estratégica (Bolivia, Ecuador y Perú). Centro Internacional de la Papa 2010. https://www.asocam.org/sites/default/files/publicaciones/files/35b9e3afaf9b69b3929e8049a9b5e9ca.pdfdieme
dc.relationDiaz, P.A. 2016.Evaluación de la tolerancia al estrés hídrico en genotipos de papa criolla (Solanum phureja Juz et Buk). [Tesis de Maestría Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/55602
dc.relationDíaz-López, L, Gimeno, V., Simón, I., Martínez, V., Rodríguez-Ortega, V.,and García-Sánchez, F. (2012) Jatropha curcas seedlings show a water conservation strategy under drought conditions based on decreasing leaf growth and stomatal conductance. Agricultural Water Management, 105,48-56. DOI: 10.1016/j.agwat.2012.01.001
dc.relationDiaz-Valencia, P.; Melgarejo, L.M.; Arcila, I.; Mosquera-Vásquez, T.(2021). Physiological, Biochemical and Yield-Component Responses of Solanum tuberosum L. Group Phureja Genotypes to a Water Deficit. Plants, 10, 638. https://doi.org/10.3390/plants10040638
dc.relationDiémé, A., Nahr, M.A., Codjo, E., and Ourèye, M. (2013). Residual effects of sucrose and hormonal treatments of the tuberization medium on in vitro germination of potato (Solanum tuberosum L.) microtubers. American Journal of Plant Sciences,4 (9),1872-1878. 10.4236/ajps.2013.49230FAO
dc.relationDoorenbos, J., and Kassan, A. (1986). Yield response to water. Irrigation and drainage. FAO.https://www.researchgate.net/publication/284800975_Yield_response_to_water_Irrigation_and_Drainage
dc.relationDrikvand, R., Hossinpur, T., Ismaili, A., and Salahvarzi, E. (2012). Assessment of drought tolerance indices for screening of rain fed wheat genotypes. Journal of Food, Agriculture and Environment, 10(1)768-772. https://www.researchgate.net/publication/221675737_Assessment_of_drought_tolerance_indices_for_screening_of_rainfed_wheat_genotypes
dc.relationDronin, N., Telnova, N., Kirilenko, A., Milanova, E., and Kalutskova, N. (2015). Observed and projected climate change and its impact on ecosystems’ productivity in forest-steppe and steppe zones of russia and neighboring (FSU) countries. Romanian Journal of Geography, (2), 91–100. http://www.rjgeo.ro/atasuri/revue%20roumaine_59_2/Dronin%20et%20al..pdf
dc.relationDurrant, J.R., Giorgi, L.B., Barber, J., Klug, D.R., Porter, G. (1990). Characterisation oftriplet states in isolated photosystem II reaction centres: oxygen quenching asa mechanism for photodamage. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1017, (2), 167–175. https://doi.org/10.1016/0005-2728(90)90148-W
dc.relationEasterling, W., Aggarwal, P., Batima, P., Brander, K.,Lin, E., Howden, S., Kirilenko, A., Morton, J., Soussana, J.F., & Schmidhuber, J and Tubiello, F. (2007). Food, fibre and forest products, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, (ed.). Climate Change 2007: Impacts, Adaptation and Vulnerability (pp. 273–313). cambrige. https://archive.ipcc.ch/pdf/assessment-report/ar4/wg2/drafts/sod/Ch05.pdf
dc.relationEckardt, N.(2009).A new chlorophyll degradation pathway. The plant cells, 21(3),700. DOI:10.1105/tpc.109.210313
dc.relationEiasu, B. K., Soundy, P., and Hammes, P. S. (2007). Response of potato (Solarium tuberosum) tuber yield components to gel-polymer soil amendments and irrigation regimes. New Zealand Journal of Crop and Horticultural Science, 35(1),25–31. DOI:10.1080/01140670709510164
dc.relationEstrada, N. (2000). Los Recursos Genéticos en el Mejoramiento de la Papa. 61.CIP – IPGRI – PRACIPA – IBTA – PROINPA - COSUDE – CID. Bolivia. 372 p.
dc.relationFang, Y. J., Xiong, L. Z. (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular & Molecular Life Sciences Cmls, 72(4), 673–689. doi: 10.1007/s00018-014-1767-0.
dc.relationFanizza, G., Ricciardi, L., Bagnulo, C. (1991). Leaf greenness measurements to evaluatewater stressed genotypes in Vitis vinifera. Euphytica 55, 27–31. https://doi.org/10.1007/BF00022556
dc.relationFasan, T., and Haverkort, A. J. (1991). The influence of cyst nematodes and drought on potato growth. 1. Effects on plant growth under semi-controlled conditions. Netherlands Journal of Plant Pathology, 97(3), 151-161. doi: 10.1007/ BF01995964.
dc.relationFederación colombiana de cultivadores de papa (Fedepapa), (2017) .Desempeño económico del subsector (papa). pp. 1–46.
dc.relationFeng, B., Yu, H., Hu, Y., Gao, X., Gao, J.,  Gao, D., and Zhang, S. (2009). The physiological characteristics of the low canopy temperature wheat (Triticum aestivum L.) genotypes under simulated drought condition. Acta Physiologiae Plantarum, 31(6),1229–1235. DOI:10.1007/s11738-009-0358-4
dc.relationFernandez, G. C. (1992). Effective selection criteria for assessing plant stress tolerance. In: Proceedings of the international symposium on adaptation of vegetables and other food crops in temperature and water stress, KUO CG (Ed.) Asian Vegetable Research and Development Center, Shanhua, TW, 257-270.
dc.relationFernández, R.J. (2010). Control versus realismo en estudios ecofisiológicos: opciones de diseño y procedimientos en experimentos de sequía. En: , M.E. Fernández and J.E. Gyenge. (Eds). Técnicas de Medición en Ecofisiología Vegetal, conceptos eficienciaosos.13–24 INTA.
dc.relationFischer, G., Tubiello, F. N., Velthuizen H., and Wiberg D. A. (2007). Climate changeimpacts on irrigation water requirements: Effects of mitigation, 1990–2080. Technological Forecasting and Social Change, 74 (7), 1083–1107. https://doi.org/10.1016/j.techfore.2006.05.021
dc.relationFischer, R. A., and Maurer, R. (1978). Drought resistance in spring wheat cultivars. I. Grain yield responses. Crop and Pasture Science, 29(5), 897-912. https://doi.org/10.1071/AR9780897
dc.relationFleisher, D.H., Timlin, D.J., Reddy, V.R.(2008). Interactive effects of carbon dioxide and water stress on potato canopy growth and development. Agronomy Journal. 100,(3) 711–719 DOI:10.2134/agronj2007.0188
dc.relationFlexas, J,. Ribas-Carbo, M., Diaz-Espejo, A., Galmes, J., and Medrano, H. (2008). Mesophyll conductance to CO2: Current knowledge and future prospects. Plant, Cell and Environment. 31(5),602–621.doi: 10.1111/j.1365-3040.2007.01757.x.
dc.relationFlexas, J., and Medrano, H .(2002). Drought-inhibition of Photosynthesis in C3 Plants: Stomatal and Non-stomatal Limitations Revisited. Ann Bot 89 (2): 183-189. doi: 10.1093/aob/mcf027.
dc.relationFlexas, J., Bota, J., Loreto, F., Cornic, G., Sharkey, T.D .(2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology, 6 (3), 269–279. doi: 10.1055/s-2004-820867.
dc.relationGabriel, J., Porco, P., Angulo, A., Magne, J., La Torre, J., y Mamani, P. (2011). Resistencia genética a estrés hídrico en variedades de papa (Solanum tuberosum L.) bajo invernadero. Revista Latinoamericana de la Papa, 16(2),173-208. https://dialnet.unirioja.es/servlet/articulo?codigo=5512051
dc.relationGago, J., Douthe, C., Florez-Sarasa, I.,Escalona,J.M.,Galmes,J.,Fernie, A.R., Flexas, J., y Medrano,H. (2014). Opportunities for improving leaf water use efficiency under climate change conditions Plant Science. 226, 108-119. Doi: 10.1016 / j.plantsci.2014.04.007.
dc.relationGarcía-Valenzuela, X., García-Moya, E., Rascón-Cruz, Q., Herrera-Estrella, L., Aguado-Santacruz, G.A.(2005). Chlorophyll accumulation is enhanced by osmotic stress in graminaceous chlorophyllic cells. J. Plant Physiol. 162,(6) 650–661. DOI: 10.1016/j.jplph.2004.09.015
dc.relationGardner, F.P., R.B. Pearce and R.L. Mitchell. 1985. Physiology of crop plants. Iowa State University Press, USA. 325 p.
dc.relationGerm, M., Kreft, I., Stibilj, V., and Urbanc-Bericic, O. (2007). Combined effects of selenium and drought on photosynthesis and mitochondrial respiration in potato. Plant Physiology and Biochemistry, 45 (2), 162-167. DOI: 10.1016/j.plaphy.2007.01.009
dc.relationGhobadi, M., Taherabadi, S., Ghobadi, M.E., Mohammadi, G.R., and Jalali-Honarmand, S. .(2013). Antioxidant capacity, photosynthetic characteristics and water relations of sunflower (Helianthus annuus L.) cultivars in response to drought stress. Industrial Crops and Products 50, 29-38. https://doi.org/10.1016/j.indcrop.2013.07.009
dc.relationGómez, M. I. (2012). Absorción, extracción y manejo nutricional del cultivo. Revista Papa 26,20-25.
dc.relationGopal, J., and Iwama, K. (2007). In vitro screening of potato against water-stress mediated through sorbitol and polyethylene glycol. Plant Cell Reports, 26(5), 693-700. doi: 10.1007/s00299-006-0275-6.
dc.relationGraca, JP., Rodrigues. F.A., Bouca, J.R., Neves,M.C., Hoffmann-Campo C.B., y Zingaretti, S.M. (2010). Physiological parameters in sugarcane cultivars submitted to water deficit. Brazilian Journal of Plant Physiology. 22 (3) 189-197. Doi: 10.1590 / S1677-04202010000300006.
dc.relationGuo, P., Baum, M., Vaeshney,R., Graner,A.,Grando,S., Ceccarelli, S. (2008). QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought. Euphytica, 163, 203–214. https://doi.org/10.1007/s10681-007-9629-6
dc.relationHabibi, G. (2011). Influence of drought on yield and yield components in white bean. International Science Index, Agricultural and Biosystems Engineering, 55(7), 244-253. (DOI): doi.org/10.5281/zenodo.1079518
dc.relationHameed, M., Batool, S., Naz, N., Nawaz, T., Ashraf, M. (2012). Leaf structural modifications for drought tolerance in some differentially adapted ecotypes of blue panic (Panicum antidotale retz.). Acta Physiologiae Plantarum, 34, 1479–1491. https://doi.org/10.1007/s11738-012-0946-6
dc.relationHatfield, J. L., & Prueger, J. H. (2015). Temperature Extremes: Effect on Plant Growth and Development. Weather and Climate Extremes, 10, 4-10. https://doi.org/10.1016/j.wace.2015.08.001
dc.relationHavaux, M., and Niyogi, K. K. (1999). The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proceedings of the National Academy of Sciences, 96(15), 8762–8767. https://doi.org/10.1073/pnas.96.15.8762.
dc.relationHaverkort, A., Waart, M.D., and Bodlaender, K. (1990). The effect of early drought stress on numbers of tubers and stolons of potato in controlled and field conditions. Potato Research, 33,89–96. DOI:10.1007/BF02358133
dc.relationHaverkort, A.J. (1990) Ecology of Potato Cropping Systems in Relation to Latitude and Altitude. Agriculture Systems, 32, 251-272.http://dx.doi.org/10.1016/0308-521X(90)90004-A
dc.relationHe, M. and Dijkstra, F. A. (2014). Drought effect on plant nitrogen and phosphorus: a meta-analysis. New Phytologist, 204(4), 924–931. DOI: 10.1111/nph.12952
dc.relationHeinemann, A. B., Dingkuhn, M., Luquet, D., Combres, J. C., and Chapman, S. (2008). Characterization of drought stress environments for upland rice and maize in central Brazil. Euphytica, 162(3), 395-410. DOI:10.1007/s10681-007-9579-z
dc.relationHerms, D.A., Mattson, W.J.(1992). The dilema of plants-to grow or defend. The Quarterly Review of Biology. 67, (3)283–335. DOI:10.1086/417659
dc.relationHijmans, R. J. (2003). The effect of climate change on global potato production. American Journal of Potato Research, 80(4), 271-279. DOI:10.1007/BF02855363
dc.relationHitz, S. y J. Smith. (2004). Estimando los impactos globales del cambio climático. Global. Reinar. Chang. 14 (3), 201-218. Doi: 10.1016 / j.gloenvcha.2004.04.010.
dc.relationHolden, N., Brereton, A.J., Fealy, R., and Sweeney, J. (2003). Possible change in Irish climate and its impact on barley and potato yields. Agricultural and Forest Meteorology, 116(3–4),181–196. DOI:10.1016/S0168-1923(03)00002-9
dc.relationHörtensteiner, S., Feller, U. (2002). Nitrogen metabolism and remobilization during senescence. Journal of Experimental Botany. 53,(70) 927–937. https://doi.org/10.1093/jexbot/53.370.927.
dc.relationHu, L., Wang,Z., y Huang, B. (2010). Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis from drought stress in a C perennial grass species. Physiol. Plant. 139 (1), 93-106. Doi: 10.1111 / j.1399-3054.2010.01350.x.
dc.relationHu, Y.C., Shao, H.B., Chu, L.Y., Gang, W. (2006). Relationship between water use efficiency (WUE) and production of different wheat genotypes at soil water deficit. Colloids Surf B Biointerfaces 53(2), 271-277. DOI: 10.1016/j.colsurfb.2006.10.002
dc.relationHuamán, Z., and Spooner, D. 2002. Reclassification of landrace populations of cultivated potatoes (Solanum sect. Petota). American Journal of Botany 89(6): 947 – 965.
dc.relationHuang, X. H., Liu, Y., Li, J., Xiong, X., Chen, Y., Yin, X., and Feng, D. (2013). The response of mulberry trees after seedling hardening to summer drought in the hydro-fluctuation belt of three gorges reservoir areas. Environmental Science and Pollution Research, 20(10) 7103–7111. doi: 10.1007/s11356-012-1395-x.
dc.relationHunt, R. 1978. Plant growth analysis. Edward Arnold Publishers, London. 67 p
dc.relationIerna, A., Mauromicale, G. (2006). Physiological and growth response to moderateficer deficit of off-season potatoes in a Mediterranean environment. Agricultural Water Management ,82 (1-2), 193-209. DOI:10.1016/j.agwat.2005.05.005
dc.relationIntergovernmental Panel on Climate Change. (2007). Climate Change 2007: Synthesis Report. https://www.ipcc.ch/site/assets/uploads/2018/02/ar4_syr_full_report.pdf
dc.relationIPCC (2007). Climate Change: the AR4 Synthesis Report Edited by Rajendra K. Pachauri IPCC, Geneva, Switzerland. https://www. ipcc.ch/pdf/...report/ar4/syr/ar4_syr.pdf (Último acceso diciembre 2014).
dc.relationIwama, K. (2008). Physiology of the potato: New insights into root system and repercussions for crop management. Potato Research, 51(3–4),333–353. doi: 10.1007/s11540-008-9120-3. https://doi.org/10.1007/s11540-008-9120-3
dc.relationJaleel, C.A., Manicannan, P., Wahid, A., Farooq, M., Somasundaram, R.,and Panneerselvam, R. (2009). Drought stress in plants: a review on morpho-logical characteristics and pigments composition. International Journal of Agriculture and Biology. 11,(1)100–105. https://www.researchgate.net/publication/253008137_Drought_Stress_in_Plants_A_Review_on_Morphological_Characteristics_and_Pigments_Composition
dc.relationJefferies R.A. (1995). Physiology of crop response to drought. In: A.J Haverkort.,D.K.L Mackerron (eds) Potato Ecology And modelling of crops under conditions limiting growth. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0051-9_4
dc.relationJefferies, R. A., and MacKerron, D. K. L. (1987). Aspects of the physiological basis of cultivar differences in yield of potato under droughted and irrigated conditions. Potato Research, 30(2), 201-217. https://doi.org/10.1007/BF02357663
dc.relationJensen, C.R., Battilani, A., Plauborg, F., Psarras, Chartzoulakis, G., Janowiak, K.F., Sti-kic, R., Jovanovic, Z., LI, G., Qi, X., Liu, F., Jacobsen, S.E., Andersen, M.N.(2010).Deficit irrigation based on drought tolerance and root signalling in potatoes and tomatoes. Agricultural Water Management. 98,(3) 403–413. https://doi.org/10.1016/j.agwat.2010.10.018
dc.relationJerez, J. y C. Simpefendorfer. 2000. Efecto del riego en el cultivo de papa. Especial de riego y drenaje. INIA (34)26-28.
dc.relationJones, H. G., and Corlett, J. E. (1992). Current topics in drought physiology.The Journal of Agricultural Science, 119(3), 291–296. doi: 10.1017/S0021859600012144.
dc.relationJones, R., Ougham, H., Thomas, H., Waaland, S. (2012). The molecular life of plants. John Wiley & Sons, United Kingdom.
dc.relationKarafyllidis, D., Stavropoulos, N., and Georgakis, D. (1996). The effect of water stress on the yielding capacity of potato crops and subsequent performance of seed tubers. Potato Research 39,153-163. DOI:10.1007/BF02358215
dc.relationKhokhar, M. I., Teixeira da Silva, J. A., and Spiertz, H. (2012). Evaluation of barley genotypes for yielding ability and drought tolerance under irrigated and water-stressed conditions. American-Eurasian J. Agric. and Environ. Sci., 12, 287-292.
dc.relationKrieger-Liszkay, A. (2005). Singlet oxygen production in photosynthesis. J. Exp. Bot.56, (411),337–346. DOI: 10.1093/jxb/erh237
dc.relationKulkarni, M., and Phalke, S.(2009).Evaluating variability of root size system and its constitutive traits in hot pepper (Capsicum annum L.) under water stress. Scientia Horticulturae, 120 (2), 159-166. DOI:10.1016/j.scienta.2008.10.007
dc.relationLacavé, G., Soto-Maldonado, C., Walter, Zuñiga-Hansen, M., and Perez-Torres,E. (2022). Effect of Drought Stress on Bioactives and Starch in Chilean Potato Landraces. Potato Res. https://doi.org/10.1007/s11540-022-09547-y
dc.relationLahlou, O., Ouattar, S., and Ledent, J. F. (2003). The effect of drought and cultivar on growth parameters, yield, and yield components of potato. Agronomie, 23(3), 257-268. DOI:10.1051/agro:2002089
dc.relationLambert, E., Pinto, C., and de Menezes, C. (2006). Potato improvement for tropical conditions: I. Analysis of stability. Crop Breeding and Applied Biotechnology, 6,(2) 185-193. DOI:10.12702/1984-7033.v06n02a03
dc.relationLarcher, W.(2003). Physiological Plant Ecology. 4th ed., Springer Verlag. 513 p. https://link.springer.com/book/9783540435167
dc.relationLawlor, D. W. and Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, cell & environment, 25(2), 275–294. doi: 10.1046/j.0016-8025.2001.00814. x.
dc.relationLeidi, O.,and Pardo, J .(2002) .Tolerancia de los cultivos a estrés salino. Revista de Investigaciones de la Facultad de Ciencias Agrarias,2,(1-11). https://rephip.unr.edu.ar/handle/2133/648
dc.relationLim, C.M., Baek, W., Jung, J., Kim, J.H., y Lee, S.H. (2015). Función de ABA en defensa estomática contra estreses bióticos y de sequía. En t. J. Mol. Sci. 16, 15251-15270. Doi: 10.3390 / ijms160715251.
dc.relationLiu, F., Jensen, C., Shahanzari, A., Andersen, M.,and Jacobsen, S.E.(2005). ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Science,168, (3), 831-836. https://doi.org/10.1016/j.plantsci.2004.10.016
dc.relationLiu, F., Shahnazari, A., Andersen, M.N., Jacobsen, S.E., and Jensen, C.R. (2006). Effects oeficieit irrigation (DI) and partial root drying (PRD) on gas exchange, biomass partitioning, and water use efficiency in potato. Scientia Horticulturae ,109(2), 113-117 .DOI:10.1016/j.scienta.2006.04.004
dc.relationLoon, C. (1981). The effect of water stress on potato growth, development, and yield. American Journal of Potato Research, 58 (1), 51–69. DOI:10.1007/BF02855380
dc.relationLopes, M.S., Reynolds, M.P. (2012). Stay-green in spring wheat can be determinedby spectral reflectance measurements (normalized difference vegetation index)independently from phenology. Journal of Experimental Botany. 63,(10) 389–3798 https://doi.org/10.1093/jxb/ers071
dc.relationLuo, L. J. (2010). Breeding for water-saving and drought resistance rice (WDR) in China. Journal of Experimental Botany, 61(13), 3509–3517. https://doi.org/10.1093/jxb/erq185
dc.relationMacKerron, D. K. L., and Jefferies, R. A. (1986). The influence of early soil moisture stress on tuber numbers in potato. Potato Research, 29(3), 299-312. https://doi.org/10.1007/BF02359959
dc.relationMamani, P. (2000). Effect de la secheresse sur six varietés de ponme de terre dans les andes boliviennes. Tesis M.Sc., Universite Catholique de Louvain. Bélgica. 43 p.
dc.relationMane, S. P., Robinet, C. V., Ulanov, A., Schafleitner, R., Tincopa, L., Gaudin, A., Nomberto, G., Alvarado, C., Solis, C., Avila, L., Blas, R., Ortega, O., Solis, J., Panta, A., Rivera, C., Samolski, I., Carbajulca, D.H., Bonierbale, M., Pati, A., Heath, L.S., Bohnert, H.J., and Grene, R. (2008). Molecular and physiological adaptation to prolonged drought stress in the leaves of two Andean potato genotypes. Functional Plant Biology, 35(8), 669-688. doi:10.1071/FP07293.
dc.relationMartínez, C.A., Moreno, U.(1992). Expresiones fisiológicas de resistencia a la sequía en dos variedades de papa sometidas a estrés hídrico en condiciones de campo. Revista Brasileira de Fisiologia Vegetal, 4(1),33-38. https://www.researchgate.net/publication/239927199_Expresiones_fisiologicas_de_resistencia_a_la_sequia_en_dos_variedades_de_papa_sometidas_a_estres _hídrico_en_condiciones_de_campo
dc.relationMay, L., y Milthorpe, F.(1962). Drought resistance of crop plants. Field crop Abstracts 15, 177-179.
dc.relationMeier, U. (2001). Estadios de las plantas mono y dicotiledóneas. BBCH Monografía. 2ª ed. Centro Federal de Investigaciones Biológicas para Agricultura y Silvicultura, Alemania. 149 p. DOI: 10.5073/20180906-075743
dc.relationMeza, F. J., Silva, D. and Vigil, H. (2008). Climate change impacts on irrigated maize in Mediterranean climates: Evaluation of double cropping as an emerging adaptation alternative. Agricultural Systems, 98(1),21–30. doi: 10.1016/j.agsy.2008.03.005.
dc.relationMhike, X., Okori, P., Magorokosho, C., and Ndlela, T. (2012). Validation of the use of secondary traits and selection indices for drought tolerance in tropical maize (Zea mays L.). African Journal of Plant Science, 6(2), 96-102.
dc.relationMinisterio de Agricultura y Desarrollo Rural (MADR). (2013). A un paso de ser Ley de la República, Proyecto que crea el Fondo para el Fomento de la Papa. https://www.minagricultura.gov.co/noticias/Paginas/A-un-paso-de-ser-Ley-de-la Rep%C3%BAblica, -Proyecto-que-crea-el-Fondo-para-el-Fomento-de-la-Papa.aspx. Consulta agosto, 2014.
dc.relationMonneveux, P., Ramírez, D. A. and Pino, M. (2013). Drought tolerance in potato (S. tuberosum L.) Can we learn from drought tolerance research in cereals. Plant Science, 205–206,76–86. https://doi.org/10.1016/j.plantsci.2013.01.011
dc.relationMoorby, J., Munns, R., y Walcott, J. (1975). Effect of water défic eficieit on photosynthesis and tuber metabolism in potatoes. Australian Journal of Plant Physiology, 2(3),323-333. https://doi.org/10.1071/PP9750323
dc.relationMoradi, R., Koocheki, A., Nassiri-Mahallati, M., Hamed, M. (2013). Adaptation strategies for maize cultivation under climate change in Iran: Irrigation and planting date management. Mitigation and Adaptation Strategies for Global Change, 18(2), 265–284. DOI:10.1007/s11027-012-9410-6
dc.relationMoreno, L.P .(2009). Respuesta de las plantas al estrés por déficit hídrico. Uneficienón Plant responses to water deficit stress, A review. Agronomía Colombiana, 27(2),179–191. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-99652009000200006
dc.relationMorton, J. F. (2007). The impact of climate change on smallholder and subsistence agriculture. National Academy of Sciences, 104(50),19680—19685. https://doi.org/10.1073/pnas.0701855104
dc.relationNilsen E.T.,and Orcutt, D. (1996). Physiology of plants under stress. Abiotic factors. John Wiley and Sons, New York, NY.689p.
dc.relationNoctor, G., Mhamdi, A., Foyer, C .(2014). The Roles of Reactive Oxygen Metabolism in Drought: Not So Cut and Dried. Plant Physiology, 164 (4), 1636-1648 https://doi.org/10.1104/pp.113.233478
dc.relationÑustez L, C. E. (2011). Variedades Colombianas de papa. 2011th edn, Universidad Nacional de Colombi– - Facultad de Agronomía Sede Bogotá.
dc.relationObidiegwu, J. E., Bryan, G.J., Jones, H.G., and Prashar, A. (2015).Coping with drought: stress and adaptive responses in potato and perspectives for improvement. , Frontiers in Plant Science, 6. 1–23. doi: 10.3389/fpls.2015.00542
dc.relationOrganización de las naciones unidas para la alimentación y agricultura (FAO). 2020. faostat http://www.fao.org/faostat/es/#data/QC,consultado el 6 de abril del 2020
dc.relationOrganización de las naciones unidas para la alimentación y agricultura (FAO). 2022. faostat http://www.fao.org/faostat/es/#data/QC,consultado el 6 de abril del 2022
dc.relationOzkan, B. and Akcaoz, H. (2002). Impacts of climate factors on yields for selected crops in southern Turkey. Mitigation and Adaptation Strategies for Global Change, 7(4),367–380. doi: 10.1023/A:1024792318063.
dc.relationPallas, J.E., Michel, B.E., y Harris D.G. (1967). Fotosíntesis, transpiración, temperatura de la hoja y actividad estomática de plantas de algodón bajo diferentes potenciales de agua. Planta Physiol. 42, 76-88. Doi: 10.1104 / pp.42.1.76.
dc.relationParent, B., Hachez,C., Redondo,E., Simonneau,T., Chaumont F.,y Tardieu, F. ( 2014). La sequía y los efectos del ácido abscísico sobre el contenido de aquapo-rin se traducen en cambios en la conductividad hidráulica y la tasa de crecimiento foliar: un enfoque de escala trans. Planta Physiol. 149 (4), 2000-2012. Doi: 10.1104 / pp.108.130682.
dc.relationParry, M.A.J., Andralojc, P.J., Khan, S., Lea, P.J., Keys, A.J. (2002) Rubisco activity: Effects of drought stress. Annals of Botany, 89(7),833-839. DOI: 10.1093/aob/mcf103
dc.relationPereyra-Irujo, G.A., Velazquez, L., Lechner, L., Aguirrezabal, L.A.N. (2008). Genetic variability for leaf growth rate and duration under water deficit in sunflower:analysis of responses at cell, organ, and plant level. Journal of Experimental Botany, 59,(8)2221–2232. doi: 10.1093/jxb/ern087.
dc.relationPino, M. T., Ávila, A., Molina, A., Jeknic, Z., and Chen, T.H.H. (2013). Enhanced in vitro drought tolerance of Solanum tuberosum and Solanum commersonii plants overexpressing the ScCBF1 gene. Ciencia e investigación agraria, 40,(1) 171-184. http://dx.doi.org/10.4067/S0718-16202013000100015.
dc.relationPino, M.T. 2016. Estrés hídrico y térmico en papas, avances y protocolos. Santiago,Chile. Instituto de Investigaciones Agropecuarias. Boletín INIA Nº 331. 148p.
dc.relationPolania, J., Rivera, M., Grajales, M., Cajiao, V., Beebe, C.H., y Rao, I.M. (2010). Photosynthate remobilization to grain in common bean contributes to improved resistance to terminal drought stress. Póster en la semana del compartir el conocimiento, Tesis deficienia. https://cgspace.cgiar.org/handle/10568/58176
dc.relationPorter, G.A., Opena, G.B., Bradbury, W.B., McBurnie, J.C., y Sisson,J.A. (1999). Manejo del suelo y efectos suplementarios del riego en la papa: I. Propiedades del suelo, rendimiento del tubérculo y calidad. Agron. J. 91 (3), 416-425. Doi: 10.2134 / agronj1999.00021962009100030010x.
dc.relationPraxedes, S.C., DaMatta, F.M., Loureiro, M.E., Ferrao, M.A., Cordeiro, A.T. (2006).Effects of longterm soil drought on photosynthesis and carbohydrate metabolism in mature robusta coffee (Coffea canephora Pierre var. kouillou) leaves. Environmental and Experimental Botany ,56(3), 263-273. https://doi.org/10.1016/j.envexpbot.2005.02.008
dc.relationRamírez, D. A., Rolando, J. L., Yactayo, W., Monneveux, P., and Quiroz, R. (2015). Is Discrimination of 13C in Potato Leaflets and Tubers an Appropriate Trait to Describe Genotype Responses to Restrictive and Well-Watered Conditions. Journal of Agronomy and Crop Science. 201,(6) 410-418. https://doi.org/10.1111/jac.12119
dc.relationRamírez, D.A, Yactayo, W., Gutiérrez, R., Mares, V., De Mendiburu, F., Posadas, A., and Quiroz, R. (2014). Chlorophyll concentration in leaves is an indicator of potato tuber yield in water-shortage conditions. Scientia Horticulturae.168, 202-209. Doi: 10.1016 / j.scienta.2014.01.036.
dc.relationRamírez, D.A., Yactayo, W., Rens,R.L., Rolando,J.J., Palacios,S., Mendiburu,F., Mares,V., Barreda, C., Loayza, H., Monneveux,P., Zotarelli,L., Khan, A., y Quiroz, R. (2016). Definición de umbrales biológicos asociados al estado hídrico de la planta para monitorear los efectos de la restricción hídrica: conductancia estomática y recuperación de la fotosíntesis como indicadores clave en la papa. Agr. Water Manag. 177, 369-378. Doi: 10.1016 / j.agwat.2016.08.028.
dc.relationRamírez, D.A., Yactayo, W., Rolando, J.L., Mares, V., De Mendiburu, F., and Quiroz, R. (2013). Can physiological traits in potato denote tuberization stages and tuber yield under water restriction? In: Proceedings 2nd International Symposium on Agronomy and Physiology of Potato, 15-16 September 2013, Prague.
dc.relationRandall, W., John, K. and Zane, S. (1994) .Water deficit effects on potato leaf growth and transpiration: utilizing fraction extractable soil soil water for comparison with other crops.American Potato Journal volume 71, 829–840 https://doi.org/10.1007/BF02849378
dc.relationRavikumar, G., Manimaran, P., Voleti, S. R., Balachandran, S. M. (2014). Stress-inducible expression of AtDREB1A transcription factor greatly improves drought stress tolerance in transgenic indica rice. Transgenic Research, 23 (3), 421–439. DOI:10.1007/s11248-013-9776-6
dc.relationRed de información y comunicación del sector Agropecuario Colombiano[Agronet].2022. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1
dc.relationReddy, A., Chaitanya, K.V., Vivekanandan, M .(2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161 (11),1189 – 1202. https://doi.org/10.1016/j.jplph.2004.01.013
dc.relationRibas-Carbo, M., Taylor, N., Giles, L., Busquets, S., Finnegan, P., Day, D., Lambers, H., Medrano, H., Berry, J., Flexas, J. (2005). Effects of Water Stress on Respiration in Soybean Leaves. Plant Physiology, 139 (1),466-473. doi: 10.1104/pp.105.065565
dc.relationRodriguez Pérez, L. (2015). Caracterización de la respuesta fisiológica de tres variedades de papa (Solanum tuberosum L.) bajo condiciones de estrés por déficit hídrico. Tesis de [Maestría Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/55548
dc.relationRodriguez, S.L., Spaziani, C., Barros, Z., Lopes, D., and Chamhum, L.C. (2007). Respostas de combinações de variedades copa e porta-enxerto de citros eficienciaia hídrica. Pesq Agropec Bras, 42(10),1507-1510. https://doi.org/10.1590/S0100-204X2007001000020
dc.relationRolando, J.L., Ramírez, D.A., Yactayo, W., Monneveux, P., y Quiroz, R. (2015). El verdor de las hojas como rasgo relacionado con la tolerancia a la sequía en la papa (Solanum tuberosum L.). Environmental and Experimental Botany. 110, 27-35. Doi: 10.1016 / j.envexpbot.2014.09.006.
dc.relationRosenzweig, C. and Tubiello, F. N. (2007). Adaptation and mitigation strategies in agriculture: an analysis of potential synergies. Mitigation and Adaptation Strategies for Global Change, 12(5), 855–873. https://doi.org/10.1007/s11027-007-9103-8
dc.relationRosenzweig, C. et al. (1996).Potential impacts of climate change on citrus and potato production in the US’, Agricultural Systems, 52(4), pp. 455–479. doi: 10.1016/0308-521X (95)00059-E.
dc.relationRosielle, A. A., and Hamblin, J. (1981). Theoretical aspects of selection for yield in stress and non-stress environment. Crop Science, 21(6), 943-946. https://doi.org/10.2135/cropsci1981.0011183X002100060033x
dc.relationRouhi, V., Samson, R., Lemeurb, R., Van, Dammea, P.(2007). Photosynthetic gas exchange characteristics in three different almond species during drought stress and subsequent recovery. Environmental and Experimental Botany 59(2), 117-129 https://doi.org/10.1016/j.envexpbot.2005.10.001
dc.relationRowland, D. L., Faircloth, W. H., Payton, P., Tissue, D. T., Ferrell, J. A., Sorensen, R. B., and Butts, C. L. (2012). Primed acclimation of cultivated peanut (Arachis hypogaea L.) through the use of deficit irrigation timed to crop developmental periods. Agricultural Water Management, 113, 85-95.https://doi.org/10.1016/j.agwat.2012.06.023Get rights and content
dc.relationSaab, I.N., Sharp, R.E.(1989). Non-hydraulic signals from maize roots in dryingsoil: inhibition of leaf elongation but not stomatal conductance. Planta.179,466–474. https://doi.org/10.1007/BF00397586
dc.relationSadeghian, S. Y., Fazli, H., Mohammadian, R., Taleghani, D. F., and Mesbah, M. (2000). Genetic variation for drought stress in sugarbeet. Journal of Sugar Beet Research, 37(3), 55-78. DOI:10.5274/jsbr.37.3.55
dc.relationSanchez-Martin, J., Mur, L. A. J., Rubiales, D., & Prats, E. (2012). Targeting sources of drought tolerance within an-Avena spp. Collection through multivariate approaches. Planta, 236 (5), 1529–1545. doi: 10.1007/s00425-012-1709-8
dc.relationSantos, C.M., Verissimo, V., Wanderley, H.C., Marques V.M, Cavalcante P.G.D., Rolim E.V., Endres, L .(2013). Seasonal variations of photosynthesis, gas exchange, quantum efficiency of photosystem II and biochemical responses of Jatropha curcas L. grown in semi-humid and semi-arid areas subject to water stress. Industrial Crops and Products,41,203-213. https://doi.org/10.1016/j.indcrop.2012.04.003
dc.relationSato, Y., Yokoya, S. (2008). Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, shsp17.7. Plant Cell Reports, 27 (2), 329–334. DOI:10.1007/s00299-007-0470-0
dc.relationSchafleitner, R., Gutierrez, R., Espino, R., Gaudin, A.,Pérez, J.,Martínez, M., Domínguez, A.,Tincopa, L., Alvarado, C.,Numberto, G.,Bonierbale, M. (2007). Field screening for variation of drought tolerance in Solanum tuberosum L. by agronomical, physiological and genetic analysis.Potato Research, 50(1), 71–85. doi: 10.1007/s11540-007-9030-9. https://doi.org/10.1007/s11540-007-9030-9
dc.relationSchapendonk, A. H. C. M., Spitters, C. J. T., and Groot, P. J. (1989). Effects of water stress on photosynthesis and chlorophyll fluorescence of five potato cultivars’, Potato Research, 32(1), 17–32. doi: 10.1007/BF02365814. https://doi.org/10.1007/BF02365814
dc.relationSerraj, R., Kumar, A., Mcnally, K. L., Slametloedin, I., Bruskiewich R., Mauleon, R., Cairns, J., Hijmans, R .J. (2009). Improvement of drought resistance in rice. Advances in Agronomy, 103, 41–99. https://doi.org/10.1016/S0065-2113(09)03002-8
dc.relationShahnazari, A., Ahmadi, S.H., Laerke, P.E., Liu, F., Plauborg, F., Jacobsen, S.E., Jensen,C.R.,and Andersen, M.N. (2008). Nitrogen dynamics in the soil-plant system underdeficit and partial root-zone drying irrigation strategies in potatoes. European Journal of Agronomy.28,(2) 65–73. https://doi.org/10.1016/j.eja.2007.05.003
dc.relationShi, S., Fan, M., Iwama, K., Lic, F., Zhang, Z. y Liguo, J. (2015). Physiological basis of drought tolerance in potato grown under long-term water deficiency. International Journal of Plant Production, 9(2): 305-320.doi:10.22069/ijpp.2015.2050
dc.relationShi-wei, G., Yi, Z., Na, S., Qi-rong, S. (2006). Some Physiological Processes Related to Water Use Efficiency of Higher Plants. Agricultural Sciences in China,5 (6),403-411. http://0-search.ebscohost.com.catalog.library.colostate.edu/login.aspx?direct=true&AuthType=cookie,ip,url,cpid&custid=s4640792&db=lah&AN=20063114020&site=ehost-live
dc.relationSiddique, M. R. B., Hamid, A.,Islam,M.S.(2000). Drought stress effects on water relations of wheat. Botanical Bulletin of Academia Sinica,.41(1): 35-39 https://www.researchgate.net/publication/279550800_Drought_stress_effects_on_water_relation_of_wheat
dc.relationSingh, B. U., Rao, K. V., and Sharma, H. C. (2011). Comparison of selection indices to identify sorghum genotypes resistant to the spotted stemborer Chilo partellus (Lepidoptera: Noctuidae). International Journal of Tropical Insect Science, 31(1-2), 38-51. DOI:10.1017/S1742758411000105
dc.relationSingh, B., and Singh, G. (2006). Effects of controlled irrigation on water potential, nitrogen uptake and biomass production in Dalbergia sissoo seedlings. Environmental and Experimental Botany, 55(1-2),209-219. DOI:10.1016/j.envexpbot.2004.11.001
dc.relationSmit, B,. and Skinner, M. W. (2002). Adaptation options in agriculture to climate change: A typology. Mitigation and Adaptation for Global Change, 7,85–114. doi: 10.1023/A:1015862228270.
dc.relationSood, M. C., and Singh, N. (2003). Water management. Khurana, SMP, Minhas; JS, Pandey, SK (Eds.). The Potato: Production and utilization in sub-tropics. Mehta Publishers. New Delhi, India,111-120.
dc.relationSpollen, W. G., Sharp, R. E., Saab, I. N., and Wu, Y. (1993). Regulation of cell expansion in roots and shoots at low water potentials. In: Water deficits: plant responses from cell to community. Smith,J.A.C. and Griffiths, H. (Eds.). Oxford Bios Scientific Publishers, 37-52.
dc.relationSpooner, D., Gavrilenko, T., Jansky, S., Ovchinnikova, A., Krylova, E., Knapp, S., and Simon, R. (2010). Ecogeography of ploidy variation in cultivated potato (Solanum sect. Petota). American journal of botany. 97(12),2049-2060. doi: 10.3732/ajb.1000277.
dc.relationSpooner, D., McLean, K., Ramsay, G., Waugh, R., Bryan, G. (2005). A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Pnas. 102 (41): 14694–14699. https://doi.org/10.1073/pnas.0507400102
dc.relationStreck, N. A., de Paula, F. L. M., Bisognin, D. A., Heldwein, A. B., and Dellai, J. (2007). Simulating the development of field grown potato (Solanum tuberosum L.). Agricultural and Forest Meteorology, 142(1), 1-11. https://doi.org/10.1016/j.agrformet.2006.09.012
dc.relationStruik, P. C., Kramer, G. and Smit, N. P. (1989). Effects of soil applications of gibberellic acid on the yield and quality of tubers of Solanum tuberosum L. cv. Bintje. Potato Research, 32, 203–204. https://doi.org/10.1007/BF02358233
dc.relationTaiz, L y Zeiger, E.(2006) Plant physiology, Ed. Sinaver Associates, Inc, Book. Vol II, pp. 700.
dc.relationTalebi, R., Fayaz, F., and Naji, A. M. (2009). Effective selection criteria for assessing drought stress tolerance in durum wheat (Triticum durum Desf.). General and Applied Plant Physiology, 35(1/2), 64-74. http://www.bio21.bas.bg/ipp/gapbfiles/v-35/GAPP_v35_1-2_64-74.pdf
dc.relationTanaka, Y., Sasaki, N y Ohmiya, A.(2008).Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. Plant Journal,54(4): 733–749, DOI: 10.1111/j.1365-313X.2008.03447.x
dc.relationTardieu, F. (2012). Any trait or trait-related allele can confer drought tolerance: justdesign the right drought scenario. J. Exp. Bot. 63,(1) 25–31. DOI: 10.1093/jxb/err269
dc.relationTardieu, F. (2013). Plant response to environmental conditions: assessing potential production, water demand, and negative effects of water deficit. Frontiers in Physiology, 4, 1-11. https://doi.org/10.3389/fphys.2013.00017
dc.relationTardieu, F., Parent, B., Caldeira, C.F., Welcker, C. (2014). Growth and water deficit.Plant Physiology, 164 ,(4) 1628-1635. http://dx.doi.org/10.1104/pp.113.233353.
dc.relationTeixeira, J. y Pereira, S. (2007). La alta salinidad y la sequía actúan de manera dependiente del órgano en la expresión y acumulación de la glutamina sintetasa de la patata. Environmental and Experimental Botany. 60, 121-126. Doi: 10.1016 / j.envexpbot.2006.09.003.
dc.relationTheisen, O. M., Gleditsch, N.P ., and Buhaug, H. (2014).Is Climate Change a Driver of Armed Conflict. Climatic Change , 117 (13),613-625. doi: 10.1007/s10584-012-0649-4.
dc.relationThomas, D. S. (2009). Survival and growth of drought hardened Eucalyptus pilularis Sm. seedlings and vegetative cuttings. New Forests, 38 (3), 245–259. DOI:10.1007/s11056-009-9144-9
dc.relationThomas, H.(1997). Chlorophyll: a symptom and a regulator of plastid development. New Phytologist.136,(2) 163–181. https://doi.org/10.1046/j.1469-8137.1997.00737.x
dc.relationThomas, H., Smart, C.M.(1993). Crops that stay green. Annals of Applied Biology 123,(1) 193–219. https://doi.org/10.1111/j.1744-7348.1993.tb04086.x
dc.relationThomas,H y Howarth,C.J. (2000). Five ways to stay green. Journal of Experimental Botany, 51,(1), 329–337, https://doi.org/10.1093/jexbot/51.suppl_1.329
dc.relationTourneux, C., Devaux, A., Camacho, M., Mamani,P., Ledent, J.F. (2003). Effect of water shortage on six potato genotypes in the highlands of Bolivia (II): water relations, physiological parameters. Agronomie, EDP Sciences, 23(2),181–190. DOI: 10.1051/agro:2002080
dc.relationTourneux, C.,Devaux, A.,Camacho M., Mamani, P., y Ledent, JF. (2003). Efectos de la escasez de agua en seis genotipos de papa en las tierras altas de Bolivia I: parámetros morfológicos, crecimiento y rendimiento. Agron. 23, 169-179. Doi: 10.1051 / agro: 2002079.
dc.relationTuberosa, R.(2012). Phenotyping for drought tolerance of crops in the genomic era.Front. Physiol. 3, 1–26. https://doi.org/10.3389/fphys.2012.00347
dc.relationTurner, N. C. (1986). Adaptation to water deficits: a changing perspective.Australian Journal of Plant Physiology, 13(1),175–190. doi: 10.1071/PP9860175.
dc.relationTurner, N. C., and Meyer, R. (2011) .Chapter 4 Synthesis of Regional Impacts and Global Agricultural Adjustments, in: S. S. Yadav et al, pp. (ed.) Crop Adaptation to Climate Change. Wiley-Blackwell Publishers, pp. 1–11. doi: 10.1002/9780470960929.ch14.
dc.relationVadez, V., Deshpande, S.P., Kholova, J., Hammer, G.L., Borrel, A.K., Talwar, H.S., and Hash, C.T. (2011). Stay-green quantitative trait loci’s effects on water extraction,transpiration efficiency and seed yield depend on recipient parent background.Funct. Plant Biol. 38, (7) 553–566. doi: 10.1071/FP11073.
dc.relationValbuena, B.I. (2000). Aspectos básicos sobre el crecimiento y desarrollo en el cultivo de la papa. Manejo integrado del cultivo de la papa en Colombia. Corporación Colombiana de Investigación Agropecuaria (Corpoica), Bogotá.
dc.relationVan den Bilcke, N., Simbo, D.J., Samson, R .(2013). Water relations and drought tolerance of young African tamarind (Tamarindus indica L.) trees. South African Journal of Botany 88, 352-360. https://doi.org/10.1016/j.sajb.2013.09.002
dc.relationVan der Mescht, A., de Rondea, J.A., and Rossouw, F.T. (1999). Chlorophyll fluorescenceand chlorophyll content as a measure of drought tolerance in potato. South African Journal of Science. 95,(9), 407–412. https://hdl.handle.net/10520/AJA00382353_8045.
dc.relationVan Der Waal, J., De Koster, W., and Van Oorschot, W.(2013). Three Worlds of Welfare Chauvinism? How Welfare Regimes Affect Support for Distributing Welfare to Immigrants
dc.relationVan Loon, C. D .(1981).The effect of water stress on potato growgth, development and yield. American Potato Journal volume ,58,51–69. https://doi.org/10.1007/BF02855380
dc.relationVasquez-Robinet, C., Mane, P.S., Ulanov, A.V., Watkinson, J.I., Stromberg, V.K., De Koeyer, D., Schafleitner, R., Willmot, D.B., Bonierbale, M., Bohnert,H.J., Greneet,R. (2008). Physiological and molecular adaptations to drought in Andean potato genotypes’, Journal of Experimental Botany, 59(8).2109–2123. doi: 10.1093/jxb/ern073. doi:
dc.relationVillordon, A., Clark, C., Ferrin, D., and LaBonte, D. (2009a). Using growing degree days, agrometeorological variables, linear regression, and data mining methods to help improve prediction of sweetpotato harvest date in Louisiana. HortTechnology, 19(1), 133-144. ttps://doi.org/10.21273/HORTSCI.19.1.133
dc.relationVillordon, A., LaBonte, D., and Firon, N. (2009b). Development of a simple thermal time method for describing the onset of morphoanatomical features related to sweetpotato storage root formation. Scientia Horticulturae, 121(3), 374-377. DOI:10.1016/j.scienta.2009.02.013
dc.relationVos, J., and Groenwold, J. (1988). Mean annual yield reductions of potatoes due to water deficits for Dutch weather conditions. Acta Horticulturae, 214 (4),61–70. https://doi.org/10.17660/ActaHortic.1988.214.4
dc.relationVos, J., Haverkort, A.J. (2007).Water availability and potato crop performance.Potato Biology and Biotechnology, 333- 351. https://doi.org/10.1016/B978-044451018-1/50058-0
dc.relationWeisz, R., Kaminski, J., and Smilowitz, Z. (1994). Water deficit effects on potato leaf growth and transpiration: utilizing fraction extractable soil water for comparison with other crops. American Potato Journal, 71(12), 829-840. https://doi.org/10.1007/BF02849378
dc.relationWingler, A., Quick, W.P., Bungard, R.A., Bailey, K.J., Lea, P.J., Leewood, R.C. (1999).The role of photorespiration during drought stress: an analysis utilizing barley mutants with reduced activities of photorespiratory enzymes. Plant Cell Environ 22(4): 361-373. https://doi.org/10.1046/j.1365-3040.1999.00410.x
dc.relationWishart, J., George, T. S., Brown, L. K., White, P. J., Ramsay, G., Jones, H., and Gregory, P. J. (2014). Field phenotyping of potato to assess root and shoot characteristics associated with drought tolerance. Plant and Soil, 378(1-2), 351-363. https://doi.org/10.1007/s11104-014-2029-5
dc.relationWitcombe, J. R., Hollington, P.A., Howarth, C.J., Reader, S., and K. A. Steele K.A. (2008).Breeding for abiotic stresses for sustainable agriculture. Philosophical transactions of the royal society, 363 ,703–716. doi: 10.1098/rstb.2007.2179.
dc.relationXu, G., Fan, X., and Miller, A.J. (2012). Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology 63, 153–182. DOI: 10.1146/annurev-arplant-042811-105532
dc.relationYactayo, W., Ramírez, D.A., Gutiérrez, R., Mares, V., Posadas, A.,and Quiroz, R. (2013). Effectof partial root-zone drying irrigation timing on potato tuber yield and water useefficiency. Agricultural Water Management. 123, 65–70. https://doi.org/10.1016/j.agwat.2013.03.009
dc.relationYang, J. and Zhang, J. (2006). Grain filling of cereals under soil drying.New Phytologist, 169(2), 223–236. https://doi.org/10.1111/j.1469-8137.2005.01597.
dc.relationYin, Y., Li, S., Liao, W., Lu, Q., Wen, X y Lu, C.(2013).Photosystem II photochemistry, photoinhibition, and the xanthophyll cycle in heat-stressed rice leaves¨, Journal of Plant Physiology, 167(12): 959–966, 2010.
dc.relationYuan, B.Z., Nishiyama, S., Kang, Y. (2003). Effects of different irrigation regimes on the growth and yield of drip-irrigated potato. Agricultural Water Management, 63(3), 153-167. https://doi.org/10.1016/S0378-3774(03)00174-4
dc.relationYue, B., Xiong, L., Xue, W., Xing, Y., Luo, L., Xu, C. (2005). Genetic analysis for drought resistance of rice at reproductive stage in field with different types of soil. Theoretical and Applied Genetics, 111 (6), 1127–1136. doi: 10.1007/s00122-005-0040-1.
dc.relationZegada-Lizarazu, W,. y Monti, A. (2013). Photosynthetic response of sweet sorghum to drought and re-watering at different growth stages. Physiologia Plantarum. 149(1), 56-66. Doi: 10.1111 / ppl.12016.
dc.relationZhang, N., Liu, B. L., Ma, C. Y., Zhang, G. D., Chang, J., Si, H. J., Wang, D. (2014). Transcriptome characterization and sequencing based identification of drought-responsive genes in potato. Molecular Biology Reports, 41(1), 505–517. doi: 10.1007/s11033-013-2886-7
dc.relationZlatev, Z.S., Y Yordanov, I.T.(2004).Effects of soil drought on photosynthesis and chlorophyll fluorescence in bean plants. Journal of Plant Physiology 30(3), 3-4. https://www.researchgate.net/publication/228905450
dc.relationZoebl, D. (2006). ¿La productividad del agua es un concepto útil en la gestión del agua para la agricultura? Agr. Water Manag. 84, 265-273. Doi: 10.1016 / j.agwat.2006.03.002.
dc.relationZyalalov, A.(2004). Water flows in higher plants: physiology, evolution, and system analysis. Russian Journal of Plant Physiology 51(4),547-555 DOI:10.1023/B:RUPP.0000035750.70352.f0
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleFisiología de la papa (Solanum phureja) en respuesta al estrés por déficit hídrico bajo condiciones semicontroladas
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución