dc.contributorMoreno Sarmiento, Nubia Carmenza
dc.contributorGarcía Romero, Ibonne Aydee
dc.contributorBioprocesos y Bioprospección
dc.creatorTraslaviña Bernal, Cristian Alexander
dc.date.accessioned2023-02-17T12:44:46Z
dc.date.accessioned2023-06-06T23:51:41Z
dc.date.available2023-02-17T12:44:46Z
dc.date.available2023-06-06T23:51:41Z
dc.date.created2023-02-17T12:44:46Z
dc.date.issued2023-02-08
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/83510
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6651577
dc.description.abstractEvaluación de aislamientos bacterianos de origen marino, como agentes de control biológico de Microcyclus ulei, causante del Mal Suramericano de las Hojas del Caucho - (SALB) La producción de látex del árbol de caucho natural (Hevea brasiliensis), se ve afectada por fitopatógenos, como Colletotrichum gloeosporioides causante de la Antracnosis y Microcyclus ulei (P. Henn.) v. Arx (Ascomycota), causante del mal suramericano de la hoja del caucho (South American Leaf Blight - SALB). Esta última enfermedad, endémica amazónica, se encuentra distribuida en América Central y del Sur, siendo la mayor limitante para su cultivo con pérdidas anuales de 15% y 20% en producción y la muerte de árboles muy susceptibles. El control del SALB es limitado, basando en el control químico, con efectivos preventivos en viveros y jardines clonales, pero representa altos costos y causa impacto negativo al ambiente. En este trabajo de investigación, presentamos el control biológico como alternativa para el manejo del SALB, para ello se realizó un tamizaje a 50 aislamientos bacterianos procedentes de ambientes marinos, contra C. gloeosporioides. Los aislamientos bacterianos seleccionados, fueron evaluados para determinar la capacidad de inhibir la germinación de conidios de M. ulei, y aquellos que lo hicieron fueron probados en condiciones de invernadero, utilizando 20 plántulas del clon RRIM 600 de caucho natural H. brasiliensis, las cuales fueron inoculadas en tratamientos con patógeno y con biocontroladores. El aislamiento bacteriano 72, identificado como Stenotrophomonas maltophilia mediante secuenciación de 16s de rRNA presentó una alta capacidad en la disminución de los síntomas del SALB frente al control en condiciones de invernadero. Finalmente se evaluó la expresión diferencial mediante RT-qPCR de genes asociados a rutas de ácido jasmónico (AJ), ácido salicílico (AS) y actina en plántulas RRIM 600 infectadas con M. ulei y tratadas con filtrados bacterianos de S. maltophilia, obteniendo resultados que asocian el efecto de los tratamientos con posible inducción de Resistencia Sistémica adquirida (SAR). (Texto tomado de la fuente).
dc.description.abstractEvaluation of bacterial isolates of marine origin, as biological control agents of Microcyclus ulei, the cause of the South American Disease of Rubber Leaves - (SALB) The production of latex from the natural rubber tree (Hevea brasiliensis) is affected by phytopathogens, such as Colletotrichum gloeosporioides, which causes Anthracnose, and Microcyclus ulei (P. Henn.) v. Arx (Ascomycota), the cause of South American rubber leaf disease (South American Leaf Blight - SALB). This last disease, endemic to the Amazon, is distributed in Central and South America, being the greatest limitation for its cultivation with annual losses of 15% and 20% in production and the death of highly susceptible trees. SALB control is limited, based on chemical control, with preventive measures in nurseries and clonal gardens, but it represents high costs and causes a negative impact on the environment. In this research work, we present the biological control as an alternative for the management of SALB, for which a screening was carried out on 50 bacterial isolates from marine environments, against C. gloeosporioides. The selected bacterial isolates were evaluated to determine the capacity to inhibit the germination of M. ulei conidia, and those that did so were tested under greenhouse conditions, using 20 seedlings of the RRIM 600 clone of natural rubber H. brasiliensis, were inoculated in treatments with pathogen and with biocontrollers. Bacterial isolate 72, identified as Stenotrophomonas maltophilia by 16s rRNA sequencing, showed a high capacity to reduce SALB symptoms compared to the control under greenhouse conditions. Finally, the differential expression was evaluated by RT-qPCR of genes associated with jasmonic acid (JA), salicylic acid (SA) and actin pathways in RRIM 600 seedlings infected with M. ulei and treated with bacterial filtrates of S. maltophilia, obtaining results that join the effect of treatments with possible induction of Systemic Acquired Resistance (SAR).
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAGRONET. 2019. Estadísticas Agrícolas. Reporte: Área, Producción y Rendimiento Nacional por Cultivo. Revisado 25/03/2019. En: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1.
dc.relationA. Klindworth, E. Pruesse, Timmy Schweer, Jorg Peplies, Christian Quast, Matthias Horn and Frank Oliver Glockner. (2012). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 2013, Vol. 41, No. 1. doi:10.1093/nar/gks808.
dc.relationAloui, H., Licciardello, F., Fhwaldia, K, Hamdi, M., & Restuccia, C. (2015). Physical properties and antifungal activity of bioactive films containing Wickerhamomyces anomalus killer yeast and their application for preservation of oranges and control of postharvest Green mold caused by Penicillium digitatum. International Journal of Food Microbiology, 200, 22-30.
dc.relationAnnapurna, K., Ramadoss, D., Bose, P., & VithalKumar, L. (2013). In situ localization of Paenibacillus polymyxa HKA-15 in roots and root nodules of soybean (Glycine max. L.). Plant and soil, 373(1-2), 641-648.
dc.relationAnthony R. Carroll;Brent R. Copp;Rohan A. Davis;Robert A. Keyzers;Michèle R. Prinsep; (2021). Marine natural products. Natural Product Reports, (), –. doi:10.1039/d0np00089b.
dc.relationArango; LF. Posada Uribe y JC. Pérez Naranjo. (2012). Distribución Diferencial de Bacterias con Potencial Biocontrolador de Spongospora subterranea en Plantas de Papa (Solanum tuberosum cv. Diacol Capiro). Rev. Fac. Nal. Agr. Medellín 65(1): 6337-6348.
dc.relationArtur Pinski, Joanna Zur, Robert Hasterok and Katarzyna Hupert-Kocurek. (2020). Comparative Genomics of Stenotrophomonas maltophilia and Stenotrophomonas rhizophila Revealed Characteristic Features of Both Species. Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Int. J. Mol. Sci. 2020, 21(14), 4922; https://doi.org/10.3390/ijms21144922
dc.relationBaker K.F. (1987). Evolving concepts of biological control of plant pathogens. Annu Rev Phytopathology. 26:67-85.
dc.relationBakker, PAHM., Ran, LX., Pieterse, CMJ., van Loon, LC. 2003. Understanding the involvement of rhizobacteria mediated induction of systemic resistance in biocontrol of plant diseases. Canadian Journal of Plant Pathology. 25, 5-9.
dc.relationBallaré, C.L. (2011). Jasmonate-induced defenses: a tale of intelligence, collaborators and rascals. Trends Pl. Sci., In Press, Corrected Proof (12).
dc.relationBauer, A., Kirby, A., Sherris, J., Turk, M. (1966). Antibiotic susceptibility testing by standardized single disk method. Am J Clin Pathol 45, 493-96.
dc.relationBello, E. I., & Out, F. (2015). Physicochemical Properties of Rubber (Hevea brasiliensis) Seed Oil, Its Biodiesel and Blends with Diesel. British Journal of Applied Science & Technology, 6(3), 261 – 275.
dc.relationBenjamin Youenou, Sabine Favre-Bonte, Josselin Bodilis, Elisabeth Brothier, Audrey Dubost, Daniel Muller, and Sylvie Nazaret. (2015). Comparative Genomics of Environmental and Clinical Stenotrophomonas maltophilia Strains with Different Antibiotic Resistance Profiles. Genome Biol. Evol. 7(9):2484–2505. doi:10.1093/gbe/evv161.
dc.relationBernsdorff, F.; Döring, A.C.; Gruner, K.; Schuck, S.; Bräutigam, A.; Zeier, J. (2016). Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid-dependent and -independent pathways. Plant Cell. Vol. 28, 102–129.
dc.relationBlunt JW, Coop BR, Keyzard RA, Munro MHG, Prinsep MR. (2017). Marine natural products. Natural product reports. 34(3): 235 – 94.
dc.relationBraz, T. Junior, Davi Mesquita de Macedo, Robert Weingart Barreto et al., (2014). Erasing the past: A New Identity for the Democlean Pathogen Causing South American Leaft Blight of Rubber. PLoS ONE. Vol. 9: 8 – 12.
dc.relationCABI. Microcyclus ulei (South American leaf blight of rubber). Consultado el 06/02/2016, en: http://www.cabi.org/isc/datasheet/33893#20057006310.
dc.relationCamarena-Gutiérrez, R. de la Torre-Almaráz. (2007). Resistencia sistémica adquirida en plantas: estado actual Revista Chapingo. Serie Ciencias Forestales y del Ambiente, vol. 13, núm. 2, julio-diciembre, pp. 157- 162, Universidad Autónoma Chapingo México.
dc.relationCannon, P. F.; Buddie, A. G.; Bridge, P. D. (2008). The typification of Colletotrichum gloeosporioides. Journal article: Mycotaxon, Vol.104 pp.189-204.
dc.relationCastellanos, O., Foinseca, S., & Barón. M. (2009). Agenda Prospectiva De Investigación Y Desarrollo Tecnológico Para La Cadena Productiva De Caucho Natural Y Su Industria En Colombia. Vol. 29. G. E. Ltda. (Ed.) (pp. 1 209).Revisadoen:http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-56092009000200025&Ing=en&tIng=es.Castro N.O (2011). Caracterización de los patosistemas foliares de importancia económica en caucho (Hevea brasiliensis Mūll. Arg). en la Altillanura estructural plana del Meta (Colombia). M. Sc. Tesis en Ciencias Agrarias, Fac. Ciencias Agrarias, Univ. Nacional de Colombia. P. 58.
dc.relationChauhan H, Bagyaraj D, Selvakumar G, Sundaram S. (2015). Novel plant growth promoting rhizobacteria – Prospects and potential. Applied Soil Ecology. 95: 35 – 53.
dc.relationChee, K.H; Holliday, P., (1986). Enfermedad Suramericana de la Hoja del hule (caucho) Hevea. Instituto para la Investigación y Desarrollo del Hule de Malasia, MRRDB. Monografía no. 13. Presentado en la serie técnica n. 37: avances de la investigación en caucho natural. CONIF.1997. Bogotá, DC. 27 p.
dc.relationCompagnon, P. (1998). El Caucho Natural, Biología - Cultivo - Producción. Consejo Mexicano del Hule – CIRAD. México, D. F. 701 p.
dc.relationCumdom M., Mazza S., Gutierrez S., and Mazzanti M. 2003. Evaluación de Trichoderma sp. Contra Rhizoctonia solani in vitro e invernáculo.
dc.relationDa Hora Junior BT, De Macedo DM, Barreto RW, Evans HC, Mattos CR, Maffia LA, et al. (2014). Erasing the past: a new identity for the damoclean pathogen causing South American leaf blight of rubber. PloS one. 9(8): e104750.
dc.relationDe Donato, M. (2005). Caracterización fenotípica y susceptibilidad antimicrobiana de cepas clínicas de Stenotrophomonas... Kasmera, 33(2), 109-118.
dc.relationDeenamo, N., Kuyyogsuy, A., Khompatara, K., Chanwun, T., Ekchaweng, K., & Churngchow, N. (2018). Salicylic acid induces resistance in rubber tree against Phytophthora palmivora. International Journal of Molecular Sciences, 19(7), 1883.
dc.relationDeenamo, Nuramalee; Kuyyogsuy, Arnannit; Khompatara, Khemmikar; Ekchaweng, Kitiya; Churngchow, Nunta, (2018). Chitosan enhances resistance in rubber tree (Hevea brasiliensis), through the induction of abscisic acid (ABA). Physiological and Molecular Plant Pathology, 102, 67–78. doi:10.1016/j.pmpp.2017.12.001.
dc.relationDeLong E.F, Preston C. M, Mincer T, Rich V, Hallam S. J, Frigaard N – U. (2006). Community genomics among stratified microbial assemblages in the ocean’s interior. Science. 311(5760):496-503.
dc.relationDi Francesco, A., Martini, C., Mari, M., (2016). Biological control of postharvest diseases by microbial antagonists: how many mechanisms of action. Eur. Plant pathology. 145, 711-717.
dc.relationDíaz-Puentes L. N. (2012). Resistencia sistémica adquirida mediada por el ácido salicílico. Journal: Biotecnología en el Sector Agropecuario y Agroindustrial. Publisher: Taller Editorial Universidad del Cauca.
dc.relationDuarte, K, Rocha-Santos, T. A. P., Fraitas, A. C., & Duarte, A. C. (2012). Discovery of bioactive compounds from marine fungi: Current analytical techniques and future perspectives. Trends in Analytical Chemistry, 34, 97-110.
dc.relationEgan S, Harder T, Burke C, Steinberg P, Kjelleberg S, Thomas T. (2013). The seaweed holobiont: understanding seaweed – bacteria interactions. FEMS Microbiology Reviews. 37(3): 462 – 76.
dc.relationEgan S, Thomas T, Kjelleberg S. (2008). Unlocking the diversity and biotechnological potential of marine surface associated microbial communities. Current option in microbiology. 11(3): 219 – 25.
dc.relationEilenberg, J., Hajek, A., Lomer, C. (2001). Suggestions for unifying the terminology in biological control. Biocontrol. 46, 387 – 400.
dc.relationEkchaweng, K., Evangelisti, E., Schornack, S., Tian, M., & Churngchow, N. (2017). The plant defense and pathogen counterdefense mediated by Hevea brasiliensis serine protease HbSPA and Phytophthora palmivora extracellular protease inhibitor PpEPI10. PLOS ONE, 12(5), e0175795. doi:10.1371/journal.pone.0175795.
dc.relationEl–Hossary Em, Cheng C, Hamed MM, Hamed ANE – S, Ohlsen K, Hentschel U, et al. (2016). Antifungal potential of marine natural products. European Journal of Medicinal Chemistry.
dc.relationElkahoui S, Djébali N, Tabbene O, Hadbrahim A, Mnasri B, Mhamdi R, et al. (2012). Evaluation of antifungal activity from Bacillus strain against Rhizoctonia solani. African Journal of Biotechnology. 11(18): 41 – 96.
dc.relationEllis J. Can. (2017). Plant microbiome studies lead to effective biocontrol of plant diseases. Molecular Plant-Microbe Interactions. (ja). Estadual Paulista, Faculdade de Ciências Agronómicas, Botucatu.
dc.relationFan B, Chen XH, Budiharjo A, Bleiss W, Vater J, Borriss R. (2011). Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein. Journal of Biotechnology, 151(4):303-11.
dc.relationFAO. (2019). Rubber Tree Production FAO. Retrieved 25/03/2019. 2019. From http://www.fao.org/faostat/es/#data/QC/visualize).
dc.relationFarmer, E. E.; Calderali, D.; Pearse, G.; Walker-Simmons, M. K.; Ryan, C. A. (1994). Diethyloditiocarbamic acid inhibits the octadecanoid signal pathway for the wound induction of protein.
dc.relationFenical W, Jensen P. R. (2006). Developing a new resource for drug discovery: marine actinomycete bacteria. Nature chemical biology. 2(12):666-73.
dc.relationFurtado E. (1996). Comportamento de cultivares de seringueira em (Hevea spp., frente ao Mal das folhas na região do Valle do Ribeira – SP, Tese (Doutorado) – Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São paulo, Pircicaba.
dc.relationFurtado, E. L. Trinidade D. R. (2005). Doeças da Seringueira, In: Kimati H; Amorim L; Rezende J. A. M; Bergamin Filho A; Camargo, L.E.A, (Org,), Manual de Fitopatologia, 4 ed, São Paulo: Editora Agronómica Ceres Ltda, v. 2. P. 559 – 567.
dc.relationGarcía, D., Cazaux, E., Rivano, F., & D’Auzac, J. (1995). Chemical and structural barriers to Microcyclus ulei, the agent of South American Leaf Blight, in Hevea spp. Forest Pathology, 25(5),282-292.
dc.relationGarcía, D., Troispoux, V., Grange, N., Rivano, F., & d’Auzac, J. (1999). Evaluation of the resistance of 36 Hevea clones to Microcyclus ulei and relation to their capacity to accumulate scopoletin and lignins. European Journal of Forest Pathology, 29(5), 323–338.
dc.relationGarcía, T. R. (2018). Mecanismos de acción de microorganismos marinos y el inductor de resistencia ulvan para el control de Fusarium proliferatum en frutos de Cucumis melo L. var. Reticulatus.
dc.relationGarcía-Romero, I. A., Aristizábal. F. A., Castaño, D. M. (2006). Revisión sobre el hongo Microcyclus ulei, agente causal de mal suramericano de la hoja del caucho. Revista Colombiana de Biotecnología, 8(2), 50-59.
dc.relationGasparotto L, Figueredo dos Santos A., Pereira J., Ferreira F. (1997). Doenças da seringueira no Brasil. Empresa Brasileira de Pesquisa Agropecuária. Brasília, Brasil.
dc.relationGasparotto L, Pereira JR (2012). Doenças da seringueira no Brasil. In Doenças das folhas. Embrapa, Brasília. Pp. 35 – 95.
dc.relationGasparotto, L.; Lieberei, R.; Trindade, D. (1984). In vitro conidia germination of Microcyclus ulei and its sensitivity to fungicides. Fitopatología Brasileira. 9: 505-511.
dc.relationGasparotto, L.; Zambolin, L.; Junqueira, N.T.V, Mafia, L.A.; Ribeiro, F. X. (1991). Epidemiology of south American leaf blinght of rubber tree. II – Menaus región – AM. Fitopatologia Brasileira. 16(1): 19 – 21.
dc.relationGeels, E., Lamers J., Hoekstra, O., y Schippers B. (1986). Potato plant response to seed tuber bacterization in the field in various rotations. growth promotion rhizobacteria on potato plant development and yield. Phytopathology 70. Netherland Journal of Plant Pathology 92, 257-272.
dc.relationGermaine K, Keogh E, Garcia‐Ceballos G, Borremans B, Lelie D, Barac T, et al. (2004). Colonization of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiology Ecology, 48(1):109-18.
dc.relationGlazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Ann. Rev. Phytopa., 43(1), p. 205-227.
dc.relationGlick B. R. (2012). Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica. 2012:1-15.
dc.relationGonçalves P, de S, Bataglia, O, C, Ortolani, A, A, F, da S, Fonseca. (2001). Manual de Heveicultura para o estado de São Paulo, Instituto Agronômico (IAC), Campinas, 78p.
dc.relationGonçalves P, de S, Paiva JRd, de. SRA. (1983). Retrospectiva e atualidade do melhoramento genético da seringueira (Hevea spp.) no Brasil e em países asiáticos. EMBRAPA – CNPSD, editor. Brasil: Embrapa Amazônia Occidental. 1983. 69 p.
dc.relationGonzález-Sayer, S., Oggenfuss, U., García, I., Aristizabal, F., Croll, D., & Riaño-Pachon, D. M. (2022). High-quality genome assembly of Pseudocercospora ulei the main threat to natural rubber trees. Genetics and molecular biology, 45.
dc.relationGuevara, Y. (2017). Identificación de especies de Colletotrichum spp. asociadas a la Antracnosis de tres núcleos productivos de Caucho Natural en Colombia. Tesis de Maestría en microbiología, Facultad de ciencias, Universidad Nacional de Colombia, Bogotá D.C.
dc.relationGupta, V., Willits, M. G., & Glazebrook, J. (2000). Arabidopsis thaliana EDS4 contributes to salicylic acid (SA)-dependent expression of defense responses: evidence for inhibition of jasmonic acid signaling by SA. Molecular Plant-Microbe Interactions, 13(5), 503-511.
dc.relationGuyot J, Omanda E.N, Oinard F (2005). Some epidemiological Investigations on Colletotrichum leaf disease on rubber trees, Crop Prot. 24(1):65 – 67.
dc.relationGuyot, J., & Eveno, P. (2015). Maturación of perithecia and ascospores discharge in South American Leaf Blight of Rubber Tree. European Journal of plant Pathology, 143(3):427-436.
dc.relationGuyot, J., Condina, V., Doaré, F., Cilas, C., & Sache, I. (2014). Role of ascospores and conidia in the inhibition and spread of South American Leaf Blight in a Rubber Tree Plantation. Plant Pathology, 63(30, 510-518.
dc.relationH.A.S. Tahir, Q. Gu, H. Wu, W. Raza, A. Hanif, L. Wu, M.V. Colman, X. Gao. (2017). Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2, Front. Microbiol. 8. 1–11.
dc.relationHernández Montiel, L. G., Rivas García, T., Romero Bastidas, M., Chiquito Contreras, C. J., Ruiz Espinoza, F. H., & Chiquito Contreras, R. G. (2018). Potencial antagónico de bacterias y levaduras marinas para el control de hongos fitopatógenos. Revista mexicana de ciencias agrícolas, 9(SPE20), 4311-4321.
dc.relationHernández-Montiel, L G. (2009). Mecanismos antagónicos de Debaryomyces hansenii hacia Penicillium italicum y su efecto en la protección poscosecha del limón mexicano. Doctor's dissertation, Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, México, pp. 1-98.
dc.relationHernández-Montiel, L G., Ochoa, J. L. Troyo-Diéguez, E, & Larralde-Corona, C. P. (2010). Biocontrol of postharvest blue mold (Penicillium italicum Whemer) on Mexican lime by marine and citrus Debaryomyces hansenii isolates. Postharvest Biology and Technology, 56, 181-187.
dc.relationHernández-Montiel, L G., Rueda, P, E., Zulueta, R, R., Quiñonez A, E., Angulo, C., Galicia, R. (2017). Marine yeast and bacteria as biological control agents against anthracnose on mango. Journal of Phytopathology. 2017, 1-9.
dc.relationHernández-Montiel, L.G., Gutierrez-Perez, E.D., Murillo-Amador, B., Vero, S., Chiquito-Contreras, 554 R.G., Rincon-Enriquez, G., (2018). Mechanisms employed by Debaryomyces hansenii in biological 555 control of anthracnose disease on papaya fruit. Postharvest Biol. Technol. 139, 31-37.
dc.relationHibbing M.E., Fugua C., Parsek M.R., Peterson S. B. (2010). Bacterial competition: surviving and thriving in the microbial jungle. Nat rev Microbiol. 8(1):15-25.
dc.relationHmelo LR. (2017). Quorum Sensing in Marine Microbial Environments. Annual Review of Marine Science 9: 257 – 81.
dc.relationHongwei Li, Wenxiang Huang, Long Xu, Xiaosi Zhou, Hongxia Liu1 and Zhaobang Cheng. (2016). Stenotrophomonas maltophilia HW2 Enhanced Cucumber Resistance Against Cucumber Green Mottle Mosaic Virus. J. Plant Biol. 59:488-495 DOI 10.1007/s12374-016-0246-6
dc.relationHowell, C. (2003). Mechanisms employed by Trichoderma species in the biocontrol of plant diseases: the history and evolution of current concepts. Plant diseases. 87(1):4-10.
dc.relationHui-Ping CHEN,Lang-Lai XU. (2005). Isolation and Characterization of a Novel Chitosan-Binding Protein from Non-Heading Chinese Cabbage Leaves. Journal of Integrative Plant Biology. Volume 47, Pag. 452-456. https://doi.org/10.1111/j.1744-7909.2005.00022.x
dc.relationImhoff, J. F., Labes, A, & Wise, J. (2011). Bio-mining the c=microbial treasures of the ocean: New natural products. Biotechnology Advances, 29, 468-482.
dc.relationIndira Rojo-Báez, Brando Álvarez-Rodríguez, Raymundo S. García-Estrada, Josefina León-Félix, Adriana Sañudo-Barajas, Raúl Allende-Molar. (2017). Situación actual de Colletotrichum spp. En México: Taxonomía, caracterización, patogénesis y control. Revista mexicana de fitopatología versión On-line ISSN 2007-8080 versión impresa ISSN 0185-3309 Rev. mex. fitopatol vol.35 no.3 Texcoco sep. https://doi.org/10.18781/r.mex.fit.1703-9. interação com Microcyclus ulei (Mal das folhas), Tese (Doutorado) – Universidade.
dc.relationJianyou L, Jianrong X, Yongheng C. (2011). Isolation and identification of two marine – derived Streptomyces from marine mud of coast and offshore Zhuhai and bioactive potential for plant pathogenic fungi. African Journal of Biotechnology. 10(56): 11855 – 60.
dc.relationJS. Brooke. (2021). Advances in the Microbiology of Stenotrophomonas maltophilia. ASM Journals Clinical Microbiology Reviews Vol. 34, No.3. 16;34(3). doi.org/10.1128/CMR.00030-19.
dc.relationJunqueira, N. T. V. Gasparotto. L. (1991). Controle viológico de fungos estromáticos causadores de doenças foliares em seringueira. In: Bettiol de (Org.) Controle viológico de doenças de plantas. Jaguariúna, SP: EMBRAPA – CNPDA. Vol. 1:307 – 331.
dc.relationK.L. Sajitha, E.J.Maria Florence, Suma ArunDev. (2014). Screening of bacterial biocontrols against sapstain fungus (Lasiodiplodia theobromae Pat.) of rubberwood (Hevea brasiliensis Muell.Arg.). Research in Microbiology, volume 165, Issue 7, Pag. 541-548. https://doi.org/10.1016/j.resmic.2014.07.002.
dc.relationK.M. Elhalag, N.A.S. Messiha, H.M. Emara and S.A. Abdallah. (2016). Evaluation of antibacterial activity of Stenotrophomonas maltophilia against Ralstonia solanacearum under different application conditions. Journal of Applied Microbiology ISSN 1364-5072. doi:10.1111/jam.13097.
dc.relationKloepper, J. (1996). Host specificity in microbe – microbe interactions. BioScience. 46(6), 406 – 409.
dc.relationKong Q, Shan S, Liu Q, Wang X, Yu F. (2010). Biocontrol of Aspergillus flavus on peanut kernels by use of strain of marine Bacillus megaterium. International Journal of Food Microbiology. 139(1): 31 – 5.
dc.relationKong, Q. (2017). Marine microorganisms as biocontrol agents against fungal phytopathogens and mycotoxins. Biocontrol Science and Technology, 28(1), 77–93. doi:10.1080/09583157.2017.1419164.
dc.relationLe Guen, V., Guyot. J., Mattos, C. R. R., Seguin, M., & garcia. D. (2008). Long lasting rubber tree resistance to Microcyclus ulei characterized by reduced conidial emission and absence of telomorph. Crop protection, 27(12), 1498-1503.
dc.relationLeal M. C, Sheridan C, Osinga R, Dionísio G, Rocha R. J. M, Silva B. (2014). Marine microorganism-invertebrate assemblages: perspectives to solve the “supply problem” in the initial steps of drug discovery. Marine drug. 12(7):3929-52.
dc.relationLi, D., Zeng, R., Li, Y., Zhao, M., Chao, J., Li, Y., ... & Liang, C. (2016). Gene expression analysis and SNP/InDel discovery to investigate yield heterosis of two rubber tree F1 hybrids. Scientific reports, 6(1), 1-12.
dc.relationLieberei R. (2007). South American leaf blight of the rubber tree (Hevea spp.): new steps in plant domestication using physiological features and molecular markers. Annuals of botany. 100(6): 1125 – 42.
dc.relationLiu, P., Luo, L, &Long, C. (2013). Characterization of competition for nutrients in the biocontrol of Penicillium italicum by Kloeckera apiculata. Biological Control, 67, 257-162.
dc.relationLiu, Y., Wang, R., Cao, Y., & Chen, C. (2016). Identification and antagonistic activity of endophytic bacterial strain Paenibacillus sp. 5 L8 isolated from the seeds of maize (Zea mays L, Jingke 968). Annals of Microbiology, 66, 653-660.
dc.relationLiu, Z, Du, S., Ren, Y., Liu, Y., (2018). Biocontrol ability of killer yeast (Saccharomyces cerevisiae) isolated from wine against Colletotrichum gloeosporioides on grape. J. Basic Microbiology. 58, 60 – 67.
dc.relationMaksimov I.V, Abizgil’dina R. R. Pusenkova L.I. (2011). Plant Growth Promoting Rhizobacteria as Alternative to Chemical Crop Protectors from Pathogens. Applied Biochemistry and Microbiology. 2011(4):333-45.
dc.relationManwar A, Khandelwal S, Chaudhari B, Meyer J, Chincholkar S. (2004). Siderophore production by a marine Pseudomonas aeruginosa and its antagonistic action against phytopathogenic fungi. Applied Biochemistry and Biotechnology. 118(1-3): 243 – 51.
dc.relationMartinez, G. Martinez, R. Matta, J. (2011). El cultivo de hule en México. Universidad Autónoma Indígena de México. Colegio de postgraduados. Campus Montecillo programa de forestal. México. PP 334.
dc.relationMartínez, R.A. (2016). Debaryomyces hansenii como agente de control biológico y modulador del contenido de compuestos bioactivos en microgreens como plataforma alimentaria. Tesis de maestría, Centro de investigaciones biológicas del noroeste, S.C, La Paz, Baja California Sur.
dc.relationMattos, C.R., García, D., Pinard, F., & Le Guen, V., (2003). Variabilidade de Isolados de Microcyclus ulei Microcyclus ulei no Sudeste de Bahia. Fitopatologia Brasileira 28. (5): 502-507.
dc.relationMattos, C.R.R. (1999). Meios de cultura com água de coco verde para esporulação de Microcyclus ulei. Fitopatologia Brasileira, 24, 470.
dc.relationMattos, C.R.R. García, D., Le Guen, V., (2005). Seleção de Clones de Seringueira com Alta Produção e Resistentes ao Mal-Das-Folhas. Ceplac. Comunição técnico no. 28: 1-9.
dc.relationMayer A. M, Glaser K. B, Cuevas C, Jacobs R. S, Kem Mejía Cáceres, S. A. (2010). Potencialidades para la implementación de cultivos de caucho Hevea brasiliensis en el municipio de Yopal Casanare. Recuperado el 30 de junio de 2012, de www.bdigital.unal.edu.co/2718/1/sandroalbertomejiacaceres.2010.pdf.
dc.relationMelotto, M., Balardin, R. And Kelly, J. (2000). Host pathogen interaction and variability of Colletotrichum lindemuthianum. Colletotrichum host specificity, pathology, and host – pathogen interaction eds. Dov Prusky, Stanley Freeman and Martin B. Dckman St paul, Minnesota ed. APS Press the American Phytopathological Society.
dc.relationMéndez TE., (2017). Identificación de moléculas candidatas a proteínas efectoras de Microcyclus ulei presentes en la interacción con Hevea brasiliensis. Tesis de Maestría en Ciencias Microbiología. Universidad Nacional de Colombia, Facultad de ciencias. Bogotá D.C.
dc.relationMinisterio de Agricultura y Desarrollo Rural (3 de octubre de 2009). Boletín Agenda de Investigación de cadenas Productivas. Recuperado el 30de abril de 2012, de http://www.minagricultura.gov.co/archivos/boletin_-_agenda_003.pdf.
dc.relationMoffat, A. S. (1992). Improving plant disease resistance. Science 257: 482-483.
dc.relationMuller, P. Y., Janovjak, H., Miserez, A. R., & Dobbie, Z. (2002). Processing of gene expression data generated by quantitative real-time RT PCR (vol 32, pg 1378, 2002). Biotechniques, 33(3), 514-514.
dc.relationMysore, K. and RYU, C. (2004). Nonhost resistance: how much do we know? Trends Pl. Sci., 9(2), p. 97-104.
dc.relationNystrom, T., Olsson, R. M., & Kjelleberg, S. T. A. F. F. A. N. (1992). Survival, stress resistance, and alterations in protein expression in the marine Vibrio sp. strain S14 during starvation for different individual nutrients. Applied and Environmental microbiology, 58(1), 55-65.
dc.relationOrtega – Morales BO, Ortega _ Morales Fn, Lara – Reyna J, De la Rosa – Garcia SC, Martinez _ Hernandez A, Montero – M. J. (2009). Antagonism of Bacillus spp. Isolated from Marine Biofilms Against Terrestrial Phytopathogenic Fungi. Marine Biotechnology. 11(3): 375 – 83.
dc.relationOrtega-Morales, B. O., Chan-Bacab, M. J., De la Rosa, S. D. C., & Camacho-Chab, J. C. (2010). Valuable processes and products from marine intertidal microbial communities. Current Opinion in Biotechnology, 21(3), 346-352.
dc.relationOrtolani A.A. (1982). Aptidáo agroclimática para regionalizaçáo da heveicultura no Brazil", A.A. Sudhevea.
dc.relationPal K.K, Gardener B.M. (2006). Biological control of pathogens. The plant health instructor.2:1117-42.
dc.relationPastor, V., Luna, E., Mauch-Mani, B., Ton, J., Flors, V. (2013). Primed plants do not forget. Envir. 701 Exp. Bot. 94, 46-56. doi: 10.1016/j.envexpbot.2012.02.013.
dc.relationPeixoto RS, Rosado PM, de Assis Leite DC, Rosado AS, Bourne DG. (2017). Benefical Microorganisms for Corals (BMC): proposed mechanisms for coral health and resilence. Frontiers in Microbiology. 2017; 8.
dc.relationPenesyan A, Kjelleberg S, Egan S. (2010). Development of novel drugs from marine surface associated microorganisms. Marine Drugs. 8(3): 438 – 59.
dc.relationPeralta, A.M; Furtado, E.L; Amorim, M; Filho, A.B. (1990). Melhoramento para resistência ao mal das folhas da seringueira: Revisão. Summa Phytopathologica. 26:11.
dc.relationPettongkhao, Sittiporn; Bilanglod, Abdulmuhaimin; Khompatara, Khemmikar; Churngchow, Nunta. (2019). Sulphated Polysaccharide from Acanthophora spicifera Induced Hevea brasiliensis Defense Responses Against Phytophthora palmivora Infection. Plants, 8(3), 73. doi:10.3390/plants8030073.
dc.relationPiel J. (2006). Bacterial symbionts: prospects for the sustainable production of invertebrate-derived pharmaceuticals. Current medicinal chemistry. 13(1):39-42.
dc.relationPiel J. (2011). Approaches to capturing and designing biologically active small molecules produced by uncultured microbes. Annual review of microbiology. 65:431-53.
dc.relationPoppinga, L., & Genersch, E. (2012). Heterologous expression of green fluorescent protein in Paenibacillus larvae, the causative agent of American Foulbrood of honey bees. Journal of applied microbiology, 112(3), 430-435.
dc.relationQian P-Y, Xu Y, Fusetani N. (2009). Natural products as antifouling compounds: recent progress and future perspectives. Biofouling. 26(2):223-34.
dc.relationQuagliotto. L., Azziz. G., Bajsa N., Vaz, P., Peréz, C., Ducamp, F., Cadenazzi, M., Altier, N., Arias, A. (2009). There native Pseudomonas fluorescens strains tested under growth chamber and field conditions as biocontrol agents against damping – off in alfalfa. Biological control 51, 42 – 50.
dc.relationRajnish P. Singh and Prabhat N. Jha. (2017). The PGPR Stenotrophomonas maltophilia SBP-9 Augments Resistance against Biotic and Abiotic Stress in Wheat Plants. Front Microbiol. 2017; 8: 1945. Published online 2017 Oct 9. doi: 10.3389/fmicb.2017.01945.
dc.relationRico Virgen, E. G. (2020). Evaluación de la producción de péptidos antimicrobianos por cepas marinas de Bacillus (Doctoral dissertation, Instituto Politécnico Nacional. Centro Interdisciplinario de Ciencias Marinas).
dc.relationRivano F, Vera J, Cevallos V, Almeida D, Maldonado L, Flori A. (2016). Performance of 10 Hevea brasiliensis clones in Ecuador, under South American Leaf Blight escape conditions. Industrial Crops and Products. 94:762-73.
dc.relationRivano F., Mattos C. R. R., Guyot J., Le Guen Vincent, Garcia D. (2011). Nuevas perspectivas para el control sostenible del mal suramericano de la hoja en el cultivo de caucho In: XI Jornadas Latinoamericanas del caucho natural, Medellin, Colombia, 7-11. Consultado en: http://agritrop.cirad.fr/562328/
dc.relationRivano, F., Nicolas, D., Chevaugeon, J. (1989). Résistance de l’hévéa à la maladie Sudaméricaine des feuilles. Perspectives de lutte. Revue Générale des Caoutchoucs et Plastiques, vol 66, n° 690, 199–206.
dc.relationRobert P. Ryan, Sebastien Monchy, Massimiliano Cardinale, Safiyh Taghavi, Lisa Crossman, Matthew B. Avison, Gabriele Berg, Daniel van der Lelie & J. Maxwell Dow. (2009). The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nature Reviews Microbiology. volume 7, pages 514–525. doi:10.1038/nrmicro2163.
dc.relationRoberts DP, Lohrke SM. (2003). United States Department of Agriculture – Agricultural Research Service research programs in biological control of plant diseases. Pest management science. 59(6 – 7): 654 – 64.
dc.relationSalta M, Wharton JA, Blache Y, Stokes KR, Briand JF. (2013). Marine biofilms on artificial surfaces: structure and dynamics. Environmental Microbiology. 15(11): 2879 – 93.
dc.relationSantoyo G, Orozco – Mosqueda MdC, Govindappa M. (2012). Mechanisms of biocontrol and plant growth – promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Science and Technology. 22(8): 855 – 72.
dc.relationSchubert, k., Ritschel, A., & Braun, U. (2003). A monograph of Fusicladium sp. Lat (Hyphomycetes). Schlenchtendalia, 9, 353-356.
dc.relationSha, J.; KLESSIG, D. F. (1996). Identification of a salicylic acid-responsive element in the promoter of the tobacco pathogenesis-related β 1,3-glucanase gene, PR-2d. Plant Journal. 10: 1089- 1101.
dc.relationSharma, R.R., Singh, D., Singh, R. (2009). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biological Control 50, 205 – 221.
dc.relationSharp K. H, Eam B, Faulkner D. J, Haygood M. G. (2007). Vertical transmission of diverse microbes in the tropical sponge Corticium sp. Applied and environmental microbiology. 73(2):622-9.
dc.relationShi-Qing PENG, Jing XU, Hui-Liang LI & Wei-Min TIAN. (2014). Cloning and Molecular Characterization of HbCOI1 from Hevea brasiliensis. Bioscience, Biotechnology, and Biochemistry, 73:3, 665-670, DOI: 10.1271/bbb.80721.
dc.relationSimon C, Daniel R. (2011). Metagenomic analyses: past and future trends. Applied and environmental microbiology. 77(4):1153-61.
dc.relationSmith DC, Simon M, Alldredge AL, Azam F. (1992). Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature. 359(6391): 139 – 42.
dc.relationSterling C. A., & Rodríguez O. A., (2011). Nuevos clones de caucho natural para la Amazonia Colombiana: Énfasis en la Resistencia al mal suramericano de las hojas de caucho (Microcyclus ulei), Instituto Amazónico de Investigaciones Científicas - Sinchi. Bogotá D.C. p. 17 - 18. Revisado 19/03/2019 en: https://books.google.es/books?hl=es&lr=&id=iZpvAwAAQBAJ&oi=fnd&pg=PA52&dq=caucho+natural&ots=C3ucZ9E_xt&sig=ObMVT7x3zcnvbcgU6chY_tgcRhw#v=onepage&q=caucho%20natural&f=true.
dc.relationSterling C. A., Galindo R. L. C, Correa D. J. (2010). Incidencia Y Severidad de Microcyclus ulei en una Colección de Caucho en la Amazonia Colombiana. Universidad de la Amazonia. I & A Ingenierías & Amazonia. Vol. 3(2). 93 – 104.
dc.relationSterling, C. A., Rodríguez, L. C. H. (2018). Estrategias de manejo para las principales enfermedades y plagas del cultivo del caucho con énfasis en la amazonia colombiana. Instituto Amazónico de Investigaciones Científicas SINCHI. Bogotá, Colombia. 65 p.
dc.relationSuarez YYJ, Molina JR, Furtado EL. (2015). Clones de Hevea brasiliensis de alta productividad caracterizados por resistencia a Microcyclus ulei en jardín clonal en el magdalena medio colombiano. Summa Phytopathologica. 41: 115 – 20.
dc.relationSuárez-Moreno, Z. R., Vinchira-Villarraga, D. M., Vergara-Morales, D. I., Castellanos, L., Ramos, F. A., Guarnaccia, C., ... & Moreno-Sarmiento, N. (2019). Plant-growth promotion and biocontrol properties of three Streptomyces spp. isolates to control bacterial rice pathogens. Frontiers in Microbiology, 10, 290.
dc.relationTalhinhas, P., Sreenivasaprasad, S., Neves-Martin, J., & Oliveira, H. (2002). Genetic and morphological characterization of Colletotrichum acutatum causing anthracnose of lupins. Phytopathology, 92, 986–996. doi:10.1094/PHYTO.2002.92.9.986.
dc.relationTan, D., Sun, X., & Zhang, J. (2014). Age-dependent and jasmonic acid-induced laticifer-cell differentiation in anther callus cultures of rubber tree. Planta, 240(2), 337-344.
dc.relationTapiero, A. (2013). Base de datos preliminar para el desarrollo de un programa de manejo de enfermedades en caucho y formulación optimizada de un prototipo de bioplaguicida para el control del gusano Cachón Erinnyis ello. Informe técnico final. Corpoica C. I. La Libertad.
dc.relationTapiero, A. L. (2011). Manejo biológico de enfermedades en cultivos perennes: SALB en Caucho (Hevea spp.) En: Hoyos, L. Enfermedades de plantas: control biológico, Editorial Ecoe, Universidad Nacional de Colombia, 651-654.
dc.relationTomas Rivas García., Bernardo Murillo Amador., Alejandra Nieto Garibay., Gabriel Rincón Enríquez., Roberto G. Chiquito Contreras., Luis G. Hernández Montiel. (2019). Enhanced biocontrol of fruit rot on muskmelon by combination treatment with marine Debaryonyces hansenii and Stenotrophomonas rhizophila and their potential modes of action. Postharvest Biology and technology. 151. 61 – 67.
dc.relationValland, G. E.; Goodman, R. M. (2004). Systemic Acquired Resistance and Induced Systemic Resistance in Conventional Agriculture. Crop Science 44: 1920-1934.
dc.relationVero, S., Garmendia, G., González, M. B., & Betancur, o. (2013). Evaluation of yeast obtained from Antarctic soil samples as biocontrol agents for the management of postharvest diseases of Apple (Malus x domestical). FEMS Yeast Research, 13, 189-199.
dc.relationVinchira D. M. (2019). Comunicación personal. Instituto de Biotecnología Universidad Nacional - IBUN, Laboratorio de Fermentaciones, Universidad Nacional de Colombia, Bogotá D.C, 27 de febrero de 2019.
dc.relationVinchira, D. M., Méndez TE., García I. A., Suarez M. Z., Moreno S. N. (2017). Evaluation of Biocontrol Properties of Streptomyces spp. Isolates Against Phytopathogenic Fungi Colletotrichum gloeosporioides and Microcyclus ulei. African Journal of Microbiology Research. Vol. 11(5):141 – 154.
dc.relationVinchira-Villarraga, D. M., (2014). Evaluación de tres aislamientos bacterianos como potenciales promotores de crecimiento vegetal en plantas de arroz (Oryza sativa). Posgrado Interfacultades en Microbiología.
dc.relationVinchira-Villarraga, D. M., Castellanos, L., Moreno-Sarmiento, N., Suarez-Moreno, Z. R., & Ramos, F. A. (2021). Antifungal activity of marine-derived Paenibacillus sp. PNM200 against Fusarium oxysporum f. sp. lycopersici, the causal agent of tomato vascular wilt. Biological Control, 154, 104501.
dc.relationWang, D. (2007). PAJEROWSKA-MUKHTAR, K., CULLER, A.H. and DONG, X.N. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr. Bio., 17(10), p. 1784-1790.
dc.relationWei, Y., Xu, M., Wu, H., & Tu, S. (2016). Defense response of cherry tomato all different matunity stages to combined treatment of hot air and Cryptococcus laurentii. Postharvest Biology and Technology, 117, 177-186.
dc.relationWilkinson B, & Micklefield J. (2007). Mining and engineering natural-product biosynthetic pathways. Nature Chemical Biology. 21, (3):379-86.
dc.relationZ. Alijani, J. Amini, M. Ashengroph, B. Bahramnejad. (2020). Volatile compounds mediated effects of Stenotrophomonas maltophilia strain UN1512 in plant growth promotion and its potential for the biocontrol of Colletotrichum nymphaeae. Physiological and Molecular Plant Pathology. Volume 112. https://doi.org/10.1016/j.pmpp.2020.101555.
dc.relationZ. Zhang, G. Y. Yuen, G. Sarath, and A. R. Penheiter. (2007). Chitinases from the Plant Disease Biocontrol Agent, Stenotrophomonas maltophilia C3. APS Publications, The American Phytopathological Society (APS). https://doi.org/10.1094/PHYTO.2001.91.2.204.
dc.relationZavaleta, E., (2000). Alternativas del manejo de las enfermedades de las plantas, Terra, 17:202 – 217. México D.F.
dc.relationZhang and G. Y. Yuen. (1999). Biological Control of Bipolaris sorokiniana on Tall Fescue by Stenotrophomonas maltophilia Strain. Publication no. P-1999-0706-02R. The American Phytopathological Society. Phytopathology. Vol. 89, No. 9:817-822.https://apsjournals.apsnet.org/doi/epdf/10.1094/PHYTO.1999.89.9.817.
dc.relationZhongge Zhang and Garry Y. Yuen. (2007). The Role of Chitinase Production by Stenotrophomonas maltophilia Strain C3 in Biological Control of Bipolaris sorokiniana. The American Phytopathological Society. Vol. 90, No. 4. P: 384-389. https://doi.org/10.1094/PHYTO.2000.90.4.384.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEvaluación de aislamientos bacterianos de origen marino, como agentes de control biológico de Microcyclus ulei, causante del Mal Suramericano de las Hojas del Caucho - (SALB)
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución