dc.contributor | Parra Giraldo, Claudia Marcela | |
dc.contributor | Yerly Vargas-Casanova | |
dc.contributor | Andrés Ceballos-Garzon | |
dc.contributor | Síntesis y Aplicación de Moléculas Peptídicas | |
dc.contributor | Unidad de Investigación en Proteómica y micosis Humanas-PUJ | |
dc.contributor | Katherine Aguirre-Guataqui 0001665676 | |
dc.contributor | Katherine Aguirre-Guataqui 0000-0002-9122-678X | |
dc.contributor | Katherine-Aguirre-Guataqui | |
dc.creator | Aguirre Guataqui, Katherine Natalia | |
dc.creator | Parra Giraldo, Claudia Marcela | |
dc.creator | García Castañeda, Javier Eduardo | |
dc.date.accessioned | 2023-02-17T13:05:13Z | |
dc.date.accessioned | 2023-06-06T23:51:19Z | |
dc.date.available | 2023-02-17T13:05:13Z | |
dc.date.available | 2023-06-06T23:51:19Z | |
dc.date.created | 2023-02-17T13:05:13Z | |
dc.date.issued | 2022-10-14 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/83512 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6651571 | |
dc.description.abstract | El número reducido de moléculas con actividad antifúngica y la aparición de
aislamientos clínicos resistentes como las levaduras del género Candida spp., ha
limitado la eficacia terapéutica de antifúngicos en los últimos años. En este trabajo
examinamos los efectos de PAM quiméricos que contienen el motivo mínimo de
LfcinB y BFII en C. albicans (CAAL), C. glabrata (CAGL) y C. auris (CAAU), con la
evaluación de la concentración mínima inhibitoria (CMI) y concentración mínima
fungicida (CMF), cinética de crecimiento y la combinación de la quimera QC2 con
FLU. Nuestros resultados indicaron que las quimeras QC1 y QC2 exhibieron
actividad fungistática y fungicida dependiente de la concentración contra
Candida spp resistente, mayor actividad en comparación con el motivo mínimo de
LfcinB, el palíndromo de BFII y las otras cinco quimeras estudiadas; y un efecto de
aditividad con fluconazol contra CAAL256 (resistente a FLU), C. glabrata 2001 y
C. auris 001. Estas quimeras pueden ser consideradas promisorias ya que además
de presentar actividad antifúngica contra cepas de referencia y aislados clínicos de
Candida spp, también se ha reportado que exhiben actividad antibacteriana, tanto
en bacterias Gram positivas como Gram negativas(1). Los resultados sugieren que
estas quimeras pueden ser de amplio espectro antimicrobiano. (Texto tomado de la fuente) | |
dc.description.abstract | The reduced number of molecules with antifungal activity and the appearance of
resistant clinical isolates, such as yeasts of the genus Candida spp., have limited the
therapeutic efficacy of antifungal agents in recent years. In this work, we examined
the effects of chimeric PAMs containing the minimal motif of LfcinB and BFII in
C. albicans (CAAL), C. glabrata (CAGL), and C. auris (CAAU), with the evaluation
of minimum inhibitory concentration (MIC) and minimum fungicidal concentration
(MFC), growth kinetics, and combination of QC2 chimera with FLU. Our results
indicated that QC1 and QC2 chimeras exhibited concentration-dependent fungistatic
and fungicidal activity against resistant Candida spp, higher activity compared to
minimal motifs of LfcinB, BFII palindrome and other five chimeras studied, and an
additivity effect with fluconazole against CAAL256 (resistant to FLU), C. glabrata
2001 and C. auris 001. In addition to present antifungal activity against reference
strains and clinical isolates of Candida spp, they also presented antibacterial activity,
both in Gram-positive and Gram-negative bacteria (1). These chimeras show a
broad antimicrobial spectrum and can be considered as promising molecules for
therapeutic applications. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Microbiología | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Pineda-Castañeda HM, Huertas-Ortiz KA, Leal-Castro AL, Vargas-Casanova Y, Parra-Giraldo CM, García-Castañeda JE, et al. Designing Chimeric Peptides: A Powerful Tool for Enhancing Antibacterial Activity. Chem Biodivers. 2021;18(2). | |
dc.relation | Morio F, Jensen RH, Le Pape P, Arendrup MC. Molecular basis of antifungal drug resistance in yeasts. Int J Antimicrob Agents [Internet]. 2017;50(5):599–606. Available from: https://doi.org/10.1016/j.ijantimicag.2017.05.012 | |
dc.relation | Grau S, Cámara R, Jurado M, Sanz J, Aragón B, Gozalbo I. Cost-effectiveness of posaconazole tablets versus fluconazole as prophylaxis for invasive fungal diseases in patients with graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Eur J Heal Econ. 2018 May 1;19(4):627–36. | |
dc.relation | M. Reyes-Montes, Duarte-Escalante E, Martínez-Herrera E, . Current status of the etiology of candidiasis in Mexico- ClinicalKey. Revista Iberoamericana de Micología,. 2017. p. Volumen 34, Número 4, Páginas 203-210. | |
dc.relation | Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Vol. 62, Clinical Infectious Diseases. Oxford University Press; 2015. p. e1–50. | |
dc.relation | Valencia A, Páez A, Sampedro M, Ávila C, Cardona J, Mesa C. Candidemia en Colombia. Biomédica. 2020;40(1):1–33. | |
dc.relation | Guinea J. Global trends in the distribution of Candida species causing candidemia. Clin Microbiol Infect [Internet]. 2014;20:5–10. Available from: http://www.sciencedirect.com/science/article/pii/S1198743X14603268 | |
dc.relation | Lamoth F, Lockhart SR, Berkow EL, Calandra T. Changes in the epidemiological landscape of invasive candidiasis. J Antimicrob Chemother. 2018 Jan 1;73:i4–13. | |
dc.relation | Nuti R, Goud NS, Saraswati AP, Alvala R, Alvala M. Antimicrobial Peptides: A Promising Therapeutic Strategy in Tackling Antimicrobial Resistance. Curr Med Chem [Internet]. 2017 Dec 12 [cited 2019 Nov 21];24(38). Available from: http://www.eurekaselect.com/154924/article | |
dc.relation | Arias M, McDonald LJ, Haney EF, Nazmi K, Bolscher JGM, Vogel HJ. Bovine and human lactoferricin peptides: Chimeras and new cyclic analogs. BioMetals. 2014 Sep 5;27(5):935–48. | |
dc.relation | Baldo BA. Chimeric Fusion Proteins Used for Therapy: Indications, Mechanisms, and Safety. Vol. 38, Drug Safety. Springer International Publishing; 2015. p. 455–79. | |
dc.relation | Pfaller MA, Diekema DJ, Turnidge JD, Castanheira M, Jones RN. Twenty years of the SENTRY Antifungal Surveillance Program: Results for Candida species from 1997-2016. Open Forum Infect Dis. 2019 Mar 15;6:S79–94. | |
dc.relation | Jenssen H, Hamill P, Hancock REW. Peptide antimicrobial agents. Vol. 19, Clinical Microbiology Reviews. 2006. p. 491–511. | |
dc.relation | Hilchie AL, Wuerth K, Hancock REW. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Vol. 9, Nature Chemical Biology. Nature Publishing Group; 2013. p. 761–8. | |
dc.relation | Sheehan G, Garvey A, Croke M, Kavanagh K. Innate humoral immune defences in mammals and insects: The same, with differences? Virulence. 2018 Jan 1;9(1):1625–39. | |
dc.relation | Pfaller MA, Diekema DJ, Colombo AL, Kibbler C, Ng KP, Gibbs DL, et al. Candida rugosa, an emerging fungal pathogen with resistance to azoles: Geographic and temporal trends from the ARTEMIS DISK Antifungal Surveillance Program. J Clin Microbiol. 2006;44(10):3578–82. | |
dc.relation | Brown KL, Hancock REW. Cationic host defense (antimicrobial) peptides. Curr Opin Immunol. 2006;18(1):24–30. | |
dc.relation | Patel SP, Vaishya R, Patel A, Agrahari V, Pal D, Mitra A k. Optimization of novel pentablock copolymer based composite formulation for sustained delivery of peptide/protein in the treatment of ocular diseases. J Microencapsul. 2016 Feb;33(2):103–13. | |
dc.relation | Rautenbach M, Troskie AM, Vosloo JA. Antifungal peptides: To be or not to be membrane active. Biochimie [Internet]. 2016;130:132–45. Available from: http://dx.doi.org/10.1016/j.biochi.2016.05.013 | |
dc.relation | Van Der Weerden NL, Bleackley MR, Anderson MA. Properties and mechanisms of action of naturally occurring antifungal peptides. Vol. 70, Cellular and Molecular Life Sciences. Springer; 2013. p. 3545–70. | |
dc.relation | Fleming E, Maharaj NP, Chen JL, Nelson RB, Elmore DE. Effect of lipid composition on buforin II structure and membrane entry. Proteins Struct Funct Genet. 2008 Nov 1;73(2):480–91. | |
dc.relation | Ciociola T, Giovati L, Conti S, Magliani W, Santinoli C, Polonelli L. Natural and synthetic peptides with antifungal activity. Future Med Chem. 2016;8(12):1413–33. | |
dc.relation | Davis SL, Vazquez JA. Anidulafungin: An evidence-based review of its use in invasive fungal infections. Vol. 2, Core Evidence. Dove Press; 2008. p. 241–9. | |
dc.relation | Conlon JM, Sonnevend A, Patel M, Davidson C, Nielsen PF, Pal T, et al. Isolation of peptides of the brevinin-1 family with potent candidacidal activity from the skin secretions of the frog Rana boylii. J Pept Res [Internet]. 2003 Nov 1 [cited 2020 May 17];62(5):207–13. Available from: http://doi.wiley.com/10.1034/j.1399-3011.2003.00090.x | |
dc.relation | Fleming E, Maharaj NP, Chen JL, Nelson RB, Elmore DE. Effect of lipid composition on buforin II structure and membrane entry. Proteins Struct Funct Bioinforma [Internet]. 2008 May 1 [cited 2020 May 17];73(2):480–91. Available from: http://doi.wiley.com/10.1002/prot.22074 | |
dc.relation | Pfaller MA, Messer SA, Woosley LN, Jones RN, Castanheira M. Echinocandin and triazole antifungal susceptibility profiles for clinical opportunistic yeast and mold isolates collected from 2010 to 2011: application of new CLSI clinical breakpoints and epidemiological cutoff values for characterization of geographic . J Clin Microbiol. 2013 Aug;51(8):2571–81. | |
dc.relation | Wang G, Narayana JL, Mishra B, Zhang Y, Wang F, Wang C, et al. Design of antimicrobial peptides: Progress made with human cathelicidin LL-37. In: Advances in Experimental Medicine and Biology. Springer New York LLC; 2019. p. 215–40. | |
dc.relation | Yun J, Lee DG. Cecropin A-induced apoptosis is regulated by ion balance and glutathione antioxidant system in Candida albicans. IUBMB Life [Internet]. 2016 Aug 1 [cited 2020 May 17];68(8):652–62. Available from: http://doi.wiley.com/10.1002/iub.1527 | |
dc.relation | Ouyang L, Xu X, Freed S, Gao Y, Yu J, Wang S, et al. Cecropins from plutella xylostella and their interaction with Metarhizium anisopliae. PLoS One. 2015 Nov 6;10(11). | |
dc.relation | Wu Q, Patočka J, Kuča K. Insect antimicrobial peptides, a mini review. Vol. 10, Toxins. MDPI AG; 2018. | |
dc.relation | Ganz T. Defensins: Antimicrobial peptides of innate immunity. Nat Rev Immunol. 2003;3(9):710–20. | |
dc.relation | Sathoff AE, Velivelli S, Shah DM, Samac DA. Plant Defensin Peptides have Antifungal and Antibacterial Activity Against Human and Plant Pathogens. Phytopathology [Internet]. 2019 Mar 1 [cited 2020 May 18];109(3):402–8. Available from: https://apsjournals.apsnet.org/doi/10.1094/PHYTO-09-18-0331-R | |
dc.relation | Fernandes KE, Carter DA. The antifungal activity of lactoferrin and its derived peptides: Mechanisms of action and synergy with drugs against fungal pathogens. Vol. 8, Frontiers in Microbiology. Frontiers Research Foundation; 2017. | |
dc.relation | Tanner JD, Deplazes E, Mancera RL. The biological and biophysical properties of the spider peptide gomesin. Vol. 23, Molecules. MDPI AG; 2018. | |
dc.relation | Del Gaudio G, Lombardi L, Maisetta G, Esin S, Batoni G, Sanguinetti M, et al. Antifungal activity of the noncytotoxic human peptide hepcidin 20 against fluconazole-resistant Candida glabrata in human vaginal fluid. Antimicrob Agents Chemother. 2013 Sep;57(9):4314–21. | |
dc.relation | Ikonomova SP, Moghaddam-Taaheri P, Jabra-Rizk MA, Wang Y, Karlsson AJ. Engineering improved variants of the antifungal peptide histatin 5 with reduced susceptibility to Candida albicans secreted aspartic proteases and enhanced antimicrobial potency. FEBS J. 2018 Jan 1;285(1):146–59. | |
dc.relation | Simonetti O, Silvestri C, Arzeni D, Cirioni O, Kamysz W, Conte I, et al. In vitro activity of the protegrin IB-367 alone and in combination compared with conventional antifungal agents against dermatophytes. Mycoses [Internet]. 2014 Apr 1 [cited 2020 May 19];57(4):233–9. Available from: http://doi.wiley.com/10.1111/myc.12148 | |
dc.relation | Thevissen K, François IEJA, Sijtsma L, Van Amerongen A, Schaaper WMM, Meloen R, et al. Antifungal activity of synthetic peptides derived from Impatiens balsamina antimicrobial peptides Ib-AMP1 and Ib-AMP4. Peptides. 2005;26(7):1113–9. | |
dc.relation | Patil A, Majumdar S. Echinocandins in antifungal pharmacotherapy. J Pharm Pharmacol [Internet]. 2017 Dec 1 [cited 2020 May 19];69(12):1635–60. Available from: http://doi.wiley.com/10.1111/jphp.12780 | |
dc.relation | Mercer DK, Robertson JC, Miller L, Stewart CS, O’Neil DA. NP213 (Novexatin®): A unique therapy candidate for onychomycosis with a differentiated safety and efficacy profile. Med Mycol. 2020; | |
dc.relation | Cuthbertson BJ, Deterding LJ, Williams JG, Tomer KB, Etienne K, Blackshear PJ, et al. Diversity in penaeidin antimicrobial peptide form and function. Vol. 32, Developmental and Comparative Immunology. NIH Public Access; 2008. p. 167–81. | |
dc.relation | Moreno AB, Martínez Del Pozo Á, San Segundo B. Biotechnologically relevant enzymes and proteins: Antifungal mechanism of the Aspergillus giganteus AFP against the rice blast fungus Magnaporthe grisea. Appl Microbiol Biotechnol. 2006 Oct 24;72(5):883–95. | |
dc.relation | Singh V, Praveen V, Tripathi D, Haque S, Somvanshi P, Katti SB, et al. Isolation, characterization and antifungal docking studies of wortmannin isolated from Penicillium radicum. Sci Rep. 2015 Jul 10;5. | |
dc.relation | Yasmin N, Saleem M, Naz M, Gul R, Rehman HM. Molecular Characterization, Structural Modeling, and Evaluation of Antimicrobial Activity of Basrai Thaumatin-Like Protein against Fungal Infection. Biomed Res Int. 2017;2017. | |
dc.relation | Osaki T, Omotezako M, Nagayama R, Hirata M, Iwanaga S, Kasahara J, et al. Horseshoe crab hemocyte-derived antimicrobial polypeptides, tachystatins, with sequence similarity to spider neurotoxins. J Biol Chem. 1999 Sep 10;274(37):26172–8. | |
dc.relation | Fujitani N, Kawabata SI, Osaki T, Kumaki Y, Demura M, Nitta K, et al. Structure of the antimicrobial peptide tachystatin A. J Biol Chem. 2002 Jun 28;277(26):23651–7. | |
dc.relation | Romero SM, Cardillo AB, Martínez Ceron MC, Camperi SA, Giudicessi SL. Temporins: An Approach of Potential Pharmaceutic Candidates. Surg Infect (Larchmt) [Internet]. 2020 May 1 [cited 2020 May 19];21(4):309–22. Available from: https://www.liebertpub.com/doi/10.1089/sur.2019.266 | |
dc.relation | Park KE, Jang SH, Lee J, Lee SA, Kikuchi Y, Seo Y su, et al. The roles of antimicrobial peptide, rip-thanatin, in the midgut of Riptortus pedestris. Dev Comp Immunol [Internet]. 2018;78:83–90. Available from: https://doi.org/10.1016/j.dci.2017.09.009 | |
dc.relation | Taveira GB, Carvalho AO, Rodrigues R, Trindade FG, Da Cunha M, Gomes VM. Thionin-like peptide from Capsicum annuum fruits: Mechanism of action and synergism with fluconazole against Candida species Applied microbiology. BMC Microbiol. 2016 Jan 27;16(1). | |
dc.relation | Bondaryk M, Staniszewska M, Zielińska P, Urbańczyk-Lipkowska Z. Natural antimicrobial peptides as inspiration for design of a new generation antifungal compounds. Vol. 3, Journal of Fungi. MDPI AG; 2017. | |
dc.relation | Ullivarri MF de, Arbulu S, Garcia-Gutierrez E, Cotter PD. Antifungal Peptides as Therapeutic Agents. Front Cell Infect Microbiol [Internet]. 2020 Mar 17 [cited 2021 Oct 19];10. Available from: /pmc/articles/PMC7089922/ | |
dc.relation | Raheem N, Straus SK. Mechanisms of Action for Antimicrobial Peptides With Antibacterial and Antibiofilm Functions. Vol. 10, Frontiers in Microbiology. Frontiers Media S.A.; 2019. | |
dc.relation | Kovács R, Nagy F, Tóth Z, Bozó A, Balázs B, Majoros L. Synergistic effect of nikkomycin Z with caspofungin and micafungin against Candida albicans and Candida parapsilosis biofilms. Lett Appl Microbiol [Internet]. 2019 Oct 23 [cited 2020 May 15];69(4):271–8. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/lam.13204 | |
dc.relation | Zhu J, Huang Y, Chen M, Hu C, Chen Y. Functional synergy of antimicrobial peptides and chlorhexidine acetate against gram-negative/ gram-positive bacteria and a fungus in vitro and in vivo. Infect Drug Resist. 2019;12:3227–39. | |
dc.relation | Zeidler U, Bougnoux M-E, Lupan A, Helynck O, Doyen A, Garcia Z, et al. Archive ouverte HAL - Synergy of the antibiotic colistin with echinocandin antifungals in Candida species. [Internet]. J Antimicrob Chemother. 2013 [cited 2020 May 15]. Available from: https://hal.archives-ouvertes.fr/pasteur-00849830 | |
dc.relation | Wakabayashi H, Abe S, Teraguchi S, Hayasawa H, Yamaguchi H. Inhibition of hyphal growth of azole-resistant strains of Candida albicans by triazole antifungal agents in the presence of lactoferrin- related compounds. Antimicrob Agents Chemother. 1998 Jul;42(7):1587–91. | |
dc.relation | Bondaryk M, Staniszewska M, Zielińska P, Urbańczyk-Lipkowska Z. Natural Antimicrobial Peptides as Inspiration for Design of a New Generation Antifungal Compounds. J Fungi. 2017 Aug;3(3):46. | |
dc.relation | Vargas-Casanova Y, Carlos Villamil Poveda J, Jenny Rivera-Monroy Z, Ceballos Garzón A, Fierro-Medina R, Le Pape P, et al. Palindromic Peptide LfcinB (21-25)Pal Exhibited Antifungal Activity against Multidrug-Resistant Candida. ChemistrySelect [Internet]. 2020 Jun 30 [cited 2021 Nov 24];5(24):7236–42. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/slct.202001329 | |
dc.relation | Farnaud S, Spiller C, Moriarty LC, Patel A, Gant V, Odell EW, et al. Interactions of lactoferricin-derived peptides with LPS and antimicrobial activity. FEMS Microbiol Lett. 2004;233(2):193–9. | |
dc.relation | Vargas-Casanova Y, Rodríguez-Mayor AV, Cardenas KJ, Leal-Castro AL, Muñoz-Molina LC, Fierro-Medina R, et al. Synergistic bactericide and antibiotic effects of dimeric, tetrameric, or palindromic peptides containing the RWQWR motif against Gram-positive and Gram-negative strains. RSC Adv. 2019 Mar 1;9(13):7239–45. | |
dc.relation | Park CB, Yi KS, Matsuzaki K, Kim MS, Kim SC. Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: The proline hinge is responsible for the cell-penetrating ability of buforin II. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8245–50. | |
dc.relation | Bolscher J, Nazmi K, Van Marle J, Van ’T Hof W, Veerman E. Chimerization of lactoferricin and lactoferrampin peptides strongly potentiates the killing activity against Candida albicans. Biochem Cell Biol [Internet]. 2012 Jun [cited 2020 Jun 30];90(3):378–88. Available from: https://pubmed-ncbi-nlm-nih-gov.ezproxy.javeriana.edu.co/22364313/ | |
dc.relation | Parra-Giraldo CM, Valderrama SL, Cortes-Fraile G, Garzón JR, Ariza BE, Morio F, et al. First report of sporadic cases of Candida auris in Colombia. Int J Infect Dis. 2018 Feb; | |
dc.relation | Cortés JA, Ruiz JF, Melgarejo-Moreno LN, Lemos E V. Candidemia en Colombia. Biomédica. 2020;40(1). | |
dc.relation | ATCC. Candida albicans drug resistance panel [Internet]. 2008 [cited 2020 May 6]. Available from: https://www.atcc.org/~/media/480C609DDB734DD5B754F0383580DEEF.ashx | |
dc.relation | Ceballos-Garzon A, Wintaco-Martínez LM, Velez N, Hernandez-Padilla C, De La Hoz A, Valderrama-Beltran SL, et al. Persistence of clonal azole-resistant isolates of Candida albicans from a patient with chronic mucocutaneous candidiasis in Colombia. J Glob Infect Dis [Internet]. 2020 Jan 1 [cited 2020 Aug 19];12(1):16–20. Available from: https://pubmed-ncbi-nlm-nih-gov.ezproxy.javeriana.edu.co/32165797/ | |
dc.relation | Rodrigues CF, Silva S, Henriques M. Candida glabrata: A review of its features and resistance. Vol. 33, European Journal of Clinical Microbiology and Infectious Diseases. Springer Verlag; 2014. p. 673–88. | |
dc.relation | Ceballos Garzon A, Amado D, Robert E, Parra Giraldo CM, Le Pape P. Impact of calmodulin inhibition by fluphenazine on susceptibility, biofilm formation and pathogenicity of caspofungin-resistant Candida glabrata. J Antimicrob Chemother [Internet]. 2020 May 1 [cited 2021 Apr 6];75(5):1187–93. Available from: https://academic.oup.com/jac/article/75/5/1187/5721438 | |
dc.relation | Ceballos-Garzón A, Cortes G, Morio F, Zamora-Cruz EL, Linares MY, Ariza BE, et al. Comparison between MALDI-TOF MS and MicroScan in the identification of emerging and multidrug resistant yeasts in a fourth-level hospital in Bogotá, Colombia. BMC Microbiol [Internet]. 2019 May 23 [cited 2021 Dec 1];19(1):1–10. Available from: https://bmcmicrobiol.biomedcentral.com/articles/10.1186/s12866-019-1482-y | |
dc.relation | Pineda-Castañeda HM, Rivera-Monroy ZJ, García-Castañeda JE, . Péptidos quiméricos derivados de la lactoferricina bovina y la buforina: síntesis, caracterización y evaluación de su actividad antibacteriana. Universidad Nacional de Colombia, Facultad de Ciencias,; 2019. | |
dc.relation | CLSI. M27-A3 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard—Third Edition. In 2008. | |
dc.relation | Cutrona KJ, Kaufman BA, Figueroa DM, Elmore DE. Role of arginine and lysine in the antimicrobial mechanism of histone-derived antimicrobial peptides. FEBS Lett. 2015 Dec 21;589(24):3915–20. | |
dc.relation | Cárdenas-Martínez KJ, Grueso-Mariaca D, Vargas-Casanova Y, Bonilla-Velásquez L, Estupiñán SM, Parra-Giraldo CM, et al. Effects of Substituting Arginine by Lysine in Bovine Lactoferricin Derived Peptides: Pursuing Production Lower Costs, Lower Hemolysis, and Sustained Antimicrobial Activity. Int J Pept Res Ther [Internet]. 2021;27(3):1751–62. Available from: https://doi.org/10.1007/s10989-021-10207-x | |
dc.relation | Kobayashi S, Chikushi A, Tougu S, Imura Y, Nishida M, Yano Y, et al. Membrane translocation mechanism of the antimicrobial peptide buforin 2. Biochemistry. 2004;43(49):15610–6. | |
dc.relation | Jang WS, Kim HK, Lee KY, Kim SA, Han YS, Lee IH. Antifungal activity of synthetic peptide derived from halocidin, antimicrobial peptide from the tunicate, Halocynthia aurantium. FEBS Lett. 2006 Feb 20;580(5):1490–6. | |
dc.relation | Ciumac D, Gong H, Hu X, Lu JR. Membrane targeting cationic antimicrobial peptides. J Colloid Interface Sci [Internet]. 2019;537:163–85. Available from: https://doi.org/10.1016/j.jcis.2018.10.103 | |
dc.relation | Moghal MMR, Hossain F, Yamazaki M. Action of antimicrobial peptides and cell-penetrating peptides on membrane potential revealed by the single GUV method. Biophys Rev. 2020;12(2):339–48 | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Péptidos quiméricos derivados de Lactoferricina Bovina y Buforina II: actividad antifúngica contra aislados clínicos y cepas de referencia de Candida spp | |
dc.type | Trabajo de grado - Maestría | |