dc.contributor | Suárez Méndez, Camilo Alberto | |
dc.contributor | Bioprocesos y Flujos Reactivos | |
dc.creator | Fajardo Figueroa, Lina Maria | |
dc.date.accessioned | 2023-01-25T21:41:23Z | |
dc.date.accessioned | 2023-06-06T23:49:06Z | |
dc.date.available | 2023-01-25T21:41:23Z | |
dc.date.available | 2023-06-06T23:49:06Z | |
dc.date.created | 2023-01-25T21:41:23Z | |
dc.date.issued | 2022-10-10 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/83129 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6651545 | |
dc.description.abstract | En el presente trabajo se aborda el análisis de la producción de proteínas recombinantes con interés bio-farmacéutico a través de la tecnología de expresión en células de insecto mediante la infección con baculovirus recombinantes. Esta es una estrategia ampliamente utilizada que aún tiene desafíos en el diseño, modelamiento y entendimiento (Monteiro, 2015). En primer lugar, se analiza bajo una perspectiva termodinámica de caja negra la etapa de crecimiento celular encontrando que su modelamiento es posible a través de una metodología, dirigida principalmente a microorganismos, la cual se puede adaptar a eucariotas con especial consideración en la definición y diferenciación de la fuente de energía, carbono y nitrógeno. En particular, cuando se considera en el análisis una fuente de nitrógeno orgánica, la cual induce un sobreflujo de electrones que pueden terminar en biomasa o en subrpoductos carbonados como lactato. Aunque no fue posible reproducir los escenarios planteados en un modelo metabólico, mediante el análisis metabólico se identificó la importancia de considerar las rutas de asimilación de nitrógeno (orgánico e inorgánico) y el uso de métodos estadísticos como herramienta para la mejora de estos procesos. Finalmente, basado en el análisis de tiempos característicos derivados de cinéticas reportadas para la etapa de infección y producción en la literatura, se encontró que el evento celular que principalmente afecta la homogeneidad y la productividad de las proteínas recombinantes es el evento de unión virus-célula ya que su tiempo característico puede variar considerablemente y afectar otros subprocesos. Además, se encontró que, en la producción de proteínas complejas a nivel intracelular, su expresión se ve favorecida en linajes celulares con velocidades de internalización más bajas. (Texto tomado de la fuente) | |
dc.description.abstract | Here, the analysis of producing recombinant proteins of bio-pharmaceutical interest based on its expression in insect cells through infection with recombinant baculoviruses was addressed. This approach is a widely used strategy that still has challenges in design, modeling and understanding (Monteiro, 2015). First, the cell growth stage was analyzed from a black box thermodynamic perspective, showing that this modeling approach may be used to this biological model, even though it was formerly meant for microorganisms. The methodology can be applied to eukaryotes having special consideration on the definition and differentiation of the energy, carbon, and nitrogen sources. When an organic nitrogen source is considered in the analysis, it induces an overflow of electrons that can end up in biomass or in carbon by-products such as lactate. Although it was not possible to reproduce some scenarios proposed in a metabolic model, the metabolic analysis did show the importance of considering nitrogen assimilation routes (organic and inorganic) and the use of statistical methods as a tool to improve these processes. Finally, based on the analysis of characteristic times derived from kinetics reported for the infection and production stage in literature, it was found that the virus-cell union is the cellular event that mainly affects homogeneity and productivity of recombinant proteins since its characteristic time can vary considerably affecting other subsequent subprocesses. In addition, it is shown that their expression is favored in cell lines with lower internalization rates in the production of complex proteins at the intracellular level. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Medellín - Minas - Maestría en Ingeniería - Ingeniería Química | |
dc.publisher | Facultad de Minas | |
dc.publisher | Medellín, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | RedCol | |
dc.relation | LaReferencia | |
dc.relation | Adnan, N. A. A., Suhaimi, S. N., Abd-Aziz, S., Hassan, M. A., & Phang, L. Y. (2014). Optimization of bioethanol production from glycerol by Escheric h ia coli SS1.Renewable Energy, 66, 625–633. https://doi.org/10.1016/j.renene.2013.12.032 | |
dc.relation | Almudena, L. M. (1999). Desarrollo de Modelos Cinéticos para Bioprocesos: Aplicación a la Producción de Xantano. Universidad Complutense de Madrid | |
dc.relation | Antoniewicz, M. R. (2015). Methods and advances in metabolic flux analysis: a mini-review. Journal of Industrial Microbiology and Biotechnology, 42(3), 317–325.https://doi.org/10.1007/s10295-015-1585-x | |
dc.relation | Antoniewicz, M. R. (2021). A guide to metabolic flux analysis in metabolic engineering:Methods, tools and applications. Metabolic Engineering, 63(October 2020), 2–12.https://doi.org/10.1016/j.ymben.2020.11.002 | |
dc.relation | Bédard, C., Tom, R., & Kamen, A. (1993). Growth, Nutrient Consumption, and End‐Product Accumulation in Sf‐9 and BTI‐EAA Insect Cell Cultures: Insights into Growth Limitation and Metabolism. Biotechnology Progress, 9(6), 615–624.https://doi.org/10.1021/bp00024a008 | |
dc.relation | Bernal, V., Carinhas, N., Yokomizo, A. Y., Carrondo, M. J. T., & Alves, P. M. (2009). Cell density effect in the baculovirus-insect cells system: A quantitative analysis of energetic metabolism. Biotechnology and Bioengineering, 104(1), 162–180. https://doi.org/10.1002/bit.22364 | |
dc.relation | Berretta, M. F., López, M. G., Taboga, O., Sciocco-Cap, A., & Romanowski, V. (2013).Functional analysis of Spodoptera frugiperda nucleopolyhedrovirus late expression factors in Sf9 cells. Virus Genes, 46(1), 152–161. https://doi.org/10.1007/s11262-012-0843-5 | |
dc.relation | Bhatia, R., Jesionowski, G., Ferrance, J., & Ataai, M. M. (1997). Insect cell physiology. In Cytotechnology (Vol. 24, Issue 1, pp. 1–9). https://doi.org/10.1023/A:1007985208221 | |
dc.relation | Blissard, G. W., & Theilmann, D. A. (2018). Baculovirus entry and egress from insect cells. Annual Review of Virology, 5, 113–139. https://doi.org/10.1146/annurev-
virology-092917-043356 | |
dc.relation | Bosma, B., du Plessis, F., Ehlert, E., Nijmeijer, B., de Haan, M., Petry, H., & Lubelski, J.
(2018). Optimization of viral protein ratios for production of rAAV serotype 5 in the
baculovirus system. Gene Therapy, 25(6), 415–424. https://doi.org/10.1038/s41434-
018-0034-7 | |
dc.relation | Carinhas, N., Bernal, V., Monteiro, F., Carrondo, M. J. T., Oliveira, R., & Alves, P. M.
(2010). Improving baculovirus production at high cell density through manipulation of
energy metabolism. Metabolic Engineering, 12(1), 39–52.
https://doi.org/10.1016/j.ymben.2009.08.008 | |
dc.relation | Carinhas, N., Bernal, V., Teixeira, A. P., Carrondo, M. J. T., Alves, P. M., & Oliveira, R.
(2011). Hybrid metabolic flux analysis: Combining stoichiometric and statistical
constraints to model the formation of complex recombinant products. BMC Systems
Biology, 5. https://doi.org/10.1186/1752-0509-5-34 | |
dc.relation | Chang, D., Liu, Y., Chen, Y., Hu, X., Burov, A., Puzyr, A., Bondar, V., & Yao, L. (2020).Study of the immunogenicity of the VP2 protein of canine parvovirus produced using
an improved Baculovirus expression system. BMC Veterinary Research, 16(1), 1–9.
https://doi.org/10.1186/s12917-020-02422-3 | |
dc.relation | Chiou, T. W., Hsieh, Y. C., & Ho, C. S. (2000). High density culture of insect cells using
rational medium design and feeding strategy. Bioprocess Engineering, 22(6), 483–
491. https://doi.org/10.1007/s004499900091 | |
dc.relation | Contreras-Gómez, A., Sánchez-Mirón, A., García-Camacho, F., Molina-Grima, E., &
Chisti, Y. (2014). Protein production using the baculovirus-insect cell expression
system. Biotechnology Progress, 30(1), 1–18. https://doi.org/10.1002/btpr.1842 | |
dc.relation | Contreras-Gómez, Antonio, Beas-Catena, A., Sánchez-Mirón, A., García-Camacho, F., &
Molina Grima, E. (2018). The use of an artificial neural network to model the infection
strategy for baculovirus production in suspended insect cell cultures.
Cytotechnology, 70(2), 555–565. https://doi.org/10.1007/s10616-017-0128-x | |
dc.relation | Cox, M., Alves, P., Carrondo, M., & Vicente, T. (2014). Industrial Large Scale of
Suspension Culture of Insect Cells. In Industrial Scale Suspension Culture of Living
Cells (First Edit). | |
dc.relation | Cox, M. M. J. (2012). Recombinant protein vaccines produced in insect cells. Vaccine,
30(10), 1759–1766. https://doi.org/10.1016/j.vaccine.2012.01.016 | |
dc.relation | Cueto Rojas, H. F. (2016). Anaerobic Amino Acid Production in Saccharomyces
cerevisiae: A Thermodynamics Approach [Delft University of Technology]. In TU
Delft University. https://doi.org/https://doi.org/10.4233/uuid:a565936a-b081-4581-
9eb0-8c66bff307a8 | |
dc.relation | de Gooijer, C. D., van Lier, F. L. J., van den End, E. J., Vlak, J. M., & Tramper, J. (1989).
A model for baculovirus production with continuous insect cell cultures. Applied
Microbiology and Biotechnology, 30(5), 497–501.
https://doi.org/10.1007/BF00263855 | |
dc.relation | Dee, K. U., & Shuler, M. L. (1997). A mathematical model of the trafficking of acid-
dependent enveloped viruses: Application to the binding, uptake, and nuclear
accumulation of baculovirus. Biotechnology and Bioengineering, 54(5), 468–490.
https://doi.org/10.1002/(SICI)1097-0290(19970605)54:5<468::AID-BIT7>3.0.CO;2-C | |
dc.relation | Doran, M. P. (2013). Engineering Principles Second Edition. In Academic Press. | |
dc.relation | Doverskog, M., Jacobsson, U., Chapman, B. E., Kuchel, P. W., & Häggström, L. (2000).
Determination of NADH-dependent glutamate synthase (GOGAT) in Spodoptera
frugiperda (Sf9) insect cells by a selective 1H/15N NMR in vitro assay. Journal of
Biotechnology, 79(1), 87–97. https://doi.org/10.1016/S0168-1656(00)00215-7 | |
dc.relation | Drugmand, J. C. (2007). Characterization of insect cell lines is required for appropriate
industrial processes : case study of high-five cells for recombinant protein production.
Universidad Católica de Lovaina. | |
dc.relation | Drugmand, J., Schneider, Y., & Agathos, S. N. (2012). Insect cells as factories for
biomanufacturing. Biotechnology Advances, 30(5), 1140–1157.
https://doi.org/10.1016/j.biotechadv.2011.09.014 | |
dc.relation | Fabre, L. L., Arrías, P. N., Masson, T., Pidre, M. L., & Romanowski, V. (2019).
Baculovirus-derived vectors for immunization and therapeutic applications. Emerging
and Reemerging Viral Pathogens: Volume 2: Applied Virology Approaches Related
to Human, Animal and Environmental Pathogens, 197–224.
https://doi.org/10.1016/B978-0-12-814966-9.00011-1 | |
dc.relation | Ferrance, J. P., Goel, A., & Ataai, M. M. (1993). Utilization of glucose and amino acids in
insect cell cultures: Quantifying the metabolic flows within the primary pathways and
medium development. Biotechnology and Bioengineering, 42(6), 697–707 | |
dc.relation | Garnier, A., Voyer, R., Tom, R., Perret, S., Jardin, B., & Kamen, A. (1996). Dissolved
carbon dioxide accumulation in a large scale and high density production of TGFβ
receptor with baculovirus infected Sf-9 cells. Cytotechnology, 22(1–3), 53–63.
https://doi.org/10.1007/BF00353924 | |
dc.relation | Ghosh, A., Dhall, H., & Dietzgen, R. G. (2020). Insect cell culture as a tool in plant virus
research : a historical overview. | |
dc.relation | Gotoh, T., Chiba, K., & Kikuchi, K. I. (2004). Oxygen consumption profiles of Sf-9 insect
cells and their culture at low temperature to circumvent oxygen starvation.
Biochemical Engineering Journal, 17(2), 71–78. https://doi.org/10.1016/S1369-
703X(03)00140-2 | |
dc.relation | Gotoh, T., Fukuhara, M., & Kikuchi, K. I. (2008). Mathematical model for change in
diameter distribution of baculovirus-infected Sf-9 insect cells. Biochemical
Engineering Journal, 40(2), 379–386. https://doi.org/10.1016/j.bej.2008.01.008 | |
dc.relation | Grzywacz, D. (2017). Basic and Applied Research: Baculovirus. In Microbial Control of
Insect and Mite Pests: From Theory to Practice. Elsevier Inc.
https://doi.org/10.1016/B978-0-12-803527-6.00003-2 | |
dc.relation | Hefferon, K. L., Oomens, A. G. P., Monsma, S. A., Finnerty, C. M., & Blissard, G. W.
(1999). Host cell receptor binding by baculovirus GP64 and kinetics of virion entry.
Virology, 258(2), 455–468. https://doi.org/10.1006/viro.1999.9758 | |
dc.relation | Heijnen, J. J., & Kleerebezem, R. (2010). Bioenergetics of Microbial Growth.
Encyclopedia of Industrial Biotechnology, 1–24.
https://doi.org/10.1002/9780470054581.eib084 | |
dc.relation | Heinen, J. J. (2010). Impact of thermodynamic principles in systems biology. In Advances
in Biochemical Engineering/Biotechnology (Vol. 121, pp. 139–162). Springer, Berlin,
Heidelberg. https://doi.org/10.1007/10_2009_63 | |
dc.relation | Hu, Y. C., & Bentley, W. E. (2000). A kinetic and statistical-thermodynamic model for
baculovirus infection and virus-like particle assembly in suspended insect cells.
Chemical Engineering Science, 55(19), 3991–4008. https://doi.org/10.1016/S0009-
2509(99)00579-5 | |
dc.relation | Jhaveri, R. (2021). The Next Set of COVID-19 Vaccines: Leveraging New Development
Platforms to Increase Access for More People Around the World. Clinical
Therapeutics, 1–9. https://doi.org/10.1016/j.clinthera.2021.03.007 | |
dc.relation | Kamen, A. A., Venereo-sanchez, A., & Chahal, P. S. (2021). Advancements in molecular
design and bioprocessing of recombinant adeno-associated virus gene delivery
vectors using the insect-cell baculovirus expression platform. Biotechnology Journal,
16(April 2020), 1–17. https://doi.org/10.1002/biot.202000021 | |
dc.relation | Liu, F., Wu, X., Li, L., Liu, Z., & Wang, Z. (2013). Use of baculovirus expression system
for generation of virus-like particles: Successes and challenges. Protein Expression
and Purification, 90(2), 104–116. https://doi.org/10.1016/j.pep.2013.05.009 | |
dc.relation | Liu, Y., Yang, C., Liu, C., Shen, C., Shiau, L., & Ioeng, J. B. I. B. (2010). Using a fed-
batch culture strategy to enhance rAAV production in the baculovirus / insect cell
system. JBIOSC, 110(2), 187–193. https://doi.org/10.1016/j.jbiosc.2010.02.004 | |
dc.relation | Lubelski, J., Hermens, W., & Petry, H. (2014). Insect Cell-Based Recombinant Adeno-
Associated Virus Production: Molecular Process Optimization. BioProcessing
Journal, 13(3), 6–11. https://doi.org/10.12665/j133.lubelski | |
dc.relation | Marheineke, K., Grünewald, S., Christie, W., & Reilander, H. (1998). Lipid composition of
Spodoptera frugiperda (Sf9) and Trichoplusia ni (Tn) insect cells used for baculovirus infection. FEBS Letters, 441(1), 49–52. https://doi.org/10.1016/S0014-
5793(98)01523-3 | |
dc.relation | Miller, W. M., Wilke, C. R., & Blanch, H. W. (1989). Transient responses of hybridoma
cells to nutrient additions in continuous culture: I. Glucose pulse and step changes.
Biotechnology and Bioengineering, 33(4), 477–486.
https://doi.org/10.1002/bit.260330413 | |
dc.relation | Monteiro, F. (2015). Rational Design of Insect Cell-based Vaccine Production - Bridging
Metabolomics with Mathematical Tools to Study Virus-Host Interactions. 207.
www.itqb.unl.pt%5Cnwww.ibet.pt | |
dc.relation | Monteiro, F., Bernal, V., & Alves, P. M. (2017). The role of host cell physiology in the
productivity of the baculovirus-insect cell system: Fluxome analysis of Trichoplusia ni
and Spodoptera frugiperda cell lines. Biotechnology and Bioengineering, 114(3),
674–684. https://doi.org/10.1002/bit.26089 | |
dc.relation | Monteiro, F., Carinhas, N., Carrondo, M. J. T., Bernal, V., & Alves, P. M. (2012). Toward
system-level understanding of baculovirus-host cell interactions: From molecular
fundamental studies to large-scale proteomics approaches. In Frontiers in
Microbiology (Vol. 3, Issue NOV). https://doi.org/10.3389/fmicb.2012.00391 | |
dc.relation | Morgenroth, E. (2015). How are characteristic times ( char ) and non-dimensional
numbers related ? Fall, 1–8. https://www.ethz.ch/content/dam/ethz/special-
interest/baug/ifu/water-management-
dam/documents/education/Lectures/UWM3/SAMM.HS15.Handout.CharacteristicTim
es.pdf | |
dc.relation | Mukhopadhyay, A., Mukhopadhyay, S. N., & Talwar, G. P. (1993). Influence of serum
proteins on the kinetics of attachment of vero cells to cytodex microcarriers. Journal
of Chemical Technology & Biotechnology, 56(4), 369–374.
https://doi.org/10.1002/jctb.280560407 | |
dc.relation | Nandakumar, S., Ma, H., & Khan, A. S. (2017). Whole-Genome Sequence of the
Spodoptera frugiperda Sf9 Insect Cell Line. In American Society for Microbiology. | |
dc.relation | Niklas, J., Schneider, K., & Heinzle, E. (2010). Metabolic flux analysis in eukaryotes.
Current Opinion in Biotechnology, 21(1), 63–69.
https://doi.org/10.1016/j.copbio.2010.01.011 | |
dc.relation | Öhman, L., Ljunggren, J., & Häggström, L. (1995). Induction of a metabolic switch in
insect cells by substrate-limited fed batch cultures. Applied Microbiology and
Biotechnology, 43(6), 1006–1013. https://doi.org/10.1007/BF00166917 | |
dc.relation | Öhman, Lars., Alarcon, M., Ljunggren, J., Ramqvist, A. K., & Häggström, L. (1996).
Glutamine is not an essential amino acid for Sf-9 insect cells. Biotechnology Letters,
18(7), 765–770. https://doi.org/10.1007/BF00127885 | |
dc.relation | Ortega Quintana, F. A., Álvarez, H., & Botero Castro, H. A. (2017). Enfrentando el
modelado de bioprocesos: una revisión de las metodologías de modelado. Revista
ION, 30(1), 73–90. https://doi.org/10.18273/revion.v30n1-2017006 | |
dc.relation | Paul, A., & Prakash, S. (2010). Baculovirus reveals a new pH-dependent direct cell-fusion
pathway for cell entry and transgene delivery. Future Virology, 5(5), 533–537.
https://doi.org/10.2217/fvl.10.45 | |
dc.relation | Possee, R. D., Chambers, A. C., Graves, L. P., Aksular, M., & King, L. A. (2020). Recent
Developments in the Use of Baculovirus Expression Vectors. | |
dc.relation | Roldão, A., Vieira, H. L. A., Charpilienne, A., Poncet, D., Roy, P., Carrondo, M. J. T.,
Alves, P. M., & Oliveira, R. (2007). Modeling rotavirus-like particles production in a
baculovirus expression vector system: Infection kinetics, baculovirus DNA
replication, mRNA synthesis and protein production. Journal of Biotechnology,
128(4), 875–894. https://doi.org/10.1016/j.jbiotec.2007.01.003 | |
dc.relation | Sandler, S. I. (2006). Chemical, Biochemical Engineering, And TermodinamicsChemical,
Biochemicai Engineering, And Termodinamic (Wiley (ed.); 4ta Edición). | |
dc.relation | Saxena, A., Byram, P. K., Singh, S. K., Chakraborty, J., Murhammer, D., & Giri, L. (2018).
A structured review of baculovirus infection process: Integration of mathematical
models and biomolecular information on cell–virus interaction. Journal of General
Virology, 99(9), 1151–1171. https://doi.org/10.1099/jgv.0.001108 | |
dc.relation | Shu, B., Zhang, J., Sethuraman, V., Cui, G., Yi, X., & Zhong, G. (2017). Transcriptome
analysis of Spodoptera frugiperda Sf9 cells reveals putative apoptosis-related genes
and a preliminary apoptosis mechanism induced by azadirachtin. Scientific Reports,
7(1), 1–13. https://doi.org/10.1038/s41598-017-12713-9 | |
dc.relation | Slack, J., Arif, B. M., Monteiro, F., Carinhas, N., Carrondo, M. J. T., Bernal, V., & Alves, P.
M. (2006). The Baculoviruses Occlusion-Derived Virus: Virion Structure and
Function. Advances in Virus Research, 3(NOV), 99–165.
https://doi.org/10.3389/fmicb.2012.00391 | |
dc.relation | Sokolenko, S., George, S., Wagner, A., Tuladhar, A., Andrich, J. M. S., & Aucoin, M. G.
(2012). Co-expression vs. co-infection using baculovirus expression vectors in insect
cell culture: Benefits and drawbacks. Biotechnology Advances, 30(3), 766–781.
https://doi.org/10.1016/j.biotechadv.2012.01.009 | |
dc.relation | Stein, R. (2020). Process Intensification of Spodoptera frugiperda ( Sf ) Cell Growth via
Multi-Parallel Bioreactor System (Issue 2012). MIT Sloan School of Management. | |
dc.relation | Suarez-Zuluaga, D. A., Borchert, D., Driessen, N. N., Bakker, W. A. M., & Thomassen, Y.
E. (2019). Accelerating bioprocess development by analysis of all available data: A
USP case study. Vaccine, 37(47), 7081–7089.
https://doi.org/10.1016/j.vaccine.2019.07.026 | |
dc.relation | Széliová, D., Štor, J., Thiel, I., Weinguny, M., Hanscho, M., Lhota, G., Borth, N.,
Zanghellini, J., Ruckerbauer, D. E., & Rocha, I. (2021). Inclusion of maintenance
energy improves the intracellular flux predictions of CHO. In PLoS Computational
Biology (Vol. 17, Issue 6). https://doi.org/10.1371/journal.pcbi.1009022 | |
dc.relation | Tripathi, N. K., & Shrivastava, A. (2019). Recent Developments in Bioprocessing of
Recombinant Proteins: Expression Hosts and Process Development. Frontiers in
Bioengineering and Biotechnology, 7(December).
https://doi.org/10.3389/fbioe.2019.00420 | |
dc.relation | van Oers, M. M. (2011). Opportunities and challenges for the baculovirus expression
system. Journal of Invertebrate Pathology, 107(SUPPL.), S3–S15.
https://doi.org/10.1016/j.jip.2011.05.001 | |
dc.relation | Van Oers, M. M., Pijlman, G. P., & Vlak, J. M. (2015). Thirty years of baculovirus-insect
cell protein expression: From dark horse to mainstream technology. Journal of
General Virology, 96(1), 6–23. https://doi.org/10.1099/vir.0.067108-0 | |
dc.relation | VLAK, J. M., de GOOIJER, C. D., TRAMPER, J., & MILTENBURGER, H. G. (2002).
Insect Cell Cultures: Fundamental and Applied Aspects. 1, 303. | |
dc.relation | von Kamp, A., Thiele, S., Hädicke, O., & Klamt, S. (2017). Use of CellNetAnalyzer in
biotechnology and metabolic engineering. Journal of Biotechnology, 261(January),
221–228. https://doi.org/10.1016/j.jbiotec.2017.05.001 | |
dc.relation | Von Stockar, U. (2013). The role of thermodynamics in biochemical engineering. In
Biothermodynamics: The Role of Thermodynamics in Biochemical Engineering.
EFPL Press. https://doi.org/10.1201/b15428-3 | |
dc.relation | von Stosch, M., Carinhas, N., & Oliveira, R. (2014). Hybrid modeling for systems biology:
Theory and practice. Modeling and Simulation in Science, Engineering and
Technology, 65, 367–388. https://doi.org/10.1007/978-3-319-08437-4_7 | |
dc.relation | Wang, L., Lai, L., Ouyang, Q., & Tang, C. (2011). Flux balance analysis of ammonia
assimilation network in E. coli predicts preferred regulation point. PLoS ONE, 6(1).
https://doi.org/10.1371/journal.pone.0016362 | |
dc.relation | Wickham, T. J., Shuler, M. L., Hammer, D. A., Granados, R. R., & Wood, H. A. (1992).
Equilibrium and kinetic analysis of Autographa californica nuclear polyhedrosis virus
attachment to different insect cell lines. Journal of General Virology, 73(12), 3185–
3194. https://doi.org/10.1099/0022-1317-73-12-3185 | |
dc.relation | Xie, L., & Wang, D. I. C. (1994). Stoichiometric analysis of animal cell growth and its
application in medium design. Biotechnology and Bioengineering, 43(11), 1164–
1174. https://doi.org/10.1002/bit.260431122 | |
dc.relation | Yu, Q., Xiong, Y., Gao, H., Liu, J., Chen, Z., Wang, Q., & Wen, D. (2015). Comparative
proteomics analysis of Spodoptera frugiperda cells during Autographa californica
multiple nucleopolyhedrovirus infection. Virology Journal, 12(1), 1–11.
https://doi.org/10.1186/s12985-015-0346-9 | |
dc.relation | Zhang, Y., Enden, G., Wei, W., Zhou, F., Chen, J., & Merchuk, J. C. (2020). Baculovirus
transit through insect cell membranes: A mechanistic approach. Chemical
Engineering Science, 223, 115727. https://doi.org/10.1016/j.ces.2020.115727 | |
dc.relation | Haas, R. (2004). Asynchronies in Synchronous Baculovi rus Infections. The University of Queensland. | |
dc.rights | Atribución-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Análisis termodinámico y metabólico de un sistema biológico células de insecto Spodoptera frugiperda (sf9) y su infección con un virus recombinante Autographa californica nucleopolyhedrovirus (BvGCN4-NA1) | |
dc.type | Trabajo de grado - Maestría | |