dc.contributorSuárez Méndez, Camilo Alberto
dc.contributorBioprocesos y Flujos Reactivos
dc.creatorFajardo Figueroa, Lina Maria
dc.date.accessioned2023-01-25T21:41:23Z
dc.date.accessioned2023-06-06T23:49:06Z
dc.date.available2023-01-25T21:41:23Z
dc.date.available2023-06-06T23:49:06Z
dc.date.created2023-01-25T21:41:23Z
dc.date.issued2022-10-10
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/83129
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6651545
dc.description.abstractEn el presente trabajo se aborda el análisis de la producción de proteínas recombinantes con interés bio-farmacéutico a través de la tecnología de expresión en células de insecto mediante la infección con baculovirus recombinantes. Esta es una estrategia ampliamente utilizada que aún tiene desafíos en el diseño, modelamiento y entendimiento (Monteiro, 2015). En primer lugar, se analiza bajo una perspectiva termodinámica de caja negra la etapa de crecimiento celular encontrando que su modelamiento es posible a través de una metodología, dirigida principalmente a microorganismos, la cual se puede adaptar a eucariotas con especial consideración en la definición y diferenciación de la fuente de energía, carbono y nitrógeno. En particular, cuando se considera en el análisis una fuente de nitrógeno orgánica, la cual induce un sobreflujo de electrones que pueden terminar en biomasa o en subrpoductos carbonados como lactato. Aunque no fue posible reproducir los escenarios planteados en un modelo metabólico, mediante el análisis metabólico se identificó la importancia de considerar las rutas de asimilación de nitrógeno (orgánico e inorgánico) y el uso de métodos estadísticos como herramienta para la mejora de estos procesos. Finalmente, basado en el análisis de tiempos característicos derivados de cinéticas reportadas para la etapa de infección y producción en la literatura, se encontró que el evento celular que principalmente afecta la homogeneidad y la productividad de las proteínas recombinantes es el evento de unión virus-célula ya que su tiempo característico puede variar considerablemente y afectar otros subprocesos. Además, se encontró que, en la producción de proteínas complejas a nivel intracelular, su expresión se ve favorecida en linajes celulares con velocidades de internalización más bajas. (Texto tomado de la fuente)
dc.description.abstractHere, the analysis of producing recombinant proteins of bio-pharmaceutical interest based on its expression in insect cells through infection with recombinant baculoviruses was addressed. This approach is a widely used strategy that still has challenges in design, modeling and understanding (Monteiro, 2015). First, the cell growth stage was analyzed from a black box thermodynamic perspective, showing that this modeling approach may be used to this biological model, even though it was formerly meant for microorganisms. The methodology can be applied to eukaryotes having special consideration on the definition and differentiation of the energy, carbon, and nitrogen sources. When an organic nitrogen source is considered in the analysis, it induces an overflow of electrons that can end up in biomass or in carbon by-products such as lactate. Although it was not possible to reproduce some scenarios proposed in a metabolic model, the metabolic analysis did show the importance of considering nitrogen assimilation routes (organic and inorganic) and the use of statistical methods as a tool to improve these processes. Finally, based on the analysis of characteristic times derived from kinetics reported for the infection and production stage in literature, it was found that the virus-cell union is the cellular event that mainly affects homogeneity and productivity of recombinant proteins since its characteristic time can vary considerably affecting other subsequent subprocesses. In addition, it is shown that their expression is favored in cell lines with lower internalization rates in the production of complex proteins at the intracellular level.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Minas - Maestría en Ingeniería - Ingeniería Química
dc.publisherFacultad de Minas
dc.publisherMedellín, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationRedCol
dc.relationLaReferencia
dc.relationAdnan, N. A. A., Suhaimi, S. N., Abd-Aziz, S., Hassan, M. A., & Phang, L. Y. (2014). Optimization of bioethanol production from glycerol by Escheric h ia coli SS1.Renewable Energy, 66, 625–633. https://doi.org/10.1016/j.renene.2013.12.032
dc.relationAlmudena, L. M. (1999). Desarrollo de Modelos Cinéticos para Bioprocesos: Aplicación a la Producción de Xantano. Universidad Complutense de Madrid
dc.relationAntoniewicz, M. R. (2015). Methods and advances in metabolic flux analysis: a mini-review. Journal of Industrial Microbiology and Biotechnology, 42(3), 317–325.https://doi.org/10.1007/s10295-015-1585-x
dc.relationAntoniewicz, M. R. (2021). A guide to metabolic flux analysis in metabolic engineering:Methods, tools and applications. Metabolic Engineering, 63(October 2020), 2–12.https://doi.org/10.1016/j.ymben.2020.11.002
dc.relationBédard, C., Tom, R., & Kamen, A. (1993). Growth, Nutrient Consumption, and End‐Product Accumulation in Sf‐9 and BTI‐EAA Insect Cell Cultures: Insights into Growth Limitation and Metabolism. Biotechnology Progress, 9(6), 615–624.https://doi.org/10.1021/bp00024a008
dc.relationBernal, V., Carinhas, N., Yokomizo, A. Y., Carrondo, M. J. T., & Alves, P. M. (2009). Cell density effect in the baculovirus-insect cells system: A quantitative analysis of energetic metabolism. Biotechnology and Bioengineering, 104(1), 162–180. https://doi.org/10.1002/bit.22364
dc.relationBerretta, M. F., López, M. G., Taboga, O., Sciocco-Cap, A., & Romanowski, V. (2013).Functional analysis of Spodoptera frugiperda nucleopolyhedrovirus late expression factors in Sf9 cells. Virus Genes, 46(1), 152–161. https://doi.org/10.1007/s11262-012-0843-5
dc.relationBhatia, R., Jesionowski, G., Ferrance, J., & Ataai, M. M. (1997). Insect cell physiology. In Cytotechnology (Vol. 24, Issue 1, pp. 1–9). https://doi.org/10.1023/A:1007985208221
dc.relationBlissard, G. W., & Theilmann, D. A. (2018). Baculovirus entry and egress from insect cells. Annual Review of Virology, 5, 113–139. https://doi.org/10.1146/annurev- virology-092917-043356
dc.relationBosma, B., du Plessis, F., Ehlert, E., Nijmeijer, B., de Haan, M., Petry, H., & Lubelski, J. (2018). Optimization of viral protein ratios for production of rAAV serotype 5 in the baculovirus system. Gene Therapy, 25(6), 415–424. https://doi.org/10.1038/s41434- 018-0034-7
dc.relationCarinhas, N., Bernal, V., Monteiro, F., Carrondo, M. J. T., Oliveira, R., & Alves, P. M. (2010). Improving baculovirus production at high cell density through manipulation of energy metabolism. Metabolic Engineering, 12(1), 39–52. https://doi.org/10.1016/j.ymben.2009.08.008
dc.relationCarinhas, N., Bernal, V., Teixeira, A. P., Carrondo, M. J. T., Alves, P. M., & Oliveira, R. (2011). Hybrid metabolic flux analysis: Combining stoichiometric and statistical constraints to model the formation of complex recombinant products. BMC Systems Biology, 5. https://doi.org/10.1186/1752-0509-5-34
dc.relationChang, D., Liu, Y., Chen, Y., Hu, X., Burov, A., Puzyr, A., Bondar, V., & Yao, L. (2020).Study of the immunogenicity of the VP2 protein of canine parvovirus produced using an improved Baculovirus expression system. BMC Veterinary Research, 16(1), 1–9. https://doi.org/10.1186/s12917-020-02422-3
dc.relationChiou, T. W., Hsieh, Y. C., & Ho, C. S. (2000). High density culture of insect cells using rational medium design and feeding strategy. Bioprocess Engineering, 22(6), 483– 491. https://doi.org/10.1007/s004499900091
dc.relationContreras-Gómez, A., Sánchez-Mirón, A., García-Camacho, F., Molina-Grima, E., & Chisti, Y. (2014). Protein production using the baculovirus-insect cell expression system. Biotechnology Progress, 30(1), 1–18. https://doi.org/10.1002/btpr.1842
dc.relationContreras-Gómez, Antonio, Beas-Catena, A., Sánchez-Mirón, A., García-Camacho, F., & Molina Grima, E. (2018). The use of an artificial neural network to model the infection strategy for baculovirus production in suspended insect cell cultures. Cytotechnology, 70(2), 555–565. https://doi.org/10.1007/s10616-017-0128-x
dc.relationCox, M., Alves, P., Carrondo, M., & Vicente, T. (2014). Industrial Large Scale of Suspension Culture of Insect Cells. In Industrial Scale Suspension Culture of Living Cells (First Edit).
dc.relationCox, M. M. J. (2012). Recombinant protein vaccines produced in insect cells. Vaccine, 30(10), 1759–1766. https://doi.org/10.1016/j.vaccine.2012.01.016
dc.relationCueto Rojas, H. F. (2016). Anaerobic Amino Acid Production in Saccharomyces cerevisiae: A Thermodynamics Approach [Delft University of Technology]. In TU Delft University. https://doi.org/https://doi.org/10.4233/uuid:a565936a-b081-4581- 9eb0-8c66bff307a8
dc.relationde Gooijer, C. D., van Lier, F. L. J., van den End, E. J., Vlak, J. M., & Tramper, J. (1989). A model for baculovirus production with continuous insect cell cultures. Applied Microbiology and Biotechnology, 30(5), 497–501. https://doi.org/10.1007/BF00263855
dc.relationDee, K. U., & Shuler, M. L. (1997). A mathematical model of the trafficking of acid- dependent enveloped viruses: Application to the binding, uptake, and nuclear accumulation of baculovirus. Biotechnology and Bioengineering, 54(5), 468–490. https://doi.org/10.1002/(SICI)1097-0290(19970605)54:5<468::AID-BIT7>3.0.CO;2-C
dc.relationDoran, M. P. (2013). Engineering Principles Second Edition. In Academic Press.
dc.relationDoverskog, M., Jacobsson, U., Chapman, B. E., Kuchel, P. W., & Häggström, L. (2000). Determination of NADH-dependent glutamate synthase (GOGAT) in Spodoptera frugiperda (Sf9) insect cells by a selective 1H/15N NMR in vitro assay. Journal of Biotechnology, 79(1), 87–97. https://doi.org/10.1016/S0168-1656(00)00215-7
dc.relationDrugmand, J. C. (2007). Characterization of insect cell lines is required for appropriate industrial processes : case study of high-five cells for recombinant protein production. Universidad Católica de Lovaina.
dc.relationDrugmand, J., Schneider, Y., & Agathos, S. N. (2012). Insect cells as factories for biomanufacturing. Biotechnology Advances, 30(5), 1140–1157. https://doi.org/10.1016/j.biotechadv.2011.09.014
dc.relationFabre, L. L., Arrías, P. N., Masson, T., Pidre, M. L., & Romanowski, V. (2019). Baculovirus-derived vectors for immunization and therapeutic applications. Emerging and Reemerging Viral Pathogens: Volume 2: Applied Virology Approaches Related to Human, Animal and Environmental Pathogens, 197–224. https://doi.org/10.1016/B978-0-12-814966-9.00011-1
dc.relationFerrance, J. P., Goel, A., & Ataai, M. M. (1993). Utilization of glucose and amino acids in insect cell cultures: Quantifying the metabolic flows within the primary pathways and medium development. Biotechnology and Bioengineering, 42(6), 697–707
dc.relationGarnier, A., Voyer, R., Tom, R., Perret, S., Jardin, B., & Kamen, A. (1996). Dissolved carbon dioxide accumulation in a large scale and high density production of TGFβ receptor with baculovirus infected Sf-9 cells. Cytotechnology, 22(1–3), 53–63. https://doi.org/10.1007/BF00353924
dc.relationGhosh, A., Dhall, H., & Dietzgen, R. G. (2020). Insect cell culture as a tool in plant virus research : a historical overview.
dc.relationGotoh, T., Chiba, K., & Kikuchi, K. I. (2004). Oxygen consumption profiles of Sf-9 insect cells and their culture at low temperature to circumvent oxygen starvation. Biochemical Engineering Journal, 17(2), 71–78. https://doi.org/10.1016/S1369- 703X(03)00140-2
dc.relationGotoh, T., Fukuhara, M., & Kikuchi, K. I. (2008). Mathematical model for change in diameter distribution of baculovirus-infected Sf-9 insect cells. Biochemical Engineering Journal, 40(2), 379–386. https://doi.org/10.1016/j.bej.2008.01.008
dc.relationGrzywacz, D. (2017). Basic and Applied Research: Baculovirus. In Microbial Control of Insect and Mite Pests: From Theory to Practice. Elsevier Inc. https://doi.org/10.1016/B978-0-12-803527-6.00003-2
dc.relationHefferon, K. L., Oomens, A. G. P., Monsma, S. A., Finnerty, C. M., & Blissard, G. W. (1999). Host cell receptor binding by baculovirus GP64 and kinetics of virion entry. Virology, 258(2), 455–468. https://doi.org/10.1006/viro.1999.9758
dc.relationHeijnen, J. J., & Kleerebezem, R. (2010). Bioenergetics of Microbial Growth. Encyclopedia of Industrial Biotechnology, 1–24. https://doi.org/10.1002/9780470054581.eib084
dc.relationHeinen, J. J. (2010). Impact of thermodynamic principles in systems biology. In Advances in Biochemical Engineering/Biotechnology (Vol. 121, pp. 139–162). Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2009_63
dc.relationHu, Y. C., & Bentley, W. E. (2000). A kinetic and statistical-thermodynamic model for baculovirus infection and virus-like particle assembly in suspended insect cells. Chemical Engineering Science, 55(19), 3991–4008. https://doi.org/10.1016/S0009- 2509(99)00579-5
dc.relationJhaveri, R. (2021). The Next Set of COVID-19 Vaccines: Leveraging New Development Platforms to Increase Access for More People Around the World. Clinical Therapeutics, 1–9. https://doi.org/10.1016/j.clinthera.2021.03.007
dc.relationKamen, A. A., Venereo-sanchez, A., & Chahal, P. S. (2021). Advancements in molecular design and bioprocessing of recombinant adeno-associated virus gene delivery vectors using the insect-cell baculovirus expression platform. Biotechnology Journal, 16(April 2020), 1–17. https://doi.org/10.1002/biot.202000021
dc.relationLiu, F., Wu, X., Li, L., Liu, Z., & Wang, Z. (2013). Use of baculovirus expression system for generation of virus-like particles: Successes and challenges. Protein Expression and Purification, 90(2), 104–116. https://doi.org/10.1016/j.pep.2013.05.009
dc.relationLiu, Y., Yang, C., Liu, C., Shen, C., Shiau, L., & Ioeng, J. B. I. B. (2010). Using a fed- batch culture strategy to enhance rAAV production in the baculovirus / insect cell system. JBIOSC, 110(2), 187–193. https://doi.org/10.1016/j.jbiosc.2010.02.004
dc.relationLubelski, J., Hermens, W., & Petry, H. (2014). Insect Cell-Based Recombinant Adeno- Associated Virus Production: Molecular Process Optimization. BioProcessing Journal, 13(3), 6–11. https://doi.org/10.12665/j133.lubelski
dc.relationMarheineke, K., Grünewald, S., Christie, W., & Reilander, H. (1998). Lipid composition of Spodoptera frugiperda (Sf9) and Trichoplusia ni (Tn) insect cells used for baculovirus infection. FEBS Letters, 441(1), 49–52. https://doi.org/10.1016/S0014- 5793(98)01523-3
dc.relationMiller, W. M., Wilke, C. R., & Blanch, H. W. (1989). Transient responses of hybridoma cells to nutrient additions in continuous culture: I. Glucose pulse and step changes. Biotechnology and Bioengineering, 33(4), 477–486. https://doi.org/10.1002/bit.260330413
dc.relationMonteiro, F. (2015). Rational Design of Insect Cell-based Vaccine Production - Bridging Metabolomics with Mathematical Tools to Study Virus-Host Interactions. 207. www.itqb.unl.pt%5Cnwww.ibet.pt
dc.relationMonteiro, F., Bernal, V., & Alves, P. M. (2017). The role of host cell physiology in the productivity of the baculovirus-insect cell system: Fluxome analysis of Trichoplusia ni and Spodoptera frugiperda cell lines. Biotechnology and Bioengineering, 114(3), 674–684. https://doi.org/10.1002/bit.26089
dc.relationMonteiro, F., Carinhas, N., Carrondo, M. J. T., Bernal, V., & Alves, P. M. (2012). Toward system-level understanding of baculovirus-host cell interactions: From molecular fundamental studies to large-scale proteomics approaches. In Frontiers in Microbiology (Vol. 3, Issue NOV). https://doi.org/10.3389/fmicb.2012.00391
dc.relationMorgenroth, E. (2015). How are characteristic times ( char ) and non-dimensional numbers related ? Fall, 1–8. https://www.ethz.ch/content/dam/ethz/special- interest/baug/ifu/water-management- dam/documents/education/Lectures/UWM3/SAMM.HS15.Handout.CharacteristicTim es.pdf
dc.relationMukhopadhyay, A., Mukhopadhyay, S. N., & Talwar, G. P. (1993). Influence of serum proteins on the kinetics of attachment of vero cells to cytodex microcarriers. Journal of Chemical Technology & Biotechnology, 56(4), 369–374. https://doi.org/10.1002/jctb.280560407
dc.relationNandakumar, S., Ma, H., & Khan, A. S. (2017). Whole-Genome Sequence of the Spodoptera frugiperda Sf9 Insect Cell Line. In American Society for Microbiology.
dc.relationNiklas, J., Schneider, K., & Heinzle, E. (2010). Metabolic flux analysis in eukaryotes. Current Opinion in Biotechnology, 21(1), 63–69. https://doi.org/10.1016/j.copbio.2010.01.011
dc.relationÖhman, L., Ljunggren, J., & Häggström, L. (1995). Induction of a metabolic switch in insect cells by substrate-limited fed batch cultures. Applied Microbiology and Biotechnology, 43(6), 1006–1013. https://doi.org/10.1007/BF00166917
dc.relationÖhman, Lars., Alarcon, M., Ljunggren, J., Ramqvist, A. K., & Häggström, L. (1996). Glutamine is not an essential amino acid for Sf-9 insect cells. Biotechnology Letters, 18(7), 765–770. https://doi.org/10.1007/BF00127885
dc.relationOrtega Quintana, F. A., Álvarez, H., & Botero Castro, H. A. (2017). Enfrentando el modelado de bioprocesos: una revisión de las metodologías de modelado. Revista ION, 30(1), 73–90. https://doi.org/10.18273/revion.v30n1-2017006
dc.relationPaul, A., & Prakash, S. (2010). Baculovirus reveals a new pH-dependent direct cell-fusion pathway for cell entry and transgene delivery. Future Virology, 5(5), 533–537. https://doi.org/10.2217/fvl.10.45
dc.relationPossee, R. D., Chambers, A. C., Graves, L. P., Aksular, M., & King, L. A. (2020). Recent Developments in the Use of Baculovirus Expression Vectors.
dc.relationRoldão, A., Vieira, H. L. A., Charpilienne, A., Poncet, D., Roy, P., Carrondo, M. J. T., Alves, P. M., & Oliveira, R. (2007). Modeling rotavirus-like particles production in a baculovirus expression vector system: Infection kinetics, baculovirus DNA replication, mRNA synthesis and protein production. Journal of Biotechnology, 128(4), 875–894. https://doi.org/10.1016/j.jbiotec.2007.01.003
dc.relationSandler, S. I. (2006). Chemical, Biochemical Engineering, And TermodinamicsChemical, Biochemicai Engineering, And Termodinamic (Wiley (ed.); 4ta Edición).
dc.relationSaxena, A., Byram, P. K., Singh, S. K., Chakraborty, J., Murhammer, D., & Giri, L. (2018). A structured review of baculovirus infection process: Integration of mathematical models and biomolecular information on cell–virus interaction. Journal of General Virology, 99(9), 1151–1171. https://doi.org/10.1099/jgv.0.001108
dc.relationShu, B., Zhang, J., Sethuraman, V., Cui, G., Yi, X., & Zhong, G. (2017). Transcriptome analysis of Spodoptera frugiperda Sf9 cells reveals putative apoptosis-related genes and a preliminary apoptosis mechanism induced by azadirachtin. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/s41598-017-12713-9
dc.relationSlack, J., Arif, B. M., Monteiro, F., Carinhas, N., Carrondo, M. J. T., Bernal, V., & Alves, P. M. (2006). The Baculoviruses Occlusion-Derived Virus: Virion Structure and Function. Advances in Virus Research, 3(NOV), 99–165. https://doi.org/10.3389/fmicb.2012.00391
dc.relationSokolenko, S., George, S., Wagner, A., Tuladhar, A., Andrich, J. M. S., & Aucoin, M. G. (2012). Co-expression vs. co-infection using baculovirus expression vectors in insect cell culture: Benefits and drawbacks. Biotechnology Advances, 30(3), 766–781. https://doi.org/10.1016/j.biotechadv.2012.01.009
dc.relationStein, R. (2020). Process Intensification of Spodoptera frugiperda ( Sf ) Cell Growth via Multi-Parallel Bioreactor System (Issue 2012). MIT Sloan School of Management.
dc.relationSuarez-Zuluaga, D. A., Borchert, D., Driessen, N. N., Bakker, W. A. M., & Thomassen, Y. E. (2019). Accelerating bioprocess development by analysis of all available data: A USP case study. Vaccine, 37(47), 7081–7089. https://doi.org/10.1016/j.vaccine.2019.07.026
dc.relationSzéliová, D., Štor, J., Thiel, I., Weinguny, M., Hanscho, M., Lhota, G., Borth, N., Zanghellini, J., Ruckerbauer, D. E., & Rocha, I. (2021). Inclusion of maintenance energy improves the intracellular flux predictions of CHO. In PLoS Computational Biology (Vol. 17, Issue 6). https://doi.org/10.1371/journal.pcbi.1009022
dc.relationTripathi, N. K., & Shrivastava, A. (2019). Recent Developments in Bioprocessing of Recombinant Proteins: Expression Hosts and Process Development. Frontiers in Bioengineering and Biotechnology, 7(December). https://doi.org/10.3389/fbioe.2019.00420
dc.relationvan Oers, M. M. (2011). Opportunities and challenges for the baculovirus expression system. Journal of Invertebrate Pathology, 107(SUPPL.), S3–S15. https://doi.org/10.1016/j.jip.2011.05.001
dc.relationVan Oers, M. M., Pijlman, G. P., & Vlak, J. M. (2015). Thirty years of baculovirus-insect cell protein expression: From dark horse to mainstream technology. Journal of General Virology, 96(1), 6–23. https://doi.org/10.1099/vir.0.067108-0
dc.relationVLAK, J. M., de GOOIJER, C. D., TRAMPER, J., & MILTENBURGER, H. G. (2002). Insect Cell Cultures: Fundamental and Applied Aspects. 1, 303.
dc.relationvon Kamp, A., Thiele, S., Hädicke, O., & Klamt, S. (2017). Use of CellNetAnalyzer in biotechnology and metabolic engineering. Journal of Biotechnology, 261(January), 221–228. https://doi.org/10.1016/j.jbiotec.2017.05.001
dc.relationVon Stockar, U. (2013). The role of thermodynamics in biochemical engineering. In Biothermodynamics: The Role of Thermodynamics in Biochemical Engineering. EFPL Press. https://doi.org/10.1201/b15428-3
dc.relationvon Stosch, M., Carinhas, N., & Oliveira, R. (2014). Hybrid modeling for systems biology: Theory and practice. Modeling and Simulation in Science, Engineering and Technology, 65, 367–388. https://doi.org/10.1007/978-3-319-08437-4_7
dc.relationWang, L., Lai, L., Ouyang, Q., & Tang, C. (2011). Flux balance analysis of ammonia assimilation network in E. coli predicts preferred regulation point. PLoS ONE, 6(1). https://doi.org/10.1371/journal.pone.0016362
dc.relationWickham, T. J., Shuler, M. L., Hammer, D. A., Granados, R. R., & Wood, H. A. (1992). Equilibrium and kinetic analysis of Autographa californica nuclear polyhedrosis virus attachment to different insect cell lines. Journal of General Virology, 73(12), 3185– 3194. https://doi.org/10.1099/0022-1317-73-12-3185
dc.relationXie, L., & Wang, D. I. C. (1994). Stoichiometric analysis of animal cell growth and its application in medium design. Biotechnology and Bioengineering, 43(11), 1164– 1174. https://doi.org/10.1002/bit.260431122
dc.relationYu, Q., Xiong, Y., Gao, H., Liu, J., Chen, Z., Wang, Q., & Wen, D. (2015). Comparative proteomics analysis of Spodoptera frugiperda cells during Autographa californica multiple nucleopolyhedrovirus infection. Virology Journal, 12(1), 1–11. https://doi.org/10.1186/s12985-015-0346-9
dc.relationZhang, Y., Enden, G., Wei, W., Zhou, F., Chen, J., & Merchuk, J. C. (2020). Baculovirus transit through insect cell membranes: A mechanistic approach. Chemical Engineering Science, 223, 115727. https://doi.org/10.1016/j.ces.2020.115727
dc.relationHaas, R. (2004). Asynchronies in Synchronous Baculovi rus Infections. The University of Queensland.
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleAnálisis termodinámico y metabólico de un sistema biológico células de insecto Spodoptera frugiperda (sf9) y su infección con un virus recombinante Autographa californica nucleopolyhedrovirus (BvGCN4-NA1)
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución