dc.contributorLancheros Salas, Ruth Janneth
dc.contributorGrupo de Investigación en Procesos Químicos y Bioquímicos
dc.contributor0000-0002-3786-4086
dc.contributorBETES SEVILLANO, PAULA ANDREA
dc.contributorBETES SEVILLANO, PAULA ANDREA
dc.contributorBETES SEVILLANO, PAULA ANDREA
dc.contributorBETES SEVILLANO, PAULA ANDREA
dc.creatorBetes Sevillano, Paula Andrea
dc.date.accessioned2023-02-23T21:07:47Z
dc.date.accessioned2023-06-06T23:45:13Z
dc.date.available2023-02-23T21:07:47Z
dc.date.available2023-06-06T23:45:13Z
dc.date.created2023-02-23T21:07:47Z
dc.date.issued2022-08-23
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/83553
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6651493
dc.description.abstractEn el presente trabajo se fabricaron nanopartículas por nanoprecipitación, usando PLGA, que ha sido estudiado para su uso en la liberación controlada de principios activos. El objetivo de esta investigación fue analizar la afectación del peso molecular del polímero (PESO MOLECULAR 7-17 kDa , PESO MOLECULAR 38-54 kDa) y la variación solvente - no solvente sobre el tamaño de partícula y el perfil de liberación en aceite mineral (poco estudiado),estas variables son relevantes ya que la aplicación que se dé a las nanopartículas fabricadas dependerá de esto. Empleando la concentración inicial de 1,0 mg/ ml del colorante Oil red O establecido en esta investigación por obtener el menor tamaño de partícula (298,23 ± 0,76 nm ) y la mayor eficiencia de encapsulación de ( 5,65 ±0,11 %) , respecto a las concentraciones estudiadas de 0,2 mg/ml a 1,0 mg/ml. Con la concentración inicial fija de colorante se hizo la variación del peso molecular y de las posibles combinaciones binarias entre solvente - no solvente donde se observó que el incremento en el peso molecular aumenta la distribución de tamaño de partícula y la eficiencia de encapsulamiento. Los perfiles de liberación que se realizaron en medio oleoso presentan un perfil bifásico con una liberación rápida antes de las primeras 24h y posterior a esto una etapa de estabilización la cual es levemente afectada por la mezcla solvente no solvente, el tamaño de la partícula y la eficiencia de encapsulamiento, concluyendo que los factores estudiados afectan las variables respuesta. (Texto tomado ed la fuente)
dc.description.abstractIn the present work, nanoparticles were manufactured by nanoprecipitation, using PLGA, which has been studied for its use in the controlled release of active ingredients. The objective of this research was to analyze the affectation of the molecular weight of the polymer (molecular weight7-17 kDa, molecular weight38-54 kDa) and the solvent – non solvent variation on the particle size and the release profile in mineral oil (little studied) these variables are relevant since the application given to the produced nanoparticles came from this. Using the initial concentration of 1.0 mg/ml of the Oil red O dye that obtained the smallest particle size of 298.23 ± 0.76 nm and the highest encapsulation efficiency of 5.65 ± 0.11%, compared to the concentrations studied from 0.2 mg/ml to 1.0 mg/ml With the initial fixed concentration of dye, the variation of the molecular weight and of the possible binary combinations between solvent - non-solvent was made, where it was shown that the increase in molecular weight increases the particle size distribution and the encapsulation efficiency. The release profiles performed in oily medium present a biphasic profile with a fast release before the first 24h and after that a stabilization stage which is little affected by the non-solvent - solvent mixture, the particle size and the encapsulation efficiency, concluding that the studied factors affect the response variables.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.publisherFacultad de Ingeniería
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationSáez, V., E. Hernáez, and L. Sanz-Angulo, Sistemas de liberación controlada de medicamentos. Revista iberoamericana de polímeros, 2002. 3(3): p. 1-17
dc.relationStrambeanu, N., et al., Nanoparticles: Definition, classification and general physical properties, in Nanoparticles' Promises and Risks. 2015, Springer. p. 3-8.
dc.relationLancheros Salas, R.J., Producción de nanopartículas de PLGA para el transporte de medicamentos especifico a tejido óseo. Universidad Nacional de Colombia-Sede Bogotá
dc.relationAcosta Turo, R., et al., Implementación de Nanotecnología en fármacos.
dc.relationKumari, A., et al., Biodegradable polymeric nanoparticles based drug delivery systems. 2010. 75(1): p. 1-18.
dc.relationSanta, C.F. and B.L. López Osorio, Materiales poliméricos en nanomedicina: transporte y liberación controlada de fármacos. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 2013. 37(142): p. 115-124.
dc.relationMir, M., N. Ahmed, and A. ur Rehman, Recent applications of PLGA based nanostructures in drug delivery. Colloids and Surfaces B: Biointerfaces, 2017. 159: p. 217-231
dc.relationZhou, J., et al., Microfluidic preparation of PLGA composite microspheres with mesoporous silica nanoparticles for finely manipulated drug release. International Journal of Pharmaceutics, 2021. 593: p. 120173.
dc.relationCheraga, N., et al., Optimized rapamycin-loaded PEGylated PLGA nanoparticles: Preparation, characterization and pharmacokinetics study. Journal of Drug Delivery Science and Technology, 2021. 61: p. 102144
dc.relationSeju, U., A. Kumar, and K. Sawant, Development and evaluation of olanzapine loaded PLGA nanoparticles for nose-to-brain delivery: in vitro and in vivo studies.Acta biomaterialia, 2011. 7(12): p. 4169-4176.
dc.relationProkop, A. and J.M. Davidson, Nanovehicular intracellular delivery systems. Journal of pharmaceutical sciences, 2008. 97(9): p. 3518-3590.
dc.relationJeevanandam, J., et al., Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. 2018. 9(1): p. 1050-1074.
dc.relationFaraji, A.H., P.J.B. Wipf, and m. chemistry, Nanoparticles in cellular drug delivery.2009. 17(8): p. 2950-2962.
dc.relationGomez-Gaete, C., Nanopartículas poliméricas: tecnología y aplicaciones farmacéuticas. Rev. Farmacol. Chile, 2014. 7(2): p. 7-16.
dc.relationAmoabediny, G., et al., Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: A comprehensive review.International Journal of Polymeric Materials and Polymeric Biomaterials, 2018. 67(6): p. 383-400.
dc.relationSur, S., et al., Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Structures & Nano-Objects, 2019. 20: p. 100397.
dc.relationCarter, P., B. Narasimhan, and Q.J.I.j.o.p. Wang, Biocompatible nanoparticles and vesicular systems in transdermal drug delivery for various skin diseases. 2019. 555: p. 49-62.
dc.relationLancheros Salas, R.J., Producción de nanopartículas de PLGA para el transporte de medicamentos especifico a tejido óseo. 2016, Universidad Nacional de Colombia-Sede Bogotá: Colombia
dc.relationOropesa-Nuñez, R. and U.J. Jáuregui-Haza, Las nanopartículas como portadores de fármacos: características y perspectivas Nanoparticles as drug carriers: characteristics and perspectives. Revista CENIC Ciencias Biológicas, 2012. 43(3)
dc.relationAlves , M.P., Formas farmacêuticas plásticas contendo nanocápsulas, nanoesferas e nanoemulsões de nimesulida: desenvolvimento, caracterização e avaliação da permeação cutânea in vitro. 2006, Universidade federal do rio grande do sul Porto Alegre
dc.relationDias, A.P., et al., Dendrimers in the context of nanomedicine. International journal of pharmaceutics, 2020. 573: p. 118814
dc.relationYousefi, M., A. Narmani, and S.M. Jafari, Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals. Advances in Colloid and Interface Science, 2020: p. 102125.
dc.relationDaraee, H., et al., Application of liposomes in medicine and drug delivery. Artificial cells, nanomedicine, and biotechnology, 2016. 44(1): p. 381-391
dc.relationEroğlu, İ. and M. İbrahim, Liposome–ligand conjugates: a review on the current state of art. Journal of Drug Targeting, 2020. 28(3): p. 225-244.
dc.relationPradhan, B., et al., Liposome: method of preparation, advantages, evaluation and its application. Journal of Applied Pharmaceutical Research, 2015. 3(3): p. 01-08.
dc.relationBeltrán, M.J.T.d.l.P., Tema 1. Estructura y propiedades de los polímeros. 2011.
dc.relationSerrano, R. and M.J.G. Mendizábal, México: Universidad de Guadalajara, Introducción a la ciencia de los polímeros. Primera Edición ed. 2015.
dc.relationDavidenko, N., R. Cameron, and S. Best, Natural biopolymers for biomedical applications. 2019.
dc.relationBilal, M. and H.M.J.I.j.o.b.m. Iqbal, Naturally-derived biopolymers: Potential platforms for enzyme immobilization. 2019. 130: p. 462-482.
dc.relationRaus, R.A., W.M.F.W. Nawawi, and R.R.J.A.J.o.P.S. Nasaruddin, Alginate and Alginate Composites for Biomedical Applications. 2020.
dc.relationVaraprasad, K., et al., Alginate-based composite materials for wound dressing application: A mini review. 2020: p. 116025.
dc.relationZhang, Y., et al., The Artificial Organ: Cell Encapsulation. 2011.
dc.relationde Vries, R., et al., Bioengineering, biomaterials, and β-cell replacement therapy, in Transplantation, Bioengineering, and Regeneration of the Endocrine Pancreas. 2020, Elsevier. p. 461-486.
dc.relationTong, X., et al., Recent advances in natural polymer-based drug delivery systems.2020. 148: p. 104501.
dc.relationDas, B. and S. Patra, Antimicrobials: Meeting the challenges of antibiotic resistance through nanotechnology, in Nanostructures for antimicrobial therapy. 2017, Elsevier. p. 1-22
dc.relationJiang, T., et al., Chitosan as a biomaterial: structure, properties, and applications in tissue engineering and drug delivery, in Natural and synthetic biomedical polymers. 2014, Elsevier. p. 91-113
dc.relationGutierrez-Rojas, I., N. Moreno-Sarmiento, and D.J.R.i.d.m. Montoya, Mechanisms and regulation of enzymatic hydrolysis of cellulose in filamentous fungi: Classical cases and new models. 2014. 32(1): p. 1-12.
dc.relationDeStefano, V., S. Khan, and A.J.E.R. Tabada, Applications of PLA in modern medicine. 2020. 1: p. 76-87.
dc.relationARDILA, L., et al., Estudio De La Biodegradación Hidrolítica De Películas Delgadas De biopolimeros ceramico mediante EQCM. 2010.
dc.relationYeo, T., et al., Promoting bone regeneration by 3D-printed poly (glycolic acid)/hydroxyapatite composite scaffolds. 2021. 94: p. 343-351.
dc.relationMiñano, J., J. Puiggalí, and L.J.T.A. Franco, Effect of curcumin on thermal degradation of poly (glycolic acid) and poly (ε-caprolactone) blends. 2020. 693: p. 178764
dc.relationKhorramnezhad, M., et al., Effect of surface modification on physical and cellular properties of PCL thin film. 2021: p. 111582.
dc.relationAsadian, M., et al., A comparative study on pre-and post-production plasma treatments of PCL films and nanofibers for improved cell-material interactions. 2019. 481: p. 1554-1565.
dc.relationOlmo Mora, A., Cromatografía de exclusión por tamaño. Análisis del polietilenglicol.2017
dc.relationContreras, J., D. Medina, and F.J.A.e.Q. López-Carrasquero, Síntesis y polimerización de bismacromonómeros de polietilenglicol. 2014. 9(3): p. 107-114.
dc.relationOkamoto, M. and B.J.P.i.P.S. John, Synthetic biopolymer nanocomposites for tissue engineering scaffolds. 2013. 38(10-11): p. 1487-1503.
dc.relationRafiei, P., A.J.M.S. Haddadi, and E. C, A robust systematic design: Optimization and preparation of polymeric nanoparticles of PLGA for docetaxel intravenous delivery.2019. 104: p. 109950.
dc.relationAnderson, J.M. and M.S. Shive, Biodegradation and biocompatibility of PLA and PLGA microspheres. Advanced drug delivery reviews, 2012. 64: p. 72-82.
dc.relationSharma, S., et al., PLGA-based nanoparticles: a new paradigm in biomedical applications. TrAC trends in analytical chemistry, 2016. 80: p. 30-40.
dc.relationMakadia, H.K. and S.J. Siegel, Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 2011. 3(3): p. 1377-1397.
dc.relationGhitman, J., et al., Review of hybrid PLGA nanoparticles: Future of smart drug delivery and theranostics medicine. Materials & Design, 2020. 193: p. 108805
dc.relationLlabot, J.M., S.D. Palma, and D. Allemandi, Nanopartículas poliméricas sólidas.Nuestra Farmacia, 2008. 53: p. 40-47.
dc.relationRivas, C.J.M., et al., Nanoprecipitation process: From encapsulation to drug delivery.International journal of pharmaceutics, 2017. 532(1): p. 66-81.
dc.relationMorales-Cruz, M., et al., Two-step nanoprecipitation for the production of protein-loaded PLGA nanospheres. Results in pharma sciences, 2012. 2: p. 79-85
dc.relationMora-Huertas, C.E., H. Fessi, and A. Elaissari, Polymer-based nanocapsules for drug delivery. International journal of pharmaceutics, 2010. 385(1-2): p. 113-142
dc.relationDing, D., Q.J.M.S. Zhu, and E. C, Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. 2018. 92: p. 1041-1060
dc.relationSwider, E., et al., Customizing poly (lactic-co-glycolic acid) particles for biomedical applications. 2018. 73: p. 38-51
dc.relationBudhian, A., S.J. Siegel, and K.I.J.I.j.o.p. Winey, Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content. 2007. 336(2): p. 367-375.
dc.relationHuang, W. and C.J.B.j. Zhang, Tuning the size of poly (lactic‐co‐glycolic acid)(PLGA) nanoparticles fabricated by nanoprecipitation. 2018. 13(1): p. 1700203.
dc.relationMiladi, K., et al., Nanoprecipitation process: from particle preparation to in vivo applications, in Polymer nanoparticles for nanomedicines. 2016, Springer. p. 17-53
dc.relationMiladi, K., et al., Nanoprecipitation process: from particle preparation to in vivo applications, in Polymer nanoparticles for nanomedicines. 2016, Springer. p. 17-53
dc.relationRivas, C.J.M., et al., Nanoprecipitation process: From encapsulation to drug delivery.2017. 532(1): p. 66-81.
dc.relationFredenberg, S., et al., The mechanisms of drug release in poly (lactic-co-glycolic acid)-based drug delivery systems—a review. International journal of pharmaceutics, 2011. 415(1-2): p. 34-52.
dc.relationKang, J. and S.P. Schwendeman, Determination of diffusion coefficient of a small hydrophobic probe in poly (lactide-co-glycolide) microparticles by laser scanning confocal microscopy. Macromolecules, 2003. 36(4): p. 1324-1330.
dc.relationChen, X., C. Ooi, and T. Lim, Effect of ganciclovir on the hydrolytic degradation ofpoly (lactide-co-glycolide) microspheres. Journal of biomaterials applications, 2006. 20(3): p. 287-302.
dc.relationGaumet, M., et al., Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. 2008. 69(1): p. 1-9
dc.relationJara González, M.O., Análisis sistemático de variables determinantes en la producción de nanopartículas poliméricas de Eudragit® RS, RL y PCL por el método de nanoprecipitación. 2016
dc.relationRivera Parra, C.A., Estudio del proceso de nanoencapsulación de quercetina por medio de nano precipitación. 2017.
dc.relationLegrand, P., et al., Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation. International journal of pharmaceutics, 2007. 344(1-2): p. 33-43.
dc.relationBarboza, A.G., et al., Nanoparticulas polimericas no biodegradables cargadas con CoQ10 para su potencial administración oral. Quimica Hoy, 2014. 4(3): p. 1-5.
dc.relationPardo Fanlo, J.M. and S. Irusta Alderete, Nanopartículas cargadas con aceites esenciales para aplicación en apósitos, in Ingeniería biomédica. 2017, Universidad Zaragoza.
dc.relationda Silva Feltrin, F., et al., Curcumin encapsulation in functional PLGA nanoparticles: A promising strategy for cancer therapies. Advances in Colloid and Interface Science, 2021: p. 102582
dc.relationFeczkó, T., et al., Influence of process conditions on the mean size of PLGA nanoparticles. Chemical Engineering and Processing: Process Intensification, 2011. 50(8): p. 846-853.
dc.relationSong, X., et al., Dual agents loaded PLGA nanoparticles: systematic study of particle size and drug entrapment efficiency. European journal of pharmaceutics and biopharmaceutics, 2008. 69(2): p. 445-453
dc.relationWang, F., et al., Paeonol-loaded PLGA nanoparticles as an oral drug delivery system: Design, optimization and evaluation. International journal of pharmaceutics, 2021. 602: p. 120617
dc.relationHelmy, S.A., et al., Novel Doxorubicin/Folate-Targeted Trans-Ferulic Acid-Loaded doxorubicin/folate-targeted trans-ferulic acid-loaded PLGA nanoparticles combination: In-vivo superiority over standard chemotherapeutic regimen for breast cancer treatment. Biomedicine & pharmacotherapy= Biomedecine & pharmacotherapie, 2022. 145: p. 112376.
dc.relationRocha, F., et al., Nanosistemas a base de poliésteres. 2009.
dc.relationPesquera, L., et al., Síntesis y caracterización de microcápsulas de ácido poli–(láctico–co–glicólico). Evaluación de sus propiedades como potencial agente de liberación controlada, en la quimioterapia contra la leishmaniasis cutánea. Revista Iberoamericana de Polímeros, 2019. 20(5): p. 196-206.
dc.relationCorrigan, O.I. and X. Li, Quantifying drug release from PLGA nanoparticulates. European Journal of Pharmaceutical Sciences, 2009. 37(3-4): p. 477-485.
dc.relationMartínez, R.A. and V.O. Alamar, Dermatitis de contacto por dimetil sulfóxido. Enfermería Dermatológica, 2012. 6(16): p. 42-44.
dc.relationPiacentini, E., et al., Membrane nanoprecipitation: From basics to technology development. Journal of Membrane Science, 2022: p. 120564.
dc.relationVollmer, A., DMSO: La guía completa de tratamientos seguros y naturales para controlar el dolor, la inflamación y otras dolencias crónicas con dimetilsulfóxido. 2022: EDITORIAL SIRIO SA.
dc.relationLancheros, R., C.A. Guerrero, and R.D. Godoy-Silva, Improvement of N acetylcysteine loaded in PLGA nanoparticles by nanoprecipitation method. Journal of Nanotechnology, 2018
dc.relationGarcía Sala, X., Aportación al estudio de nanopartículas de fármacos con actividad analgésica/anestésica. 2011.
dc.relationYurtdaş-Kırımlıoğlu, G., et al., Nanoarchitectonics of PLGA based polymeric nanoparticles with oseltamivir phosphate for lung cancer therapy: In vitro-in vivo evaluation. Journal of Drug Delivery Science and Technology, 2022. 67: p. 102996
dc.relationMuñoz Rubio, I., Nanopartículas de PLGA: una aportación innovadora en el uso terapéutico de Cannabinoides. 2013.
dc.relationRocha Formiga, F., Nanosistemas a base de poliésteres. Monografías de la Real Academia Nacional de Farmacia, 2009.
dc.relationArellano Villaseñor, N., Síntesis de nanopartículas de plga cargadas con leflunomida para su evaluación in-vitro como sistema de administración y liberación en el tratamiento de artritis reumatoide, in Maestría y doctorado en ciencias e ingeniería 2019, Universidad autonoma de baja California Mexico.
dc.relationHasan, A.S., et al., Effect of the microencapsulation of nanoparticles on the reduction of burst release. International journal of pharmaceutics, 2007. 344(1-2): p. 53-61
dc.relationGarcía Gómez, R., Ingeniería básica de una planta de producción de acetona a partir de isopropanol. 2020.
dc.relationBeck-Broichsitter, M., Solvent impact on polymer nanoparticles prepared nanoprecipitation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. 625: p. 126928
dc.relationAlmoustafa, H.A., M.A. Alshawsh, and Z. Chik, Technical aspects of preparing PEG-PLGA nanoparticles as carrier for chemotherapeutic agents by nanoprecipitation method. International journal of pharmaceutics, 2017. 533(1): p. 275-284.
dc.relationBudhian, A., S.J. Siegel, and K.I. Winey, Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content. International journal of pharmaceutics, 2007. 336(2): p. 367-375
dc.relationINSST, I.N.d.S.y.s.e.e.t., Documentación toxicológico para el establecimiento del limite de exposición profesional del cloruro de metileno. 2018: España
dc.relationRoldan Rodríguez, J.L. and L.A. Canahua Sosa, Estudio del comportamiento reológico de soluciones de quitosano con TPP (Tripolifosfato de Sodio). 2015
dc.relationda Silva, A.T. and A.O. Ribeiro, Synthesis of a copolymer of lactic and citric acid for use in obtaining of loaders nanoparticle of pharmacies
dc.relationFernández, K., Formulation of poly lactic-co-glycolic acid nanoparticles loaded with grape extracts and a study of its cytotoxicity on human kidney cells. 2016, UNIVERSIDAD DE CONCEPCION.
dc.relationXu, J., et al., Controllable microfluidic production of drug-loaded PLGA nanoparticles using partially water-miscible mixed solvent microdroplets as a precursor. Scientific reports, 2017. 7(1): p. 1-12.
dc.relationBilati, U., E. Allémann, and E. Doelker, Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. European Journal of Pharmaceutical Sciences, 2005. 24(1): p. 67-75
dc.relationBarndok, H., Procesos de oxidación avanzada para el tratamiento de aguas residuales industriales contaminadas con 1, 4 dioxano. 2016.
dc.relationCarvalho, L.B.d., Síntese e caracterização de nanocápsulas de capsaicina em óleo de alecrim. 2015.
dc.relationJeong, Y.-I., et al., All-trans retinoic acid release from surfactant-free nanoparticles of poly (DL-lactide-co-glycolide). Macromolecular Research, 2008. 16(8): p. 717-724.
dc.relationHeredia Ayala, N.S. and A.P.M.D. Debut, Comparación de cuatro modelos matemáticos para el análisis de la cinética de liberación de fármacos a partir de nanopartículas basadas en ácido poli (láctico-co-glicólico) sintetizadas por el método de nanoprecipitación, in Ingeniería Biotecnología. 2021, Universidad de las fuerzas armadas
dc.relationGokhale, A., Achieving zero-order release kinetics using multi-step diffusion-based drug delivery. Pharmaceutical Technology Europe, 2014. 26(5)
dc.relationHeredia Ayala, N.S. and A.P.M.D. Debut, Comparación de cuatro modelos matemáticos para el análisis de la cinética de liberación de fármacos a partir de nanopartículas basadas en ácido poli (láctico-co-glicólico) sintetizadas por el método de nanoprecipitación.
dc.relationKalam, M.A., et al., Release kinetics of modified pharmaceutical dosage forms: a review. Cont J Pharm Sci, 2007. 1(1): p. 30-5
dc.relationDash, S., et al., Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm, 2010. 67(3): p. 217-223
dc.relationSinghvi, G. and M. Singh, In-vitro drug release characterization models. Int J Pharm Singhvi, G. and M. Singh, In-vitro drug release characterization models. Int J Pharm Stud Res, 2011. 2(1): p. 77-84.
dc.relationPermanadewi, I., et al. Modelling of controlled drug release in gastrointestinal tract simulation. in Journal of Physics: Conference Series. 2019. IOP Publishing.
dc.relationExpósito Harris, R., Quitosano, un biopolímero con aplicaciones en sistemas de liberación controlada de fármacos. 2010
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEvaluación de la capacidad de liberación de colorante a partir de nanopartículas del Copolímero de ácido láctico y glicólico (PLGA)
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución