dc.contributorQuintero Vélez, Alexander
dc.contributorArias Abad, Camilo
dc.contributorArias Abad, Camilo [0000-0003-3624-9396]
dc.creatorPineda Montoya, Santiago
dc.date.accessioned2023-02-07T14:02:58Z
dc.date.accessioned2023-06-06T23:44:43Z
dc.date.available2023-02-07T14:02:58Z
dc.date.available2023-06-06T23:44:43Z
dc.date.created2023-02-07T14:02:58Z
dc.date.issued2022-06-28
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/83348
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6651487
dc.description.abstractEsta tesis contempla la generalización de resultados de geomtría diferencial clásica en el contexto de los sistemas locales homotópicos. En particular, se realiza la construcción del homomorfismo de Chern-Weil y el teorema equivariante de de Rham en el contexto de las categorias diferenciales graduadas conformadas por los sistemas locales homotópicos. (Texto tomado de la fuente)
dc.description.abstractLet G be a compact connected Lie group acting on a smooth manifold M. We show that the DG categories Loc∞(BG) and Loc∞(MG) of ∞-local systems on the classifying space of G and the homotopy quotient of M, respectively, can be described infinitesimally as the categories InfLoc∞(g) of basic g-L∞ spaces and InfLoc∞(g,M) of g graded G-equivariant vector bundles, respectively. Moreover, we show that, given a principal bundle π : P → X with structure group G and any connection θ on P, there are DG functors C Wθ : InfLoc∞(g) −→ Loc∞(X), and Cθ : InfLoc∞(g,M) −→ Loc∞((P× M)/G), that corresponds to the pullback functor by the classifying map of P. An A∞-natural isomorphism relates the functors associated with different connections. This construction categorizes the ChernWeil homomorphism, which is recovered by applying the functor C Wθ to the endomorphisms of the constant local system. Finally, we obtain a categorification of the equivariant de Rham theorem for infinity local systems, namely, the A∞-fuctor DR : InfLoc∞(g,M) → Loc∞(MG).
dc.languageeng
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Ciencias - Doctorado en Ciencias - Matemáticas
dc.publisherFacultad de Ciencias
dc.publisherMedellín, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationRedCol
dc.relationLaReferencia
dc.relationM. Sugawara. On a condition that a space is an H-space, Math. J. Okayama Univ., 6:109–129, 1957
dc.relationJ. Stasheff. Homotopy associativity of h-spaces. i, Transactions of the American Mathematical Society 108 (01 1963), 275–292
dc.relationJ. Stasheff. Homotopy associativity of h-spaces. ii, Transactions of the American Mathematical Society 108 (08 1963), 275
dc.relationJ. Stasheff. Differential graded Lie algebras, quasi-Hopf algebras and higher homotopy algebras, Quantum groups Number 1510 in Lecture Notes in Math. Springer, Berlin, 1992
dc.relationT. Lada, J. Stasheff. Introduction to sh Lie algebras for physicists, Int. J. Theo. Phys. 32 (1993), 1087–1103
dc.relationB. Zwiebach. Closed string field theory: Quantum action and the B-V master equation, Nucl.Phys. B390 (1993) 33
dc.relationHolstein, Julian V. Morita cohomology, Cambridge University Press, 2015
dc.relationJonathan Block and Aaron M. Smith. The higher Riemann-Hilbert correspondence, Adv. Math., 2014
dc.relationAbad, Camilo Arias and Schatz, Florian. The ¨ A• de Rham theorem and integration of representations up to homotopy, Int. Math. Res. Notices, 2013
dc.relationAbad, Camilo Arias and Schatz, Florian. Flat Z-graded connections and loop spaces, International Mathematics ¨ Research Notices, 2018
dc.relationC. Arias Abad, A. Quintero Velez and S. V ´ elez V ´ asquez. An ´ A•-version of the Poincare lemma. Pacific Journal ´ of Mathematics, 2019
dc.relationS.S. Chern. Differential geometry of fiber bundles. Proceedings of the International Congress of Mathematicians, Cambridge, Mass., vol. 2, pages 397-411, Amer. Math. Soc., Providence, R. I. 1950
dc.relationA. Weil. Geom ´ etrie diff ´ erentielle des espaces fibres. unpublished, 1949
dc.relationH. Cartan. La transgression dans un groupe de Lie et dans un fibre principal. Colloque de topologie (espaces ´ fibres) (Bruxelles), Centre belge de recherches math ´ ematiques, Georges Thone, Li ´ ege, Masson et Cie., Paris, ` 1950
dc.relationH. Cartan. Notions d’algebre diff ` erentiel le; application aux groupes de Lie et aux vari ´ et ´ es o ´ u op ` ere un groupe de ` Lie. Colloque de topologie (espaces fibres) (Bruxelles), Georges Thone, Li ´ ege, Masson et Cie., Paris, 1950.
dc.relationA. Borel. Seminar on transformation groups. Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, N.J., 1960
dc.relationC. Arias Abad, S. Pineda Montoya and A. Quintero Velez. Chern-Weil theory for ´ •-local systems. arXiv:2105.00461, submitted for publication
dc.relationC. Arias Abad, S. Pineda Montoya and A. Quintero Velez. Equivariant de Rham Theorem for ´ •-local systems. In preparation
dc.relationC. Arias Abad, A. Quintero Velez. Singular chains on Lie groups and the Cartan relations II. preprint
dc.relationC. Arias Abad. Singular chains on Lie groups and the Cartan relations I. arXiv:1908.10460, submitted for publication
dc.relationEckhard Meinrenken. Clifford algebras and Lie theory, Springer, 2013
dc.relationGuillemin, Victor W and Sternberg, Shlomo. Supersymmetry and equivariant de Rham theory, Springer Science & Business Media, 2013
dc.relationReinhold, Ben. L-•-algebras and their cohomology, Emergent Scientist, 2019
dc.relationKeller, Bernhard. On differential graded categories, International Congress of Mathematicians. Vol. II, 2006
dc.relationJ. Block, A. Smith. The Riemann-Hilbert correspondence for infinity local systems, Advances in Mathematics, 2009
dc.relationArias Abad, Camilo and Crainic, Marius. Representations up to homotopy of Lie algebroids, J. Reine Angew. Math. (Crelle’s Journal), 2012
dc.relationP. Seidel. Fukaya categories and Picard Lefschetz theory, Zurich Lectures in Advanced Mathematics, EMS, 2008
dc.relationMehta, Rajan Amit and Zambon, Marco. L•-algebra actions, Differ. Geom. Appl., 2012
dc.relationLoring W. TU. Introductory Lectures on Equivariant Cohomology, Princeton University Press, 2020
dc.relationMathOverflow. Why does the singular simplicial space geometrically realize to the original space?. https://mathoverflow.net/questions/171662/why-does-the-singular-simplicial-space-geometrically-realize-tothe-original-spa
dc.relationGoerss, Paul G. and Jardine, John F. Simplicial homotopy theory, Springer Science & Business Media, 2009
dc.relationJoyal, Andre and Tierney, Myles. Notes on simplicial homotopy theory, ´ http://mat.uab.cat/ kock/crm/hocat/advanced-course/Quadern47.pdf, 2008
dc.relationRuschoff, Christian. Notes on simplicial homotopy theory, https://www.mathi.uni- ¨ heidelberg.de/ rueschoff/ss17sset/sset.pdf, 2017
dc.relationJardine, John Frederick. Simplicial presheaves, Journal of Pure and Applied Algebra, 1987
dc.relationHatcher, Allen. Algebraic topology, Cambridge University Press, 2005
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleCategorification of Chern-Weil theory and equivariant cohomology
dc.typeTrabajo de grado - Doctorado


Este ítem pertenece a la siguiente institución