dc.contributorMeza Meza, Juan Manuel
dc.contributorIdárraga Alarcón, Guillermo Andrés
dc.contributorDesign of Advanced Compositesdadcomp
dc.contributorMarin Jimenez, Santiago [0000-0003-3790-5877]
dc.contributorMeza Meza, Juan Manuel [0000-0001-8013-3775]
dc.contributorIdárraga Alarcón, Guillermo Andrés [0000-0001-7832-9509]
dc.creatorMarin Jimenez, Santiago
dc.date.accessioned2023-01-25T14:56:39Z
dc.date.accessioned2023-06-06T23:43:56Z
dc.date.available2023-01-25T14:56:39Z
dc.date.available2023-06-06T23:43:56Z
dc.date.created2023-01-25T14:56:39Z
dc.date.issued2022
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/83112
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6651478
dc.description.abstractMicro wind power generation is one of the possible solutions to bring energy to the Non-Interconnected Zones (ZNI) of the Colombian Caribbean. To reduce the manufacturing costs and encourage the use of wind energy in these ZNI, this thesis aims to design and manufacture the rotor of a low-scale turbine using cheap composite materials reinforced with fique fibres. The wind turbine designed by WindAid, an NGO that installs wind energy in rural communities in Peru, was used as a starting point to meet the objectives of the thesis. The geometrical design of the rotor was optimised using an analytical model capable of maximizing the aerodynamic power generated. On the other hand, the critical load conditions of the rotor in La Guajira were established, following the recommendations of British Standard 61400-2. The first approximation of the rotor structural design was made by applying the finite element method FEM and using traditional composite materials with glass and carbon fibre. Once the prototype was manufactured, the structural design was experimentally validated using an instrumented bending test on the blades, obtaining differences of less than 7% with the numerical model. Subsequently, a composite material reinforced with a standardised fique fibre fabric was developed. Different modifications were made to the matrix and fibres to improve the material mechanical properties evaluated using tensile tests. Moreover, the failure mode of the composites was studied using computed tomography. As a result, a standardised composite with a strength of 111MPa and an elastic modulus of 6.1GPa was obtained. Finally, a blade design using fique fibres was evaluated using the FEM, and a test prototype was manufactured using the vacuum bag infusion method. The design with fique fibres proved to withstand the average turbine operating conditions in La Guajira. Furthermore, with the replacement of the synthetic fibres with natural fibres, the raw material cost was decreased sixfold, and its environmental impact was reduced.
dc.description.abstractLa micro generación de energía eólica es una de las posibles soluciones para llevar energía a las Zonas No Interconectadas (ZNI) a la red de energía del caribe colombiano. Para disminuir los costos de fabricación e incentivar el uso de la energía eólica de estas ZNI, esta tesis tiene como objetivo diseñar y manufacturar el rotor de una turbina de baja escala utilizando materiales compuestos baratos reforzados con fibras de fique. La turbina eólica diseñada por WindAid, una ONG que instala energía eólica en comunidades rurales de Perú, se utilizó como punto de partida para cumplir con objetivos de la tesis. El diseño geométrico del rotor se optimizó utilizando un modelo analítico capaz de aumentar la potencia aerodinámica generada. Por otro lado, se establecieron las condiciones críticas de carga del rotor en La Guajira, siguiendo las recomendaciones de la Norma Británica 61400-2. La primera aproximación del diseño estructural del rotor se hizo aplicando el método de los elementos finitos MEF y utilizando materiales compuestos tradicionales con fibra de vidrio y carbono. Una vez fabricado el prototipo, se validó experimentalmente el diseño estructural utilizando un ensayó de flexión instrumentado en los álabes, obteniendo diferencias menores al 7% con el modelo numérico. Posteriormente, se desarrolló un material compuesto reforzado con un tejido de fibra de fique estandarizado. Para mejorar las propiedades mecánicas del material, se realizaron diferentes modificaciones a la matriz y las fibras las cuales fueron evaluadas en ensayos de tensión. Adicionalmente, el modo de fallo de los compuestos se estudió utilizando tomografías computarizadas. Como resultado, se obtuvo un composite estandarizado con una resistencia de 111MPa y un módulo elástico de 6.1GPa. Finalmente, se evaluó un diseño de álabes utilizando fibras de fique mediante el MEF, y se fabricó un prototipo de prueba utilizando el método de infusión en bolsa de vacío. El diseño con fibras de fique demostró soportar las condiciones promedio de operación de la turbina en La Guajira. Además, con la sustitución de las fibras sintéticas por fibras naturales, se disminuyó seis veces el costo de las materias primas y se redujo su impacto ambiental. (Texto tomado de la fuente)
dc.languageeng
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Minas - Maestría en Ingeniería - Materiales y Procesos
dc.publisherFacultad de Minas
dc.publisherMedellín, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationRedCol
dc.relationLaReferencia
dc.relationWindAid Institute, ‘Light Up A Life’, 2021. www.windaid.org/light-up-a-life.
dc.relationA. Tummala, R. K. Velamati, D. K. Sinha, V. Indraja, and V. H. Krishna, ‘A review on small scale wind turbines’, Renewable and Sustainable Energy Reviews, vol. 56. Elsevier Ltd, pp. 1351–1371, Apr. 01, 2016, doi: 10.1016/j.rser.2015.12.027.
dc.relationF. Ricardo Procópio de Araújo, M. Giannini Pereira, M. Aurélio Vasconcelos Freitas, N. Fidelis da Silva, and E. Janser de Azevedo Dantas, ‘Bigger is Not Always Better: Review of Small Wind in Brazil’, vol. 14, p. 976, 2021, doi: 10.3390/en14040976.
dc.relationInternational Renewable Energy Agency, Renewable Power Generation Costs in 2019. 2020.
dc.relationXM, ‘Capacidad efectiva por tipo de generación’, 2021. http://paratec.xm.com.co/paratec/SitePages/generacion.aspx?q=capacidad (accessed May 11, 2021).
dc.relationJ. C. Sosapanta, ‘Energía eólica en Colombia: panorama y perspectivas bajo la triple cuenta de resultados’, Universidad Nacional Abierta y a Distancia – UNAD, 2020.
dc.relationLa República, ‘El Gobierno inauguró ayer en La Guajira el primero de 16 nuevos parques eólicos’, 2022, 2022. https://www.larepublica.co/economia/el-gobierno-inauguro-ayer-en-la-guajira-el-primero-de-16-nuevos-parques-eolicos-3290204.
dc.relationJ. F. Manwell, J. McGowan, and A. Rogers, Wind energy explained : theory, design, and application, 2nd ed. United Kingdom, 2009.
dc.relationSumiglas S.A., ‘Tecnología al servicio de los materiales compuestos’, 2022. www.sumiglas.com.
dc.relationCarbon Fiber Stock, ‘Suministros para materiales compuestos de altas prestaciones’, 2021. www.carbonfiberstocks.co.
dc.relationR. Echeverri, L. Franco, and M. González, ‘Fique en Colombia’, Medellín, 2015.
dc.relationCoohilados de Fonce LTDA, ‘TELAS DE FIQUE’, 2022. https://www.coohilados.com.co/categoria/telas-de-fique.
dc.relationM. Muñoz, M. Higaldo, and J. Mina, ‘Fibras de fique una alternativa para el reforzamiento de plásticos. Influencia de la modificación superficial’, Biotecnol. en el Sect. Agropecu. y Agroindustrial, vol. 12, no. 2, pp. 60–70, 2014.
dc.relationJ. Vargas, ‘Análisis interfacial de un material compuesto fabricado en matriz polimérica reforzado con fibras de fique para potenciar sus propiedades mecánicas’, Universidad Nacional de Colombia, 2020.
dc.relationM. Herrero et al., ‘ODS en Colombia: Los retos para 2030’, Colombia, 2018.
dc.relationUPME, ‘Índice de Cobertura de Energía Eléctrica - ICEE 2018’, 2018. http://www.siel.gov.co/Inicio/CoberturadelSistemaIntercontecadoNacional/ConsultasEstadisticas/tabid/81/Default.aspx (accessed Mar. 11, 2021).
dc.relationIDEAM and UPME, ‘Atlas de Viento y Energía Eólica de Colombia’, p. 169, 2006, [Online]. Available: http://bdigital.upme.gov.co/handle/001/22.
dc.relationJ. Serna, ‘Velocidad promedio de viento a 10 metros de altura’, Colombia, 2015. [Online]. Available: http://atlas.ideam.gov.co/visorAtlasVientos.html.
dc.relationW. Tong, Wind Power Generation and Wind Turbine Desing, 1st ed., vol. 30, no. 12. Southampton: WIT Press, 2010.
dc.relationD. Wood, Small Wind Turbines Analysis, Design, ann Application. Canda: University of Calgary, 2011.
dc.relationR. Gasch, J. Twele, S. (Online service), R. (Robert) Gasch, and J. (Jochen) Twele, Wind Power Plants Fundamentals, Design, Construction and Operation / edited by Robert Gasch, Jochen Twele., 2nd ed. 20. Berlin, Heidelberg: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
dc.relationJ. alonso Baranda, ‘Estudio de un mini-aerogenerador de 500 W para la electrificación de comunidades rurales en Perú: Modelización, fabricación e instalación’, UNIVERSIDAD POLITÉCNICA DE MADRID, 2017.
dc.relationM. Drela, ‘Xfoil’. MIT, USA, 2013, [Online]. Available: https://web.mit.edu/drela/Public/web/xfoil/.
dc.relation‘Airfoil Tools’, 2022. http://airfoiltools.com/index.
dc.relationA. Betz, ‘Schraubenpropeller mit geringstem Energieverlust. Mit einem Zusatz von l. Prandtl’, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, vol. 1919, pp. 193–217, 1919, [Online]. Available: http://eudml.org/doc/59049.
dc.relationR. Jones, Mechanics of Composite Materials., 2nd ed., vol. 2. Virginia: Taylor & Francis, 1974.
dc.relationD. Gay, Composite materials: Design and applications, 3rd ed. Boca Raton: Taylor & Francis Group, 2002.
dc.relationE. J. Barbero, Introduction to Composite Materials Design, 3rd ed. Boca Raton: CRC Press, 2017.
dc.relationHexcel Composites, ‘Honeycomb sandwich design technology’, p. 28, 2000, [Online]. Available: https://www.hexcel.com/Resources/DataSheets/Honeycomb.
dc.relationJ. M. Macías, ‘Numerical and analytical models for the design of hybrid composite laminates with gradual failure behaviour under bending loads’, Universidad Nacional de Colombia, 2020.
dc.relationE. J. Barbero, Barbero_Finite element analysis of composite materials_Abaqus.
dc.relationP. Madhu, M. R. Sanjay, P. Senthamaraikannan, S. Pradeep, S. S. Saravanakumar, and B. Yogesha, ‘A review on synthesis and characterization of commercially available natural fibers: Part-I’, J. Nat. Fibers, vol. 16, no. 8, pp. 1132–1144, Nov. 2019, doi: 10.1080/15440478.2018.1453433.
dc.relationF. Ahmad, H. S. Choi, and M. K. Park, ‘A Review: Natural Fiber Composites Selection in View of Mechanical, Light Weight, and Economic Properties’, Macromol. Mater. Eng., vol. 300, no. 1, pp. 10–24, Jan. 2015, doi: https://doi.org/10.1002/mame.201400089.
dc.relationA. Ali et al., ‘Hydrophobic treatment of natural fibers and their composites—A review’, J. Ind. Text., vol. 47, no. 8, pp. 2153–2183, Jun. 2016, doi: 10.1177/1528083716654468.
dc.relationY. G. Thyavihalli Girijappa, S. Mavinkere Rangappa, J. Parameswaranpillai, and S. Siengchin, ‘Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review’, Front. Mater., vol. 6, p. 226, 2019, doi: 10.3389/fmats.2019.00226.
dc.relationC. Rodrigues, P. Amoy, M. Barcelos, A. Gomes, F. Muylaert, and S. Neves, ‘Bending mechanical behavior of polyester matrix Reinforced with fique fiber’, Charact. Miner. Met. Mater., pp. 117–121, 2015.
dc.relationP. Gañań and I. Mondragon, ‘Effect of Fiber Treatments on Mechanical Behavior of Short Fique Fiber-reinforced Polyacetal Composites’, J. Compos. Mater., vol. 39, no. 7, pp. 633–646, Apr. 2005, doi: 10.1177/0021998305047268.
dc.relationP. Gañán and I. Mondragon, ‘Fique fiber-reinforced polyester composites : Effects of fiber surface treatments on mechanical behavior’, J. Mater. Sci., vol. 39, pp. 3121–3128, 2004.
dc.relationC. Gómez Hoyos, V. A. Alvarez, P. G. Rojo, and A. Vázquez, ‘Fique fibers: Enhancement of the tensile strength of alkali treated fibers during tensile load application’, Fibers Polym., vol. 13, no. 5, pp. 632–640, 2012, doi: 10.1007/s12221-012-0632-8.
dc.relationP. Luna, A. Mariño, J. Lizarazo-Marriaga, and O. Beltrán, ‘Dry etching plasma applied to fique fibers: influence on their mechanical properties and surface appearance’, Procedia Eng., vol. 200, pp. 141–147, 2017, doi: https://doi.org/10.1016/j.proeng.2017.07.021.
dc.relationG. Rodrigues, P. Amoy, M. Andrade, F. Muylaert, and S. Neves, ‘TENSILE STRENGTH OF POLYESTER COMPOSITES REINFORCED WITH FIQUE FIBERS’, Charact. Miner. Met. Mater. 2015, 2015.
dc.relationB. Zuluaga, G. Idarraga, J. Vargas, J. M. Meza, T. Duncan, and M. Jalalvand, ‘Fique natural fibre composites – A new degradable composite material for local automotive industries in Colombia’, Medellín, 2019.
dc.relationG. Rodrigues, P. Amoy, M. Andrade, L. Borges, F. Muylaert, and S. Neves, ‘TENSILE STRENGTH OF EPOXY COMPOSITES REINFORCED WITH FIQUE FIBERS’, Charact. Miner. Met. Mater. 2016, 2016.
dc.relationS. Gómez, B. Ramón, and R. Guzman, ‘Comparative study of the mechanical and vibratory properties of a composite reinforced with fique fibers versus a composite with E-glass fibers’, Rev. UIS Ing., vol. 17, pp. 43–50, 2018, doi: https://doi.org/10.18273/revuin.v17n1-2018004.
dc.relationM. A. Hidalgo-Salazar and J. P. Correa, ‘Mechanical and thermal properties of biocomposites from nonwoven industrial Fique fiber mats with Epoxy Resin and Linear Low Density Polyethylene’, Results Phys., vol. 8, pp. 461–467, 2018, doi: https://doi.org/10.1016/j.rinp.2017.12.025.
dc.relationP. Amoy Netto, G. R. Altoé, F. Muylaert Margem, F. de Oliveira Braga, S. N. Monteiro, and J. I. Margem, ‘Correlation between the Density and the Diameter of Fique Fibers’, Mater. Sci. Forum, vol. 869, pp. 377–383, Aug. 2016, doi: 10.4028/www.scientific.net/MSF.869.377.
dc.relationA. Carlin, ‘Application of natural fibres in small wind turbine blades’, University of Strathclyde, 2020.
dc.relationD. Marten, ‘Qblade’. Berlin, 2015, [Online]. Available: http://www.q-blade.org/.
dc.relationS. Gundtoft, ‘Wind Turbines’, Aarhus, 2012.
dc.relationY. A. Çengel and J. M. Cimbala, Mecánica de fluidos: Fundamentos y aplicaciones, 2a ed. México D.F., 2012.
dc.relationLANTOR, ‘Datasheet Soric® SF’, Veenendaal, 2016. [Online]. Available: www.lantorcomposites.com.
dc.relationBritish Standard, ‘Wind turbines — Part 2: Design requirements for small wind turbines’, 61010-1 © Iec2001, vol. 2006, p. 13, 2006.
dc.relationJ. Serna, ‘Promedio de la velocidad maxima del viento anual’, Colombia, 2015. [Online]. Available: http://atlas.ideam.gov.co/visorAtlasVientos.html.
dc.relationIDEAM, ‘Atlas de Viento de Colombia - Interactivo’, 2015. http://atlas.ideam.gov.co/visorAtlasVientos.html.
dc.relationDassault Systèmes, ‘Abaqus CAE’. Dassault Systèmes, 2018, [Online]. Available: https://www.3ds.com/es/productos-y-servicios/simulia/productos/abaqus/.
dc.relationJ. M. Faulstich de Paiva, S. Mayer, and M. Cerqueira, ‘Comparison of Tensile Strength of Different Carbon Fabric Reinforced Epoxy Composites’, Mater. Res., vol. 9, no. 1, pp. 83–89, 2006.
dc.relationAutodesk, ‘Helius Composite’. 2017, [Online]. Available: /www.autodesk.com/products/helius-composite.
dc.relationC. Rodríguez and E. Vergara, ‘Propiedades físicas y mecánicas de la madera de Pinus canariensis crecido en el secano de la Región del Maule, Chile’, Bosque (Valdivia), vol. 29, pp. 192–196, 2008, [Online]. Available: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-92002008000300002&nrm=iso.
dc.relationR. D. Cook, Malkus, Plesha, and Witt, Concepts and applicatioins of finite element analysis , 4th edition. 2007.
dc.relationD. U. Shah, P. J. Schubel, and M. J. Clifford, ‘Can flax replace E-glass in structural composites? A small wind turbine blade case study’, Compos. Part B Eng., vol. 52, pp. 172–181, Sep. 2013, doi: 10.1016/j.compositesb.2013.04.027.
dc.relationSafilin, ‘COMPOSITES & TECHNOLOGY’, 2022. https://www.safilin.fr/composites/?lang=en.
dc.relationD. Peña, ‘DISEÑO ESTRUTURAL DE UN ÁLABE DE TURBINA EÓLICA DE 5 KW A BASE DE MATERIAL COMPUESTO CON REFUERZO DE FIBRAS NATURALES DE STIPA OBTUSA’, UNIVERSIDAD DE INGENIERÍA Y TECNOLOGÍA UTEC, 2019.
dc.relationASTM International, ‘ASTM D638 - 14 Standard Test Method for Tensile Properties of Plastics’, ASTM Vol. 08.01 Plast. C1147– D3159, p. 17, 2017, doi: 10.1520/D0638-14.
dc.relationAndercol, ‘Ficha técnica - CRISTALAN® 872’, Medellín, 2019. [Online]. Available: https://andercol.com.co/.
dc.relationAndercol, ‘Ficha técnica - ANDERCOL® 14 1970 RTM’, Medellín, 2020. [Online]. Available: https://andercol.com.co/.
dc.relationJ. Aveston, G. A. Cooper, and A. Kelly, ‘Single and multiple fracture.’, in The Prop fibre Compos Conf Proceedings, 1971, pp. 15–26.
dc.relationJ. Aveston and A. Kelly, ‘Theory of multiple fracture of fibrous composites’, J. Mater. Sci., vol. 8, no. 3, pp. 352–362, 1973, doi: 10.1007/BF00550155.
dc.relationUniversity of Southampton, ‘µ-VIS: Multidisciplinary, Multiscale, Microtomographic Volume Imaging’, 2022. https://www.southampton.ac.uk/muvis.
dc.relationC. Gómez Hoyos and A. Vázquez, ‘Flexural properties loss of unidirectional epoxy/fique composites immersed in water and alkaline medium for construction application’, Compos. Part B Eng., vol. 43, no. 8, pp. 3120–3130, 2012, doi: https://doi.org/10.1016/j.compositesb.2012.04.027.
dc.relationAndercol, ‘Ficha técnica - CRISTALAN® 847’, 2016. [Online]. Available: https://andercol.com.co/.
dc.relationM. C. A. Teles, G. R. Altoé, P. Amoy Netto, H. Colorado, F. M. Margem, and S. N. Monteiro, ‘Fique Fiber Tensile Elastic Modulus Dependence with Diameter Using the Weibull Statistical Analysis’, Mater. Res., vol. 18, no. suppl 2, pp. 193–199, Oct. 2015, doi: 10.1590/1516-1439.364514.
dc.relationDeben, ‘Insitu Micro Tensile Testing’, 2022. https://deben.co.uk/tensile-testing/µxct/tensile-stages-for-x-ray-ct-tomography/.
dc.relationT. Scalici, G. Pitarresi, D. Badagliacco, V. Fiore, and A. Valenza, ‘Mechanical properties of basalt fiber reinforced composites manufactured with different vacuum assisted impregnation techniques’, Compos. Part B Eng., vol. 104, pp. 35–43, 2016, doi: https://doi.org/10.1016/j.compositesb.2016.08.021.
dc.relationK. Abdurohman, T. Satrio, N. L. Muzayadah, and Teten, ‘A comparison process between hand lay-up, vacuum infusion and vacuum bagging method toward e-glass EW 185/lycal composites’, J. Phys. Conf. Ser., vol. 1130, p. 012018, Nov. 2018, doi: 10.1088/1742-6596/1130/1/012018.
dc.relationMinepro S.A.S, ‘Minepro Safety & Innovation’, 2022. http://mineprotec.com/.
dc.relationM. Barth and M. Carus, ‘Carbon Footprint and Sustainability of Different Natural Fibres for Biocomposites and Insulation Material’, Hürth, 2015. [Online]. Available: http://bio-based.eu/ecology/.
dc.relationBcomp, ‘Sustainability’, 2021. https://www.bcomp.ch/sustainability/.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleDesign and manufacture of a wind turbine rotor using fique fibre reinforced composite materials
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución