dc.contributor | Lopera Arias, Emer de Jesus | |
dc.creator | López Morales, Camila | |
dc.date.accessioned | 2023-04-26T03:58:33Z | |
dc.date.accessioned | 2023-06-06T23:43:48Z | |
dc.date.available | 2023-04-26T03:58:33Z | |
dc.date.available | 2023-06-06T23:43:48Z | |
dc.date.created | 2023-04-26T03:58:33Z | |
dc.date.issued | 2023 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/83784 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6651475 | |
dc.description.abstract | In this thesis we will make a brief study of Fractional Sobolev spaces. We will
give two equivalent de nitions of these spaces using interpolation spaces and
the Fourier transform in the case p = 2. Finally, we prove the existence of at
least one positive solution for the nonlocal semipositone problem. (Texto tomado de la fuente) | |
dc.description.abstract | En esta tesis haremos un breve estudio de los espacios Fraccionarios de Sobolev. Daremos dos de finiciones equivalentes de estos espacios usando espacios de interpolación y la transformada de Fourier en el caso p = 2. Finalmente, probaremos la existencia de al menos una solución positiva para el problema semipositón no local | |
dc.language | eng | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Manizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Matemática Aplicada | |
dc.publisher | Facultad de Ciencias Exactas y Naturales | |
dc.publisher | Manizales, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Manizales | |
dc.relation | Adams, Robert A.; Fournier, John J. F. Sobolev spaces. Second edition. Pure
and Applied Mathematics (Amsterdam), 140. Elsevier/Academic Press, Am-
sterdam, 2003. xiv+305 pp. ISBN: 0-12-044143-8 | |
dc.relation | Alves, Claudianor O.; de Holanda, Angelo R. F.; Santos, Jefferson A. Exis-
tence of positive solutions for a class of semipositone quasilinear problems
through Orlicz-Sobolev space. Proc. Amer. Math. Soc. 147 (2019), no. 1,
285–299 | |
dc.relation | Aronszajn, N. (1955). Boundary values of functions with finite Dirichlet
integral. Techn. Report of Univ. of Kansas, 14, 77-94 | |
dc.relation | Badiale, Marino; Serra, Enrico. Semilinear elliptic equations for beginners.
Existence results via the variational approach. Universitext. Springer, Lon-
don, 2011. x+199 pp. ISBN: 978-0-85729-226-1 | |
dc.relation | Barb, Simona. Topics in geometric analysis with applications to partial dif-
ferential equations. Thesis (Ph.D.)–University of Missouri - Columbia. Pro-
Quest LLC, Ann Arbor, MI, 2009. 238 pp. ISBN: 978-1124-67385-1 | |
dc.relation | Biler, Piotr; Karch, Grzegorz; Woyczy ́nski, Wojbor A. Critical nonlinearity
exponent and self-similar asymptotics for L ́evy conservation laws. Ann. Inst.
H. Poincar ́e C Anal. Non Lin ́eaire 18 (2001), no. 5, 613–637 | |
dc.relation | Brezis, Haim. Functional analysis, Sobolev spaces and partial differential
equations. Universitext. Springer, New York, 2011. xiv+599 pp. ISBN: 978-
0-387-70913-0 | |
dc.relation | Brown, K. J.; Shivaji, R. Simple proofs of some results in perturbed bi-
furcation theory. Proc. Roy. Soc. Edinburgh Sect. A 93 (1982/83), no. 1-2,
71–82 | |
dc.relation | Caldwell, Scott; Castro, Alfonso; Shivaji, Ratnasingham; Unsurangsie,
Sumalee. Positive solutions for classes of multiparameter elliptic semiposi-
tone problems. Electron. J. Differential Equations 2007, No. 96, 10 pp | |
dc.relation | Castillo, Ren ́e Erl ́ın; Trousselot, Eduard. Reverse generalized H ̈older and
Minkowski type inequalities and their applications. Bol. Mat. 17 (2010), no.
2, 137–142 | |
dc.relation | Castro, Alfonso; de Figueredo, Djairo G.; Lopera, Emer. Existence of pos-
itive solutions for a semipositone p-Laplacian problem. Proc. Roy. Soc. Ed-
inburgh Sect. A 146 (2016), no. 3, 475–482. | |
dc.relation | Dacorogna, Bernard. Introduction to the calculus of variations. Third edi-
tion. Imperial College Press, London, 2015. x+311 pp. ISBN: 978-1-78326-
551-0 | |
dc.relation | Dhanya, R.; Tiwari, Sweta. A multiparameter fractional Laplace problem
with semipositone nonlinearity. Commun. Pure Appl. Anal. 20 (2021), no.
12, 4043–4061 | |
dc.relation | Di Nezza, Eleonora; Palatucci, Giampiero; Valdinoci, Enrico. Hitchhiker’s
guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012), no. 5,
521–573 | |
dc.relation | Del Pezzo, Leandro M.; Quaas, Alexander. A Hopf’s lemma and a strong
minimum principle for the fractional p-Laplacian. J. Differential Equations
263 (2017), no. 1, 765–778 | |
dc.relation | Demengel, Fran ̧coise; Demengel, Gilbert. Functional spaces for the theory
of elliptic partial differential equations. Translated from the 2007 French
original by Reinie Ern ́e. Universitext. Springer, London; EDP Sciences, Les
Ulis, 2012. xviii+465 pp. ISBN: 978-1-4471-2806-9; 978-2-7598-0698-0 | |
dc.relation | Driver, B. K. (2003). Analysis tools with applications. Lecture notes | |
dc.relation | Duvaut, G.; Lions, J.-L. Inequalities in mechanics and physics. Trans-
lated from the French by C. W. John. Grundlehren der Mathematischen
Wissenschaften, 219. Springer-Verlag, Berlin-New York, 1976. xvi+397 pp.
ISBN: 3-540-07327-2 | |
dc.relation | Edmunds, D. E.; Evans, W. D. Fractional Sobolev spaces and inequali-
ties. Cambridge Tracts in Mathematics, 230. Cambridge University Press,
Cambridge, 2023. ix+157 pp. ISBN: 978-1-009-25463-2 | |
dc.relation | Evans, Lawrence C. Partial differential equations. Second edition. Graduate
Studies in Mathematics, 19. American Mathematical Society, Providence,
RI, 2010. xxii+749 pp. ISBN: 978-0-8218-4974-3 | |
dc.relation | Fefferman, C.; de la Llave, R. Relativistic stability of matter. I. Rev. Mat.
Iberoamericana 2 (1986), no. 1-2, 119–213 | |
dc.relation | Fiscella, Alessio; Servadei, Raffaella; Valdinoci, Enrico. Density properties
for fractional Sobolev spaces. Ann. Acad. Sci. Fenn. Math. 40 (2015), no. 1,
235–253 | |
dc.relation | Gagliardo, Emilio. Propriet`a di alcune classi di funzioni in pi`u variabili.
(Italian) Ricerche Mat. 7 (1958), 102–137 | |
dc.relation | Iannizzotto, Antonio; Mosconi, Sunra; Squassina, Marco. Global H ̈older
regularity for the fractional p-Laplacian. Rev. Mat. Iberoam. 32 (2016), no.
4, 1353–1392 | |
dc.relation | Iannizzotto, Iannizzotto, Antonio; Mosconi, Sunra J. N.; Squassina, Marco.
Fine boundary regularity for the degenerate fractional p-Laplacian. J. Funct.
Anal. 279 (2020), no. 8, 108659, 54 pp | |
dc.relation | ones, Frank. Lebesgue integration on Euclidean space. Jones and Bartlett
Publishers, Boston, MA, 1993. xvi+588 pp. ISBN: 0-86720-203-3 | |
dc.relation | Lunardi, Alessandra. Interpolation theory. Third edition [of MR2523200].
Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes.
Scuola Normale Superiore di Pisa (New Series)], 16. Edizioni della Normale,
Pisa, 2018. xiv+199 pp. ISBN: 978-88-7642-639-1; 978-88-7642-638-4 | |
dc.relation | Mosconi, Sunra; Perera, Kanishka; Squassina, Marco; Yang, Yang. The
Brezis-Nirenberg problem for the fractional p-Laplacian. Calc. Var. Partial
Differential Equations 55 (2016), no. 4, Art. 105, 25 pp | |
dc.relation | Munkres, James R. Analysis on manifolds. Addison-Wesley Publishing
Company, Advanced Book Program, Redwood City, CA, 1991. xiv+366 pp.
ISBN: 0-201-51035-9 | |
dc.relation | Restrepo Montoya, D. E. (2018). On the fractional Laplacian and nonlocal
operators. Escuela de Matem ́aticas | |
dc.relation | Rudin, Walter. Reelle und komplexe Analysis. (German) [[Real and com-
plex analysis]] Translated from the third English (1987) edition by Uwe
Krieg. R. Oldenbourg Verlag, Munich, 1999. xiv+499 pp. ISBN: 3-486-24789-
1 | |
dc.relation | Slobodeckij, L. N. (1958). Generalized Sobolev spaces and their applications
to boundary value problems of partial differential equations, Leningrad. Gos.
Ped. Inst. Ucep. Zap, 197, 54-112 | |
dc.relation | Tankov, P. (2003). Financial modelling with jump processes. Chapman and
Hall/CRC | |
dc.rights | Reconocimiento 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Existence of positive solutions for a Semipositone fractional p-Laplacian problem | |
dc.type | Trabajo de grado - Maestría | |