dc.contributorRestrepo Betancur, Giovanni
dc.contributorUsuga Suarez, Alexandra
dc.contributorGrupo de Investigación en Biotecnología Animal GIBA
dc.contributorQuímica de los Productos Naturales y los Alimentos
dc.contributorMontoya Páez, Juan David [0000-0002-9677-0426]
dc.contributorMontoya Páez, Juan David
dc.contributorMontoya Páez, Juan David
dc.creatorMontoya Páez, Juan David
dc.date.accessioned2023-02-07T16:01:10Z
dc.date.accessioned2023-06-06T23:42:34Z
dc.date.available2023-02-07T16:01:10Z
dc.date.available2023-06-06T23:42:34Z
dc.date.created2023-02-07T16:01:10Z
dc.date.issued2022-11-04
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/83352
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6651464
dc.description.abstractActualmente las razas de asnos se encuentran en grave peligro de extinción, donde se ha producido una disminución sustancial en el tamaño de la población. En Colombia se reportó que la población de asnos criollos en el país para el 2010 era de 134251 animales y para el año 2015 hubo una dramática reducción a 75072 ejemplares. Una de las consecuencias de la reducción de la población en los asnos, se ha dado por la exportación indiscriminada de pieles de asno hacia la China, para la producción de un medicamento tradicional, lo que ha conllevado a nivel mundial a una reducción considerable en la población. Dado esto, la criopreservación es una técnica que permite mantener las células a baja temperatura sin perder su viabilidad y utilidad, tiene como objetivo inhibir la actividad metabólica del semen, garantizando su vitalidad y función a través del tiempo, conservándolo indefinidamente. Sin embargo, las tasas de fertilidad con semen criopreservado en programas de inseminación artificial siguen siendo menores con respecto al semen fresco o refrigerado, esto es dado a que los procesos de congelación en el semen incluyen factores que son extremadamente nocivos para las células, que afectan seriamente la vitalidad y funcionalidad de los espermatozoides reduciendo su longevidad. Específicamente el uso de la inseminación artificial en las burras ha tenido algunas dificultades en comparación a las yeguas, debido a las diferencias anatómicas y fisiológicas en el tracto reproductivo. Después de la inseminación artificial con semen descongelado se provoca una reacción inflamatoria en el útero probablemente generado por la ausencia del plasma seminal y los crioprotectores permeables en el semen. El objetivo de esta investigación fue evaluar factores asociados con la criotoleracia, el estado redox y la capacidad fecundante del semen asnal, orientados a la conservación de los asnos (Equus asinus) criollos colombianos. Para lo anterior se propuso la evaluación de 8 alternativas en la congelación del semen con diferentes combinaciones entre crioprotectores permeables y no permeables como la dimetilformamida (DMF), sacarosa (SAC), albumina sérica bovina (BSA) y plasma seminal (PS). Para esto fueron colectados 30 eyaculados, de cada eyaculado se extrajo una proporción de plasma seminal sobre el cual fueron analizadas proteínas y enzimas. Al semen, sometido a las diferentes alternativas de criopreservación, se les realizó evaluación de la calidad seminal, capacidad antioxidante total (TAC), especies reactivas de oxigeno (ERO) y capacidad fecundante. Para el análisis estadístico se ajustaron modelos lineales generalizados (GLM) y se realizaron correlaciones y regresiones. Se encontraron asociaciones entre el contenido del plasma, la TAC y EROS sobre la calidad del semen fresco y descongelado de asnos. Así mismo, se encontró que la combinación entre DMF, BSA y PS brinda una mayor adherencia de espermatozoides a la zona pelúcida. La selección de los componentes de los diluyentes en la congelación de semen de asnos criollos colombianos, es determinante en la conservación, en el aporte antioxidante, en la mitigación de especies reactivas de oxígeno y en la capacidad fecundante. (Texto tomado de la fuente)
dc.description.abstractDonkey breeds are currently in serious danger of extinction, where there has been a substantial decline in population size. In Colombia, it was reported that the population of Creole donkeys for 2010 was 134,251 animals and for the year 2015 there was a dramatic reduction to 75,072 specimens. One of the consequences of the reduction in the population of donkeys has been the indiscriminate export of donkey skins to China for the production of a traditional medicine, which has led to a considerable reduction in the population. For this reason, cryopreservation is a technique that allows cells to be kept at a low temperature without lose their viability and usefulness. Its objective is to inhibit the metabolic activity of sperm, guaranteeing its vitality and function over time, preserving it indefinitely. However, fertility rates with cryopreserved semen in artificial insemination programs continue to be lower compared to fresh or chilled semen, this is because the freezing processes in semen include factors that are extremely harmful to cells that seriously affect fertility, vitality and functionality of spermatozoa, reducing their longevity. Specifically, the use of artificial insemination in donkeys has had some difficulties compared to mares due to anatomical and physiological differences in the reproductive tract. After artificial insemination with thawed semen, it causes an inflammatory reaction in the uterus, probably caused by the absence of seminal plasma and permeable cryoprotectants in the semen. The aim of this research was to evaluate factors associated with the cryotolerance, redox status and fertilizing capacity of donkey semen, aimed at the conservation of Colombian Creole donkeys (Equus asinus). For this, the evaluation of 8 alternatives in semen freezing was carried out with different combinations between permeable and non-permeable cryoprotectants such as dimethylformamide (DMF), sucrose (SAC), bovine serum albumin (BSA) and seminal plasma (PS). Thirty (30) ejaculates were collected, from each ejaculate Contenido XIX a proportion of seminal plasma was extracted, from which proteins and enzymes were analyzed. The semen with different cryopreservation alternatives, was evaluated for seminal quality, total antioxidant capacity (TAC), reactive oxygen species (ROS) and fertilizing capacity. For statistical analysis, generalized linear models (GLM) were fitted and correlations and regressions were performed. Associations were found between plasma content, TAC and EROS on the quality of fresh and thawed donkey semen. In addition, it was found that the combination of DMF, BSA and PS provides greater adherence of sperm to the zona pellucida. The selection of the components of the extenders in the freezing of semen of Colombian Creole donkeys, is decisive in its conservation, in the antioxidant contribution, in the mitigation of reactive oxygen species and in its fertilizing capacity.
dc.languagespa
dc.publisherUniversidad Nocional de Colombia
dc.publisherMedellín - Ciencias - Doctorado en Biotecnología
dc.publisherFacultad de Ciencias
dc.publisherMedellín, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationRedCol
dc.relationLaReferencia
dc.relationAebi, H. (1984). Catalase in vitro. In Antioxidant Enzymes of Seminal Plasma International Braz J Urol (Vol. 34, Issue 4, pp. 121–126). https://doi.org/10.1016/S0076-6879(84)05016-3
dc.relationAgarwal, A., Gupta, S., & Sikka, S. (2006). The role of free radicals and antioxidants in reproduction. Current Opinion in Obstetrics & Gynecology, 18(3), 325–332. https://doi.org/10.1097/01.GCO.0000193003.58158.4E
dc.relationAitken, J., & Fisher, H. (1994). Reactive oxygen species generation and human spermatozoa: The balance of benefit and risk. BioEssays, 16(4), 259–267. https://doi.org/10.1002/BIES.950160409
dc.relationArts, M. J. T. ., Sebastiaan Dallinga, J., Voss, H.-P., Haenen, G. R. M. ., & Bast, A. (2004). A new approach to assess the total antioxidant capacity using the TEAC assay. Food Chemistry, 88(4), 567–570. https://doi.org/10.1016/j.foodchem.2004.02.008
dc.relationBalao da Silva, C. M., Spinaci, M., Bucci, D., Giaretta, E., Peña, F. J., Mari, G., & Galeati, G. (2013). Effect of sex sorting on stallion spermatozoa: Heterologous oocyte binding, tyrosine phosphorylation and acrosome reaction assay. Animal Reproduction Science, 141(1–2), 68–74. https://doi.org/10.1016/J.ANIREPROSCI.2013.07.008
dc.relationBall, B. A. (2008). Oxidative stress, osmotic stress and apoptosis: Impacts on sperm function and preservation in the horse. Animal Reproduction Science, 107(3–4), 257–267. https://doi.org/10.1016/J.ANIREPROSCI.2008.04.014
dc.relationBall, B. A., Vo, A. T., & Baumber, J. (2001). Generation of reactive oxygen species by equine spermatozoa. American Journal of Veterinary Research, 62(4), 508–515. https://doi.org/10.2460/AJVR.2001.62.508
dc.relationBarth, A. D., & Oko, R. J. (1989). Abnormal morphology of bovine spermatozoa (1st ed.). Iowa State University Press.
dc.relationBenítez-Estrada, A., Villanueva-Sánchez, J., González-Rosendo, G., Alcántar-Rodríguez, V. E., Puga-Díaz, R., Quintero-Gutiérrez, A. G., Benítez-Estrada, A., Villanueva-Sánchez, J., González-Rosendo, G., Alcántar-Rodríguez, V. E., Puga-Díaz, R., & Quintero-Gutiérrez, A. G. (2020). Determinación de la capacidad antioxidante total de alimentos y plasma humano por fotoquimioluminiscencia: Correlación con ensayos fluorométricos (ORAC) y espectrofotométricos (FRAP). TIP. Revista Especializada En Ciencias Químico-Biológicas, 23, 1–9. https://doi.org/10.22201/FESZ.23958723E.2020.0.244
dc.relationBhagat, S., Soni, A., Mishra, S., Santra, A., Sonkar, N., & Verma, U. (2020). Body condition scoring of Equine: Short note. ~ 19 ~ The Pharma Innovation Journal, 9(3), 19–20. http://www.thepharmajournal.com
dc.relationBradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
dc.relationBrahmkshtri, B. P., Edwin, M. J., John, M. C., Nainar, A. M., & Krishnan, A. R. (1999). Relative efficacy of conventional sperm parameters and sperm penetration bioassay to assess bull fertility in vitro. Animal Reproduction Science, 54(3), 159–168. https://doi.org/10.1016/S0378-4320(98)00108-0
dc.relationBresnahan, D. R., Lupole, R. E., Stilz, C. R., & Carnevale, E. M. (2022). Effect of Mare Age on Transcript Abundance of Connexins-37 and -43, Zona Pellucida Proteins, and Sperm Binding. Journal of Equine Veterinary Science, 108, 103796. https://doi.org/10.1016/J.JEVS.2021.103796
dc.relationBrito, L. F. C., Greene, L. M., Kelleman, A., Knobbe, M., & Turner, R. (2011). Effect of method and clinician on stallion sperm morphology evaluation. Theriogenology. https://doi.org/10.1016/j.theriogenology.2011.04.007
dc.relationBucci, D., Giaretta, E., Spinaci, M., Rizzato, G., Isani, G., Mislei, B., Mari, G., Tamanini, C., & Galeati, G. (2016). Characterization of alkaline phosphatase activity in seminal plasma and in fresh and frozen–thawed stallion spermatozoa. Theriogenology, 85(2), 288-295.e2. https://doi.org/10.1016/J.THERIOGENOLOGY.2015.09.007
dc.relationCarver, D. A., & Ball, B. A. (2002). Lipase activity in stallion seminal plasma and the effect of lipase on stallion spermatozoa during storage at 5 °C. Theriogenology, 58(8), 1587–1595. https://doi.org/10.1016/S0093-691X(02)01049-X
dc.relationCatalán, J., Yánez-Ortiz, I., Tvarijonaviciute, A., González-Arostegui, L. G., Rubio, C. P., Yeste, M., Miró, J., & Barranco, I. (2022). Impact of Seminal Plasma Antioxidants on Donkey Sperm Cryotolerance. Antioxidants, 11(2), 417. https://doi.org/10.3390/ANTIOX11020417/S1
dc.relationCecchini Gualandi, S., Giangaspero, B., Di Palma, T., Macchia, G., Carluccio, A., & Boni, R. (2021). Oxidative profile and protease regulator potential to predict sperm functionality in donkey (Equus asinus). Scientific Reports 2021 11:1, 11(1), 1–10. https://doi.org/10.1038/s41598-021-99972-9
dc.relationCohen, D. J., Maldera, J. A., Weigel Muñoz, M., Ernesto, J. I., Vasen, G., & Cuasnicu, P. S. (2011). Cysteine-Rich Secretory Proteins (CRISP) and their role in mammalian fertilization. Biological Research, 44(2), 135–138. https://doi.org/10.4067/S0716-97602011000200004
dc.relationConsuegra, C., Crespo, F., Dorado, J., Diaz-Jimenez, M., Pereira, B., Sánchez-Calabuig, M. J., Beltrán-Breña, P., Pérez-Cerezales, S., Rizos, D., & Hidalgo, M. (2020). Fertilizing capacity of vitrified stallion sperm assessed utilizing heterologous IVF after different semen warming procedures. Animal Reproduction Science, 223, 106627. https://doi.org/10.1016/J.ANIREPROSCI.2020.106627
dc.relationContri, A., Gloria, A., Robbe, D., Sfirro, M. P., & Carluccio, A. (2012). Effect of sperm concentration on characteristics of frozen-thawed semen in donkeys. Animal Reproduction Science, 136(1–2), 74–80. https://doi.org/10.1016/J.ANIREPROSCI.2012.10.022
dc.relationDacheux, J. L., Castella, S., Gatti, J. L., & Dacheux, F. (2005). Epididymal cell secretory activities and the role of proteins in boar sperm maturation. Theriogenology, 63(2), 319–341. https://doi.org/10.1016/J.THERIOGENOLOGY.2004.09.015
dc.relationDominguez, E. M., Moreno-Irusta, A., Rodriguez, M. B., Salamone, D. F., de Arruda, R. P., Losinno, L., & Giojalas, L. C. (2020). Chemotactic selection of frozen-thawed stallion sperm improves sperm quality and heterologous binding to oocytes. Animal Reproduction Science, 221, 106582. https://doi.org/10.1016/J.ANIREPROSCI.2020.106582
dc.relationGamboa, S., Rodrigues, A. S., Henriques, L., Batista, C., & Ramalho-Santos, J. (2010). Seasonal functional relevance of sperm characteristics in equine spermatozoa. Theriogenology, 73(7), 950–958. https://doi.org/10.1016/J.THERIOGENOLOGY.2009.11.023
dc.relationGiesecke, K., Sieme, H., & Distl, O. (2010). Infertility and candidate gene markers for fertility in stallions: A review. The Veterinary Journal, 185(3), 265–271. https://doi.org/10.1016/J.TVJL.2009.07.024
dc.relationGraham, J. K., & Mocé, E. (2005). Fertility evaluation of frozen/thawed semen. Theriogenology, 64(3), 492–504. https://doi.org/10.1016/J.THERIOGENOLOGY.2005.05.006
dc.relationGuthrie, H. D., & Welch, G. R. (2006). Determination of intracellular reactive oxygen species and high mitochondrial membrane potential in Percoll-treated viable boar sperm using fluorescence-activated flow cytometry1. Journal of Animal Science, 84(8), 2089–2100. https://doi.org/10.2527/jas.2005-766
dc.relationHamann, H., Jude, R., Sieme, H., Mertens, U., Töpfer-Petersen, E., Distl, O., & Leeb, T. (2007). A polymorphism within the equine CRISP3 gene is associated with stallion fertility in Hanoverian warmblood horses. Animal Genetics, 38(3), 259–264. https://doi.org/10.1111/J.1365-2052.2007.01594.X
dc.relationHärtlová, H., Rajmon, R., Krontorádová, I., Mamica, J., Zita, L., Klabanová, P., & Černocký, A. (2013). Semen quality, lipid peroxidation, and seminal plasma antioxidant status in horses with different intensities of physical exercise. Acta Veterinaria Brno, 82(1), 31–35. https://doi.org/10.2754/avb201382010031
dc.relationHasegawa, A., & Koyama, K. (2007). Contribution of zona proteins to oocyte growth. Society of Reproduction and Fertility Supplement, 63, 229–235. https://pubmed.ncbi.nlm.nih.gov/17566276/
dc.relationKankofer, M., Kolm, G., Aurich, J., & Aurich, C. (2005). Activity of glutathione peroxidase, superoxide dismutase and catalase and lipid peroxidation intensity in stallion semen during storage at 5°C. Theriogenology, 63(5), 1354–1365. https://doi.org/10.1016/J.THERIOGENOLOGY.2004.07.005
dc.relationKareskoski, M., & Katila, T. (2008). Components of stallion seminal plasma and the effects of seminal plasma on sperm longevity. Animal Reproduction Science, 107(3–4), 249–256. https://doi.org/10.1016/J.ANIREPROSCI.2008.04.013
dc.relationLen, J., Beehan, D., Eilts, B., Ebrahimie, E., & Lyle, S. (2020). Stallion Sperm Integrity After Centrifugation to Reduce Seminal Plasma Concentration and Cool Storage for 4 days. Journal of Equine Veterinary Science, 85. https://doi.org/10.1016/J.JEVS.2019.102819
dc.relationMaeda, T., Nishida, J., & Nakanishi, Y. (1999). Expression pattern, subcellular localization and structure--function relationship of rat Tpx-1, a spermatogenic cell adhesion molecule responsible for association with Sertoli cells. Development, Growth & Differentiation, 41(6), 715–722. https://doi.org/10.1046/J.1440-169X.1999.00470.X
dc.relationMagdaleno, L., Gasset, M., Varea, J., Schambony, A. M., Urbanke, C., Raida, M., Töpfer-Petersen, E., & Calvete, J. J. (1997). Biochemical and conformational characterisation of HSP-3, a stallion seminal plasma protein of the cysteine-rich secretory protein (CRISP) family. FEBS Letters, 420(2–3), 179–185. https://doi.org/10.1016/S0014-5793(97)01514-7
dc.relationMarklund, S., & Marklund, G. (1974). Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Convenient Assay for Superoxide Dismutase. European Journal of Biochemistry, 47(3), 469–474. https://doi.org/10.1111/J.1432-1033.1974.TB03714.X
dc.relationMichael, A., Alexopoulos, C., Pontiki, E., Hadjipavlou-Litina, D., Saratsis, P., & Boscos, C. (2007). Effect of antioxidant supplementation on semen quality and reactive oxygen species of frozen-thawed canine spermatozoa. Theriogenology, 68(2), 204–212. https://doi.org/10.1016/J.THERIOGENOLOGY.2007.04.053
dc.relationMiragaya, M. H., Neild, D. M., & Alonso, A. E. (2018). A Review of Reproductive Biology and Biotechnologies in Donkeys. Journal of Equine Veterinary Science, 65, 55–61. https://doi.org/10.1016/J.JEVS.2017.12.005
dc.relationMiró, J, Taberner, E., Rivera, M., Peña, A., Medrano, A., Rigau, T., & Peñalba, A. (2009). Effects of dilution and centrifugation on the survival of spermatozoa and the structure of motile sperm cell subpopulations in refrigerated Catalonian donkey semen. Theriogenology, 72(8), 1017–1022. https://doi.org/10.1016/j.theriogenology.2009.06.012
dc.relationMiró, Jordi, Vilés, K., García, W., Jordana, J., & Yeste, M. (2013). Effect of donkey seminal plasma on sperm movement and sperm-polymorphonuclear neutrophils attachment in vitro. Animal Reproduction Science, 140, 164–172. https://doi.org/10.1016/j.anireprosci.2013.06.007
dc.relationMonteiro, G. A., Papa, F. O., Zahn, F. S., Dellaqua, J. A., Melo, C. M., Maziero, R. R. D., Avanzi, B. R., Alvarenga, M. A., & Guasti, P. N. (2011). Cryopreservation and fertility of ejaculated and epididymal stallion sperm. Animal Reproduction Science, 127(3–4), 197–201. https://doi.org/10.1016/j.anireprosci.2011.08.002
dc.relationMonteiro, R. A., Cunha, R. M., Guerra, M. M. P., de Almeida, V. M., Peña-Alfaro, C. E., & Silva, S. V. (2022). Use of Equine Sperm Cryopreservation Techniques as a Conservation Method of Donkey Germplasm. Journal of Equine Veterinary Science, 111, 103888. https://doi.org/10.1016/j.jevs.2022.103888
dc.relationMontoya, J. D., Rojano, B., & Restrepo, G. (2017). Efecto de la suplementación del diluyente sobre la calidad del semen de asno a la descongelación. Archivos de Zootecnia, 66(255), 333. https://doi.org/10.21071/az.v66i255.2508
dc.relationMontoya Páez, J. D., Rojano, B. A., Restrepo Betancur, G., Montoya Páez, J. D., Rojano, B. A., & Restrepo Betancur, G. (2017). Suplementación con plasma seminal y relación de sus componentes con la calidad de semen congelado-descongelado de asnos (Equus asinus). Revista Mexicana de Ciencias Pecuarias, 8(3), 233–242. https://doi.org/10.22319/RMCP.V8I3.4499
dc.relationMuñoz, M. W., Ernesto, J. I., Bluguermann, C., Busso, D., Battistone, M. A., Cohen, D. J., & Cuasnicú, P. S. (2012). Evaluation of testicular sperm CRISP2 as a potential target for contraception. Journal of Andrology, 33(6), 1360–1370. https://doi.org/10.2164/JANDROL.112.016725
dc.relationNeild, D., Chaves, G., Flores, M., Mora, N., Beconi, M., & Agüero, A. (1999). Hypoosmotic test in equine spermatozoa. Theriogenology. https://doi.org/10.1016/S0093-691X(99)00021-7
dc.relationNeuhauser, S., Gösele, P., & Handler, J. (2019). Postthaw Addition of Autologous Seminal Plasma Improves Sperm Motion Characteristics in Fair and Poor Freezer Stallions. Journal of Equine Veterinary Science, 72, 117–123. https://doi.org/10.1016/J.JEVS.2018.10.028
dc.relationNouri, H., Towhidi, A., Zhandi, M., & Sadeghi, R. (2013). The effects of centrifuged egg yolk used with INRA plus soybean lecithin extender on semen quality to freeze miniature caspian horse semen. Journal of Equine Veterinary Science, 33(12), 1050–1053. https://doi.org/10.1016/J.JEVS.2013.03.184
dc.relationOrtega-Ferrusola, C., Johannisson, A., Peña Vega, F. J., Tapia, J. A., Rodriguez-Martinez, H., Dalin, A. M., & Morrell, J. M. (2011). Effect of Different Extenders and Seminal Plasma on the Susceptibility of Equine Spermatozoa to Lipid Peroxidation After Single-Layer Centrifugation, Through Androcoll-E. Journal of Equine Veterinary Science, 31(7), 411–416. https://doi.org/10.1016/J.JEVS.2011.01.010
dc.relationOrtiz, I., Dorado, J., Acha, D., Gálvez, M. J., Urbano, M., & Hidalgo, M. (2015). Colloid single-layer centrifugation improves post-thaw donkey (Equus asinus) sperm quality and is related to ejaculate freezability. Reproduction, Fertility and Development, 27(2), 332. https://doi.org/10.1071/RD13246
dc.relationOu, B., Hampsch-Woodill, M., & Prior, R. L. (2001). Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. Journal of Agricultural and Food Chemistry, 49(10), 4619–4626. https://doi.org/10.1021/jf010586o
dc.relationPapa, F. O., Melo, C. M., Fioratti, E. G., Dell’Aqua, J. A., Zahn, F. S., & Alvarenga, M. A. (2008). Freezing of stallion epididymal sperm. Animal Reproduction Science, 107(3–4), 293–301. https://doi.org/10.1016/J.ANIREPROSCI.2008.05.003
dc.relationPapas, M., Catalan, J., Barranco, I., Arroyo, L., Bassols, A., Yeste, M., & Miró, J. (2020). Total and specific activities of superoxide dismutase (SOD) in seminal plasma are related with the cryotolerance of jackass spermatozoa. Cryobiology, 92, 109–116. https://doi.org/10.1016/J.CRYOBIOL.2019.11.043
dc.relationPontiki, E., & Hadjipavlou-Litina, D. (2006). Antioxidant and Anti-Inflammatory Activity of Aryl-Acetic and Hydroxamic Acids as Novel Lipoxygenase Inhibitors. Medicinal Chemistry, 2(3), 251–264. https://doi.org/10.2174/157340606776930763
dc.relationPortus, B. J., Reilas, T., & Katila, T. (2005). Effect of seminal plasma on uterine inflammation, contractility and pregnancy rates in mares. Equine Veterinary Journal, 37(6), 515–519. https://doi.org/10.2746/042516405775314844
dc.relationRodríguez-Martínez, H., Kvist, U., Ernerudh, J., Sanz, L., & Calvete, J. J. (2011). Seminal Plasma Proteins: What Role Do They Play? American Journal of Reproductive Immunology, 66(SUPPL. 1), 11–22. https://doi.org/10.1111/j.1600-0897.2011.01033.x
dc.relationSchambony, A., Gentzel, M., Wolfes, H., Raida, M., Neumann, U., & Töpfer-Petersen, E. (1998). Equine CRISP-3: primary structure and expression in the male genital tract. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1387(1–2), 206–216. https://doi.org/10.1016/S0167-4838(98)00122-8
dc.relationSerres, C., Rodriguez, A., Alvarez, A. L., Santiago, I., Gabriel, J., Gómez-Cuétara, C., & Mateos, E. (2002). Effect of centrifugation and temperature on the motility and plasma membrane integrity of Zamorano-Leonés donkey semen. Theriogenology, 58(2–4), 329–332. https://doi.org/10.1016/S0093-691X(02)00876-2
dc.relationShamsi, M. B., Venkatesh, S., Tanwar, M., Talwar, P., Sharma, R. K., Dhawan, A., Kumar, R., Gupta, N. P., Malhotra, N., Singh, N., Mittal, S., & Dada, R. (2009). DNA integrity and semen quality in men with low seminal antioxidant levels. Mutation Research, 665(1–2), 29–36. https://doi.org/10.1016/J.MRFMMM.2009.02.017
dc.relationTöpfer-Petersen, E., Ekhlasi-Hundrieser, M., Kirchhoff, C., Leeb, T., & Sieme, H. (2005). The role of stallion seminal proteins in fertilisation. Animal Reproduction Science, 89(1–4), 159–170. https://doi.org/10.1016/J.ANIREPROSCI.2005.06.018
dc.relationTroedsson, M. H., Lee, C. S., Franklin, R. D., & Crabo, B. G. (2000). The role of seminal plasma in post-breeding uterine inflammation. Journal of Reproduction and Fertility. Supplement, 56, 341–349. https://europepmc.org/article/med/20681146
dc.relationUsuga, A., Rojano, B. A., Restrepo, G., Usuga, A., Rojano, B. A., & Restrepo, G. (2018). Association of the cysteine-rich secretory protein-3 (CRISP-3) and some of its polymorphisms with the quality of cryopreserved stallion semen. Reproduction, Fertility and Development, 30(3), 563–569. https://doi.org/10.1071/RD17044
dc.relationUsuga, A., Rojano, B., & Restrepo, G. (2020). Lyophilized seminal plasma can improve stallion semen freezability. Indian Journal of Animal Sciences, 90(2), 171–175. https://doi.org/10.13140/RG.2.2.25756.03206
dc.relationVilés, K., Rabanal, R., Rodríguez-Prado, M., & Miró, J. (2013). Effect of ketoprofen treatment on the uterine inflammatory response after AI of jennies with frozen semen. Theriogenology, 79, 1019–1026. https://doi.org/10.1016/j.theriogenology.2013.01.006
dc.relationWaheed, M. M., El-Bahr, S. M., & Al-haider, A. K. (2013). Influence of Seminal Plasma Antioxidants and Osteopontin on Fertility of the Arabian Horse. Journal of Equine Veterinary Science, 33(9), 705–709. https://doi.org/10.1016/J.JEVS.2012.11.006
dc.relationWittayarat, M., Pukazhenthi, B. S., Tipkantha, W., Techakumphu, M., Srisuwatanasagul, S., & Panyaboriban, S. (2021). CRISP protein expression in semen of the endangered Malayan tapir (Tapirus indicus). Theriogenology, 172, 106–115. https://doi.org/10.1016/J.THERIOGENOLOGY.2021.06.005
dc.relationWood, P. L., Scoggin, K., Ball, B. A., Troedsson, M. H., & Squires, E. L. (2016). Lipidomics of equine sperm and seminal plasma: Identification of amphiphilic (O-acyl)-ω-hydroxy-fatty acids. Theriogenology, 86(5), 1212–1221. https://doi.org/10.1016/J.THERIOGENOLOGY.2016.04.012
dc.relationYoshida, M. (2000). Conservation of sperms: Current status and new trends. Animal Reproduction Science, 60–61, 349–355. https://doi.org/10.1016/S0378-4320(00)00125-1
dc.relationBottrel, M., Acha, D., Ortiz, I., Hidalgo, M., Gósalvez, J., Camisão, J., & Dorado, J. (2018). Cryoprotective effect of glutamine, taurine, and proline on post-thaw semen quality and DNA integrity of donkey spermatozoa. Animal Reproduction Science, 189, 128–135. https://doi.org/10.1016/J.ANIREPROSCI.2017.12.021
dc.relationBurden, F., & Thiemann, A. (2015). Donkeys Are Different. Journal of Equine Veterinary Science, 35(5), 376–382. https://doi.org/10.1016/J.JEVS.2015.03.005
dc.relationCamillo, F., Rota, A., Biagini, L., Tesi, M., Fanelli, D., & Panzani, D. (2018). The Current Situation and Trend of Donkey Industry in Europe. Journal of Equine Veterinary Science, 65, 44–49. https://doi.org/10.1016/J.JEVS.2017.11.008
dc.relationContri, A., Gloria, A., Robbe, D., Sfirro, M. P., & Carluccio, A. (2012). Effect of sperm concentration on characteristics of frozen-thawed semen in donkeys. Animal Reproduction Science, 136(1–2), 74–80. https://doi.org/10.1016/J.ANIREPROSCI.2012.10.022
dc.relationFood and Agricultural Organization (FAO). Commission on genetic resources for food and agriculture: Status and trends of Animal Genetic Resources. Disponible en: http://www.fao.org/3/a-mm278e.pdf. 2018
dc.relationGuasti, P. N., Monteiro, G. A., & Papa, F. O. (2012). Componentes do plasma seminal e sua influência sobre a criopreservação e fertilidade de espermatozóides equinos. Veterinária e Zootecnia. https://repositorio.unesp.br/handle/11449/141249?show=full
dc.relationKareskoski, M., & Katila, T. (2008). Components of stallion seminal plasma and the effects of seminal plasma on sperm longevity. Animal Reproduction Science, 107(3–4), 249–256. https://doi.org/10.1016/J.ANIREPROSCI.2008.04.013
dc.relationLeeb, T., Sieme, H., & Töpfer-Petersen, E. (2005). Genetic markers for stallion fertility--lessons from humans and mice. Animal Reproduction Science, 89(1–4), 21–29. https://doi.org/10.1016/J.ANIREPROSCI.2005.06.021
dc.relationMacías García, B., Ortega Ferrusola, C., Aparicio, I. M., Miró-Morán, A., Morillo Rodriguez, A., Gallardo Bolaños, J. M., González Fernández, L., Balao da Silva, C. M., Rodríguez Martínez, H., Tapia, J. A., & Peña, F. J. (2012). Toxicity of glycerol for the stallion spermatozoa: effects on membrane integrity and cytoskeleton, lipid peroxidation and mitochondrial membrane potential. Theriogenology, 77(7), 1280–1289. https://doi.org/10.1016/J.THERIOGENOLOGY.2011.10.033
dc.relationMadison, R. J., Evans, L. E., & Youngs, C. R. (2013). The Effect of 2-Hydroxypropyl-β-Cyclodextrin on Post-Thaw Parameters of Cryopreserved Jack and Stallion Semen. Journal of Equine Veterinary Science, 33(4), 272–278. https://doi.org/10.1016/j.jevs.2012.07.021
dc.relationMinisterio De Agricultura Y Desarrollo Rural De Colombia. 2020. Cadena equina, asnal y mular. Documento disponible en: https://sioc.minagricultura.gov.co/Equino/Documentos/005%20-%20Documentos%20T%C3%A9cnicos/Diagnostico%20Cadena%20Equina,%20Asnal%20y%20Mular.pdf. Consultado el 10 de abril de 2022
dc.relationMiró, Jordi, Viles, K., Fernandez, M., Fabregas, N., Soares, J., & Garcia, W. (2011). Induced acute endometritis by frozen semen insemination in donkey | Request PDF. Reproduction in Domestic Animals. https://www.researchgate.net/publication/313077361_Induced_acute_endometritis_by_frozen_semen_insemination_in_donkey
dc.relationMonteiro, R. A., Cunha, R. M., Guerra, M. M. P., de Almeida, V. M., Peña-Alfaro, C. E., & Silva, S. V. (2022). Use of Equine Sperm Cryopreservation Techniques as a Conservation Method of Donkey Germplasm. Journal of Equine Veterinary Science, 111, 103888. https://doi.org/10.1016/j.jevs.2022.103888
dc.relationOliveira, J. V. de, Oliveira, P. V. de L. F., Melo e Oña, C. M., Guasti, P. N., Monteiro, G. A., Sancler da Silva, Y. F. R., Papa, P. de M., Alvarenga, M. A., Dell’Aqua Junior, J. A., & Papa, F. O. (2016). Strategies to improve the fertility of fresh and frozen donkey semen. Theriogenology, 85(7), 1267–1273. https://doi.org/10.1016/j.theriogenology.2015.12.010
dc.relationPanzani, D., Rota, A., Tesi, M., Fanelli, D., & Camillo, F. (2018). Update on Donkey Embryo Transfer and Cryopreservation. Journal of Equine Veterinary Science, 65, 50–54. https://doi.org/10.1016/J.JEVS.2017.11.012
dc.relationPapa, F. O., Melo, C. M., Fioratti, E. G., Dell’Aqua, J. A., Zahn, F. S., & Alvarenga, M. A. (2008). Freezing of stallion epididymal sperm. Animal Reproduction Science, 107(3–4), 293–301. https://doi.org/10.1016/J.ANIREPROSCI.2008.05.003
dc.relationRevista Semana. El trágico destino de los burros que se desaparecen en la Costa. Tomado de https://www.semana.com/nacion/articulo/desaparecen-burros-en-lacosta/519103. 2017
dc.relationRodriguez-Martinez, H., & Wallgren, M. (2011). Advances in Boar Semen Cryopreservation. Veterinary Medicine International, 2011. https://doi.org/10.4061/2011/396181
dc.relationRossel, S., Marshall, F., Peters, J., Pilgram, T., Adams, M. D., & O’Connor, D. (2008). Domestication of the donkey: Timing, processes, and indicators. Proceedings of the National Academy of Sciences of the United States of America, 105(10), 3715–3720. https://doi.org/10.1073/PNAS.0709692105/SUPPL_FILE/INDEX.HTML
dc.relationRota, A., Panzani, D., Sabatini, C., & Camillo, F. (2012). Donkey jack (Equus asinus) semen cryopreservation: Studies of seminal parameters, post breeding inflammatory response, and fertility in donkey jennies. Theriogenology, 78(8), 1846–1854. https://doi.org/10.1016/J.THERIOGENOLOGY.2012.07.015
dc.relationRota, Alessandra, Puddu, B., Sabatini, C., Panzani, D., Lainé, A. L., & Camillo, F. (2018). Reproductive parameters of donkey jacks undergoing puberty. Animal Reproduction Science, 192, 119–125. https://doi.org/10.1016/J.ANIREPROSCI.2018.02.02
dc.relationSerres, C., Rodriguez, A., Alvarez, A. L., Santiago, I., Gabriel, J., Gómez-Cuétara, C., & Mateos, E. (2002). Effect of centrifugation and temperature on the motility and plasma membrane integrity of Zamorano-Leonés donkey semen. Theriogenology, 58(2–4), 329–332. https://doi.org/10.1016/S0093-691X(02)00876-2
dc.relationThe Donkey Sanctuary. What is ejiao? Tomado de www.thedonkeysanctuary.org.uk. 2017
dc.relationVidament, M., Vincent, P., Martin, F. X., Magistrini, M., & Blesbois, E. (2009). Differences in ability of jennies and mares to conceive with cooled and frozen semen containing glycerol or not. Animal Reproduction Science, 112(1–2), 22–35. https://doi.org/10.1016/J.ANIREPROSCI.2008.03.016
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEvaluación de factores asociados con la criotolerancia, el estado rédox y la capacidad fecundante del semen asnal, orientados a la conservación de los burros (Equus asinus) criollos colombianos
dc.typeTrabajo de grado - Doctorado


Este ítem pertenece a la siguiente institución