dc.contributorDíaz Moreno, Amanda Consuelo
dc.creatorOchoa Castro, Armando Daniel
dc.date.accessioned2023-05-31T19:24:54Z
dc.date.accessioned2023-06-06T23:42:02Z
dc.date.available2023-05-31T19:24:54Z
dc.date.available2023-06-06T23:42:02Z
dc.date.created2023-05-31T19:24:54Z
dc.date.issued2023-05-29
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/83932
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6651462
dc.description.abstractLa miel sufre un proceso de cristalización natural al ser una solución sobresaturada en glucosa. La velocidad de este proceso depende esencialmente de su composición química, aunque los procesos tecnológicos (tratamientos físicos y térmicos) también son importantes. La miel proveniente de plantaciones forestales de Acacia mangium en Vichada es un producto que tiende a formar rápidamente cristales de dimensiones visibles, lo que afecta su comercialización. La cristalización inducida o granulación es una alternativa para controlar la tasa de crecimiento (tamaño y forma cristalina) y de nucleación (número de cristales). En ella se adiciona a la miel una sustancia semilla o inoculante (azúcares o miel) con cristales de menores dimensiones y se hace agitación con el fin de conferirle características físicas y texturales deseables. El objetivo fue evaluar el proceso de cristalización inducida en este tipo de miel. Inicialmente se analizó la correlación entre variables de respuesta actividad de agua, turbidez (absorbancia a 660 nm), color (L*, a*, b*, matiz, croma) y textura (firmeza y cohesividad). Posteriormente se optimizó el proceso de granulación para poder lograr un producto con una similitud en las variables medidas respecto a la miel empleada como "testigo comercial" utilizando un diseño Box-Behnken, con parámetros el tiempo (1, 5 y 10 min) y velocidad de agitación (250, 500 y 750 rpm) y porcentaje de semilla inoculada (0, 5 y 10%). Además, se determinaron las diferencias respecto a la miel sin agitación y sin inoculación (testigo control o cristalización natural no dirigida) y a la miel usada como semilla (testigo comercial y con las propiedades organolépticas deseadas). La actividad de agua de todas las muestras aumenta con el tiempo con valores entre 0,573±0,011 y 0,613±0,009, estabilizando su valor desde el día 15 de almacenamiento. Se observaron variaciones importantes en los valores de los componentes cromáticos a* y b* entre los tratamientos con una proporción elevada de inoculante en comparación con las muestras que tenían una cantidad menor de miel semilla añadida. De la misma forma, la turbidez de los tratamientos (pasados 15 días de almacenamiento a temperatura controlada de 14±1ºC) fue en promedio 2,72±0,028 unidades de absorbancia a 660 nm, tendiendo a tener valores similares a los de la miel con cristalización natural. La firmeza y la cohesividad de las muestras sin adición de miel semilla tenían un valor de hasta dos órdenes de magnitud inferiores en comparación al resto de tratamientos. Por otro lado, se encontró una correlación significativa entre variables como la absorbancia con la firmeza (r2=0,75***) o la cohesividad (r2=0,74***), mostrando cómo el cambio en las propiedades texturales está relacionado con la formación de cristales medida por la turbidez. Además, el factor semilla es mucho más significativo que la velocidad o el tiempo de agitación, con lo cual implica que en la granulación en esta miel es más importante la velocidad de nucleación que la de crecimiento. Con el PCA se establecieron tres componentes: el primero está más fuertemente influenciado por las variables texturales y la actividad de agua, y explica el 43,9% de la varianza observada; el segundo componente está más definido por las coordenadas de color (24,6%). Al realizar la optimización se encontró que el procedimiento óptimo estaba definido por tiempo de 2,5 min, velocidad de 850 rpm y porcentaje de semilla del 7%. Una vez definido el tratamiento óptimo se procedió a evaluar la variación de propiedades texturales, colorimétricas, micromorfológicas, calorimétricas y reológicas durante el tiempo de almacenamiento a 14±1ºC y en oscuridad. En este caso, la actividad de agua (de 0,546±0,001 en el día inicial a 0,557± 0,002 en el 18), la turbidez (absorbancia de 3,27±0,01 en el día 18), el diámetro ponderado medio, la firmeza (30.967,0±2400,0 g en el día 15) y la cohesividad (86.411,0±9465,0 g s en el día 15) aumentaron con el tiempo. Las coordenadas CIELab y los índices de color no presentaron diferencias significativas excepto el ángulo de matiz que aumentó. La entalpía de la miel aumentó a 550 kW/g en el último día de evaluación con temperaturas de fusión entre 40 y 60°C. La reología siguió los comportamientos esperados para el módulo de pérdida (G”) y almacenamiento (G’). Con todo lo anterior, se observó que en miel de Acacia mangium la cristalización está controlada por el crecimiento, de tal manera que aumentando la cantidad de núcleos mejora las propiedades sensoriales. (Texto tomado de la fuente).
dc.description.abstractHoney experiments a natural crystallization process as it is a supersaturated glucose solution. The speed of this process essentially depends on its chemical composition, although the technological processes (physical and thermal treatments) are also important. Honey from Acacia mangium forest plantations in Vichada is a product that tends to quickly form crystals of visible dimensions, which affects its commercialization. Induced crystallization or granulation is an alternative to control the rate of growth (size and crystalline shape) and nucleation (number of crystals). In the commercial way, a seed or inoculant substance (sugars or honey) with smaller crystals is added to the honey and agitation is done in order to confer desirable physical and textural characteristics. The objective was to evaluate the crystallization process induced in this type of honey. Initially, the correlation between response variables water activity, turbidity (absorbance at 660 nm), color (L*, a*, b*, hue, chroma) and texture (firmness and cohesiveness) was analyzed. Subsequently, the granulation process was optimized in order to achieve a product with similar measured variables with respect to the honey used as "commercial control" using a Box-Behnken design, with parameters of time (1, 5 and 10 min) and the shaking speed (250, 500 and 750 rpm) and percentage of inoculated seed (0, 5 and 10%). In addition, the differences were determined with respect to honey without agitation and without inoculation (control control or undirected natural crystallization) and honey used as seed (commercial control and with the desired organoleptic properties). The water activity of all the samples increases with time with values between 0.573±0.011 and 0.613±0.009, stabilizing its value from day 15 of storage. Significant variations in the values of the chromatic components a* and b* were observed between the treatments with a high proportion of inoculant compared to the samples that had a lower amount of honey added. In the same way, the turbidity of the treatments (after 15 days of storage at a controlled temperature of 14±1ºC) was on average 2.72±0.028 absorbance units at 660 nm, tending to have values similar to those of honey with natural crystallization. The firmness and cohesiveness of the samples without the addition of seed molasses had a value of up to two orders of magnitude lower compared to the rest of the treatments. On the other hand, a significant correlation was found between variables such as absorbance with firmness (r2=0.75***) or cohesiveness (r2=0.74***), showing how the change in textural properties is related to crystal formation as measured by turbidity. In addition, the seed factor is much more significant than the speed or the agitation time, which implies that in the granulation in this honey the speed of nucleation is more important than that of growth. With the PCA, three components were established: the first is more strongly influenced by textural variables and water activity, and explains 43.9% of the observed variance; the second component is more defined by color coordinates (24.6%). When performing the optimization, it was found that the optimal procedure was defined by a time of 2.5 min, a speed of 850 rpm and a seed percentage of 7%. Once the optimal treatment was defined, we proceeded to evaluate the variation of textural, colorimetric, micromorphological, calorimetric and rheological properties during the storage time at 14±1ºC and in the dark. In this case, the water activity (from 0.546±0.001 on the initial day to 0.557±0.002 on the 18th), the turbidity (absorbance of 3.27±0.01 on the 18th day), the mean weighted diameter, the firmness (30,967.0±2400.0 g on day 15) and cohesiveness (86,411.0±9465.0 g s on day 15) increased over time. The CIELab coordinates and the color indices did not present significant differences except for the hue angle that increased. The enthalpy of honey increased to 550 kW/g on the last day of evaluation with melting temperatures between 40 and 60°C. The rheology followed the expected behaviors for the modulus of loss (G") and storage (G'). With all of the above, it was observed that crystallization in Acacia mangium honey is controlled by growth, in such a way that increasing the number of nuclei improves sensory properties.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos
dc.publisherFacultad de Ciencias Agrarias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAgrosavia
dc.relationAgrovoc
dc.relationAbou-Shaara, H., & Abd Elhamid, A. (2017). Scientific Note: Effects of Nuclei Type on Characteristics of Creamed Honey. Journal of Apiculture, 32(1), 59-62. doi:10.17519/apiculture.2017.04.32.1.17
dc.relationAbramovič, H., Jamnik, M., Burkan, L., & Kač, M. (noviembre de 2008). Water activity and water content in Slovenian honeys. Food Control, 19(11), 1086 - 1090. doi:10.1016/j.foodcont.2007.11.008
dc.relationAgricultural Marketing Service. (5 de 1985). United States Standards for Grades of Extracted Honey. Recuperado el 20 de Septiembre de 2018, de https://www.ams.usda.gov/sites/default/files/media/Extracted_Honey_Standard%5B1%5D.pdf
dc.relationAhmed, J., Prabhu, S. T., Raghavan, G. S., & Ngadi, M. O. (Abril de 2007). Physico-chemical, rheological, calorimetric and dielectric behavior of selected Indian honey. Journal of Food Engineering, 79(4), 1207-1213. doi:https://doi.org/10.1016/j.jfoodeng.2006.04.048
dc.relationAl-Habsi, N., Davis, F., & Niranjan, K. (2013). Development of Novel Methods to Determine Crystalline Glucose Content of Honey Based on DSC, HPLC, and Viscosity Measurements, and Their Use to Examine the Setting Propensity of Honey. Journal of Food Science, 78(6). doi:10.1111/1750-3841.12103
dc.relationÁlvarez, M. D., Fernández, C., Olivares, M. D., Jiménez, M. J., & Canet, W. (Junio de 2013). Sensory and Texture Properties of Mashed Potato Incorporatedwith Inulin and Olive Oil Blends. International Journal of Food Properties, 16, 1839-1859. doi:10.1080/10942912.2011.610211
dc.relationAmariei, S., Norocel, L., & Agripina Scripcă, L. (Diciembre de 2020). An innovative method for preventing honey crystallization. Innovative food science & emerging technologies (66), 102481. doi:10.1016/j.ifset.2020.102481
dc.relationAmiry, S., Esmaiili, M., & Alizadeh, M. (Junio de 2017). Classification of adulterated honeys by multivariate analysis. Food Chemistry, 224, Pages 390-397. doi:10.1016/j.foodchem.2016.12.025
dc.relationAssil, H. I., Sterling, R., & Sporns, P. (1991). Crystal Control In Processed Liquid Honey. Journal of Food Science, 56(4), 1034 - 1034. doi:10.1111/j.1365-2621.1991.tb14635.x
dc.relationAzemar, R., Nevers, V., Laurie, M., Poirot, B., & Le Bail, A. (9 de 2011). Study of the perception of a liquid and translucent honey versus creamed honey in France. Buenos Aires, Argentine: Apimondia. Obtenido de https://www.apinov.com/wp-content/uploads/2021/09/Study_of_the_perception_of_honey_in_France.pdf
dc.relationBakier, S. (2006). Characteristics of water state in some chosen types of honey found in Poland. Acta Agrophysica, 7(1), 7-15. Recuperado el 19 de septiembre de 2020, de http://www.acta-agrophysica.org/pdf-107839-38645?filename=Characteristics%20of%20water.pdf
dc.relationBakier, S. (2009). Capabilities of near-infrared spectroscopy to analyse changes in water bonding during honey crystallisation process. International Journal of Food Science and Technology, 44(3), 519-524. doi:10.1111/j.1365-2621.2008.01837.x
dc.relationBerk, Z. (2009). Extraction. En Z. Berk, Food Process Engineering and Technology (2 ed.). San Diego, CA, USA: Academic Press. doi:10.1016/B978-0-12-812018-7.09994-2
dc.relationBhandari, B., & Bareyre, I. (2003). Estimation of crystalline phase present in the glucose crystal-solution mixture by water activity measurement. LWT - Food Science and Technology, 36(7), 729-733. doi:10.1016/S0023-6438(03)00086-0
dc.relationBhandari, B., & Hartel, R. (July de 2006). Co-crystallization of sucrose at high concentration in the presence of glucose and fructose. Journal of Food Science, 67(5), 1797-1802. doi:10.1111/j.1365-2621.2002.tb08725.x
dc.relationBhandari, B., D'Arcy, B., & Kelly, C. (1999). Rheology and crystallization kinetics of honey: Present status. International Journal of Food Properties, 2(3), 217-226. doi:https://doi.org/10.1080/10942919909524606
dc.relationBhandari, B., Datta, N., D'Arcy, B., & Rintoul, G. (1998). Co-crystallization of honey with sucrose. LWT - Food Science and Technology, 31(2), 138-142. doi:https://doi.org/10.1111/jfpp.14876
dc.relationBodganov, S. (20 de April de 2011). Honey Technology. (B. P. Science, Ed.) Obtenido de The Book of Honey: https://www.researchgate.net/publication/304011769_Honey_Technology
dc.relationBodor, Z., Benedek, C., Urbin, Á., Szabó, D., & Sipos, L. (2021). Colour of honey: can we trust the Pfund scale? – An alternative graphical tool covering the whole visible spectra. LWT, 149, 111859. doi:10.1016/j.lwt.2021.111859
dc.relationBogdanov, S. (5 de mayo de 2011). Honey composition. Recuperado el 19 de diciembre de 2017, de The Honey Book: https://www.researchgate.net/publication/304011775_Honey_Composition
dc.relationBonifácio Queiróz, M. (4 de 2010). Estudo da cristalização de fondants formulados com xarope de glicose obtido da fecula de mandioca. Tese (doutorado) . (O. T. Kieckbusch, Ed.) Campinas, São Paulo, Brasil: Universidade Estadual de Campinas, Faculdade de Engenharia Quimica. doi:10.47749/T/UNICAMP.2010.769629
dc.relationBourne, M. C. (1982). CHAPTER 1 - Texture, Viscosity, and Food. En M. C. Bourne, Food Texture and Viscosity (págs. 1 - 23). ACADEMIC PRESS, INC. doi:10.1016/B978-0-12-119060-6.50006-X
dc.relationBund, R. K., & Hartel, R. W. (2010). Crystallization in foods and food quality deterioration. Chemical Deterioration and Physical Instability of Food and Beverages.
dc.relationCadena Productiva de las Abejas y la Apicultura. (2021). Cifras sectoriales - 2° trimestre año 2021. Ministerio de Agricultura y Desarrollo Rural, Dirección de Cadenas Pecuarias, Pesqueras y Acuícolas. Bogotá: SIOC. Obtenido de https://sioc.minagricultura.gov.co/Apicola/Documentos/2021-03-31%20Cifras%20Sectoriales.pdf
dc.relationCalderone, N. (2002). Creamed Honey - Theory. Dyce Laboratory for Honey Bee Studies, Cornell University, 1-5. Obtenido de https://www.bobsbeekeeping.com.au/image/bee-resources/Creamed-Honey.pdf
dc.relationCastro Mercado, L. (2018). Evaluación de la composición, calidad y generación de valor de miel de abejas originaria de zonas forestales en la altillanura del departamento de Vichada. Bogotá, Colombia: Universidad Nacional de Colombia, Facultad de Ciencias Agrarias, Maestría en Ciencia y Tecnología de Alimentos.
dc.relationCastro Mercado, L., Correa David, C., Murillo Rodas, M., Cabrera Flórez, E., Sinisterra Bravo, S., Requiniva Teran, E., & Castaño Salazar, R. (2017). Servicios tecnológicos para la apicultura “la única industria que conforme crece beneficia al medio ambiente”. Journal of Chemical Information and Modeling, 53(9).
dc.relationCavia, M. M., Fernández-Muiño, M. Á., Alonso-Torre, S. R., Huidobro, J. F., & Sancho, M. T. (2007). Evolution of acidity of honeys from continental climates: Influence of induced granulation. Food Chemistry, 100(4), 1728-1733. doi:10.1016/j.foodchem.2005.10.019
dc.relationCavia, M. M., Fernández-Muiño, M. Á., Gömez-Alonso, E., Montes-Pérez, M. J., Huidobro, J. F., & Sancho, M. T. (2002). Evolution of fructose and glucose in honey over one year: influence of induced granulation. Food Chemistry, 78(2), 157-161. doi:10.1016/S0308-8146(01)00393-4
dc.relationCavia, M. M., Fernández-Muiño, M. Á., Huidobro, J. F., & Sancho, M. T. (2004). Correlation between moisture and water activity of honeys harvested in different years. Journal of Food Science, 69(5), C368-C370. doi:10.1111/j.1365-2621.2004.tb10699.x
dc.relationCavia, M. M., Fernández-Muiño, M. A., Huidobro, J. F., Álvarez, C., & Sancho, M. T. (19 de 2 de 2009). Evolution of monosaccharides of honey over 3 years: Influence of induced granulation. International Journal of Food Science and Technology, 44(3), 623-628. doi:10.1111/j.1365-2621.2008.01882.x
dc.relationChen, Y., Lin, C., Wu, F., & Chen, H. (28 de July de 2009). Rheological properties of crystallized honey prepared by a new type of nuclei. Journal of Food Process Engineering, 32(4), 512-527. doi:10.1111/j.1745-4530.2007.00227.x
dc.relationCodex Alimentarius. (2019). Norma para la miel. 14(1), 37. Recuperado el 28 de Noviembre de 2019, de https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B12-1981%252FCXS_012s.pdf
dc.relationCohen, I., & Weihs, D. (Septiembre de 2010). Rheology and microrheology of natural and reduced-calorie Israeli honeys as a model for high-viscosity Newtonian liquids. Journal of Food Engineering, 100(2), 366-371. doi:https://doi.org/10.1016/j.jfoodeng.2010.04.023
dc.relationConforti, P., Lupano, C., Malacalza, N., Arias, V., & Castells, C. (2006). Crystallization of honey at -20°C. International Journal of Food Properties, 9(1), 99-107. doi:10.1080/10942910500473962
dc.relationConsejo Económico Europeo. (20 de Diciembre de 2001). Directiva 2001/110/CEE del Consejo de 20 de diciembre de 2001 relativa a la miel. Diario Oficial de las Comunidades Europeas - DOUE, L10(DOUE-L-2002-80034), 47 - 52. Comunidades Europeas. Obtenido de https://wipolex.wipo.int/es/text/236352
dc.relationCordella, C., Antinelli, J. F., Aurieres, C., Faucon, J.-P., Cabrol-Bass, D., & Sbirrazzuoli, N. (2002). Use of differential scanning calorimetry (DSC) as a new technique for detection of adulteration in honeys. 1. Study of adulteration effect on honey thermal behavior. Journal of Agricultural and Food Chemistry, 50(1), 203-208. doi:10.1021/jf010752s
dc.relationCordella, C., Faucon, J.-P., Cabrol-Bass, D., & Sbirrazzuoli, N. (January de 2003). Application of DSC as a tool for honey floral species characterization and adulteration detection. Journal of Thermal Analysis and Calorimetry, 71(1), 275-286. doi:10.1023/A:1022251208688
dc.relationCosta, C., & Giulietti, M. (12 de 2010). Introdução à cristalização: princípios e aplicações (1ª edição ed.). São Carlos, Brasil: EdUFSCar. Obtenido de http://livresaber.sead.ufscar.br:8080/jspui/bitstream/123456789/2771/1/TS_Caliane_IntroCristalizacao.pdf
dc.relationCosta, L., Kaspchak, E., Queiroz, M., De Almeida, M., Quast, E., & Quast, L. (2015). Influência da temperatura e da homogeneização na cristalização de mel. Brazilian Journal of Food Technology, 18(2), 155-161. doi:10.1590/1981-6723.7314
dc.relationCosta, P. A., Moraes, I. C., Bittante, A. M., Sobral, P. J., Gomide, C. A., & Carrer, C. C. (2013). Physical properties of honeys produced in the Northeast of Brazil. International Journal of Food Studies, 2(1), 118-125. doi:10.7455/ijfs/2.1.2013.a9
dc.relationCrane, E., & Kirk Visscher, P. (2009). Honey. En V. H. Resh, & R. T. Cardé, Encyclopedia of Insects (págs. 521-523). Amsterdam ; London: Elsevier/Academic Press. doi:10.1016/B978-0-12-374144-8.00130-2
dc.relationDa Silva, P., Gauche, C., Gonzaga, L., Costa, A., & Fett, R. (2016). Honey: Chemical composition, stability and authenticity. Food Chemistry, 196, 309–323. doi:10.1016/j.foodchem.2015.09.051
dc.relationDettori, A., Tappi, S., Piana, L., Dalla Rosa, M., & Rocculi, P. (Septiembre de 2018). Kinetic of induced honey crystallization and related evolution of structural and physical properties. LWT, 95, 333-338. doi:https://doi.org/10.1016/j.lwt.2018.04.092
dc.relationDobre, I., Georgescu, L., Alexe, P., Escuredo, O., & Seijo, M. (Noviembre de 2012). Rheological behavior of different honey types from Romania. Food Research International, 49(1), 126-132. doi:https://doi.org/10.1016/j.foodres.2012.08.009
dc.relationDoner, L. (May de 1977). The sugars of honey—A review. Journal of the Science of Food and Agriculture, 28(5), 443-456. doi:10.1002/jsfa.2740280508
dc.relationDubinov, A., Kozhayeva, J., L'Vov, I., Sadovoy, S., Selemir, V., & Vyalykh, D. (18 de September de 2015). Rapid Crystallization of Natural Sugars in Bee's Honey under the Influence of Nanosecond Microdischarges. Crystal Growth and Design, 15(10), 4975–4978. doi:10.1021/acs.cgd.5b00889
dc.relationDyce, E. J. (1935). United States Patente nº US1987893A. Obtenido de https://patents.google.com/patent/US1987893A/en
dc.relationElhamid, A., & Abou-Shaara, H. (2016). Producing Clover and Cotton Creamed Honey under Cooling Conditions and Potential use as Feeding to Honey Bee Colonies. Journal of Apiculture, 31(1), 59-64. doi:10.17519/apiculture.2016.04.31.1.59
dc.relationEscuredo, O., Dobre, I., Fernández-González, M., & Seijo, M. (April de 2014). Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food Chemistry, 149, 84-90. doi:10.1016/j.foodchem.2013.10.097
dc.relationEscuredo, O., Rodríguez-Flores, M., Rojo-Martínez, S., & Seijo, M. (2019). Contribution to the chromatic characterization of unifloral honeys from Galicia (NW Spain). Foods, 8(7), 1-16. doi:10.3390/foods8070233
dc.relationEvans, M. (2015). Solvation in Aqueous Solutions: microscopic models, chemical equations. Recuperado el 1 de Diciembre de 2017, de Metallacycle: https://www.metallacycle.com/chemistry/aqueous-solutions/solvation-models/
dc.relationFaustino, C., & Pinheiro, L. (2021). Analytical rheology of honey: A state-of-the-art review. Foods, 10(8), 1 - 40. doi:10.3390/foods10081709
dc.relationFinola, M., Lasagno, M., & Marioli, J. (2007). Microbiological and chemical characterization of honeys from central Argentina. Food Chemistry, 100(4), 1649-1653. doi:10.1016/j.foodchem.2005.12.046
dc.relationFlores Moya, E. (11 de 2013). Análisis financiero y de mercado por el cambio de presentación de la miel cremada Zamorano de 300 g a 150 g en envases: vidrio, poliestireno y doy pack. Escuela Agrícola Panamericana, Administración de Agronegocios. Zamorano, Honduras: Escuela Agrícola Panamericana. Obtenido de https://bdigital.zamorano.edu/server/api/core/bitstreams/7a736798-8066-44bb-bfb9-352e6d8ceaf5/content
dc.relationFrigerio Tisi, C. (2010). Elaboración de miel crema (Apis mellífera) mediante el método de cristalización inducida y evaluación de sus propiedades texturales (Memoria de pregrado). Santiago, Chile: Universidad de Chile, Departamento de Ciencia y Tecnología de Alimentos. Obtenido de https://repositorio.uchile.cl/bitstream/handle/2250/105332/qf-frigerio_ca.pdf?sequence=3&isAllowed=y
dc.relationGhosh, M., Howard, M., Dussan, K., & Dooley, S. (2019). Mechanism and theory of d-glucopyranose homogeneous acid catalysis in the aqueous solution phase. Physical Chemistry Chemical Physics, 21(32), 17993-18011. doi:10.1039/C8CP07224H
dc.relationGleiter, R., Horn, H., & Isengard, H. (2006). Influence of type and state of crystallisation on the water activity of honey (Vol. 96). doi:https://doi.org/10.1016/j.foodchem.2005.03.051
dc.relationHartel, R. W. (2019). Chapter 15 - Crystallization in Foods. En A. S. Myerson, D. Erdemir, & A. Y. Lee (Edits.), Handbook of Industrial Crystallization (1 ed., págs. 460 - 478). Cambridge University Press:. doi:https://doi.org/10.1017/9781139026949.015
dc.relationHartel, R. W. (2019). Crystallization in Foods. En A. S. Myerson, D. Erdemir, A. Y. Lee, A. S. Myerson, D. Erdemir, & A. Y. Lee (Edits.), Handbook of Industrial Crystallization (1 ed., págs. 460 - 478). Cambridge University Press. doi:https://doi.org/10.1017/9781139026949.015
dc.relationHartel, R., & Shastry, A. (1991). Sugar Crystallization in Food Products. Critical Reviews in Food Science and Nutrition, 30(1), 49-112. doi:https://doi.org/10.1080/10408399109527541
dc.relationHuidobro-Canales, J. F., & Simal-Lozano, J. (Enero de 1984). Determinación del color y turbidez en mieles. Anales de Bromatología, 36(2), 225-245. Obtenido de https://www.researchgate.net/publication/235698285_Determinacion_del_color_y_turbidez_en_mieles
dc.relationHurtta, M., Pitkänen, I., & Knuutinen, J. (13 de Septiembre de 2004). Melting behaviour of D-sucrose, D-glucose and D-fructose. Carbohydrate research, 339(13), 2267-2273. doi:10.1016/j.carres.2004.06.022
dc.relationHusband, T. (Octubre/Noviembre de 2014). La ciencia dulce de hacer caramelos. (ChemMatters, Editor) Recuperado el 29 de septiembre de 2021, de American Chemical Society (ACS) - 2022: https://www.acs.org/content/dam/acsorg/education/resources/highschool/chemmatters/spanishtranslations/chemmatters-oct2014-candymaking-spanish-trans.pdf
dc.relationICONTEC. (12 de 2007). Miel de Abejas. Bogotá, Colombia: ICONTEC.
dc.relationJose, A., & P, N. (2022). Development and Evaluation of Creamed honey added with glucose & seed crystal as nuclei. The Pharma Innovation Journal, 11(7), 917-923. Obtenido de https://www.thepharmajournal.com/archives/2022/vol11issue7/PartL/11-7-22-972.pdf
dc.relationJoseph, T., Julius, A., Florence A, F., Delphine, D., Jonnas, P., & Ze Antoine, M. (2007). Physico-chemical and microbiological characteristics of honey from the sudano-guinean zone of West Cameroon. African Journal of Biotechnology, 6(7), 908-913.
dc.relationJuan-Borrás, M., Domenech, E., Hellebrandova, M., & Escriche, I. (2014). Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys. Food Research International, 60, 86-94. doi:10.1016/j.foodres.2013.11.045
dc.relationKarasu, S., Toker, O., Yilmaz, M., Karaman, S., & Dertli, E. (Abril de 2015). Thermal loop test to determine structural changes and thermal stability of creamed honey: Rheological characterization. Journal of Food Engineering, 150, 90-98. doi:https://doi.org/10.1016/j.jfoodeng.2014.10.004
dc.relationKarki, B., Dhobi, S. H., & Dhobi, I. (22 de Diciembre de 2021). Optical properties of Transparent Liquid: Water, Oils, and Honey. Journal of Materials and Environmental Science, 12(12), 1524-1537. Obtenido de https://www.researchgate.net/publication/357269513_Optical_properties_of_Transparent_Liquid_Water_Oils_and_Honey
dc.relationKędzierska-Matysek, M., Florek, M., Wolanciuk, A., Skałecki, P., & Litwińczuk, A. (19 de Abril de 2016). Characterisation of viscosity, colour, 5-hydroxymethylfurfural content and diastase activity in raw rape honey (Brassica napus) at different temperatures. Journal of Food Science and Technology, 53, 2092–2098. doi:10.1007/s13197-016-2194-z
dc.relationKrell, R. (1996). Value-added products from beekeeping (Vol. 124). Rome, Italy: Food and Agriculture Organization of the United Nations. Obtenido de https://www.fao.org/3/w0076e/w0076e00.htm
dc.relationKhaleghi, A., Sadrameli, S., & Manteghian, M. (2020). Thermodynamic and kinetics investigation of homogeneous and heterogeneous nucleation. Reviews in Inorganic Chemistry, 40(4).
dc.relationKrell, R. (1996). Value-added products from beekeeping (Vol. 124). Rome, Italy: Food and Agriculture Organization of the United Nations. Obtenido de https://www.fao.org/3/w0076e/w0076e00.htm
dc.relationKrishnan, R., Mohammed, T., Kumar, G. S., & Arunima, S. (2021). Honey crystallization: Mechanism, evaluation and application. The Pharma Innovation Journal, 10(5), 222-231. doi:10.22271/tpi.2021.v10.i5Sd.6213
dc.relationKuroishi, A., Queiroz, M., Almeida, M., & Quast, L. (2012). Avaliação da cristalização de mel utilizando parâmetros de cor e atividade de água. Brazilian Journal of Food Technology, 15(1), 84-91. doi:10.1590/s1981-67232012000100009
dc.relationLaos, K., Kirs, E., Pall, R., & Martverk, K. (2011). The crystallization behaviour of Estonian honeys. Agronomy Research, 9(SPPL. ISS. 2).
dc.relationLi, Y., & Yang, H. (2012). Honey Discrimination Using Visible and Near-Infrared Spectroscopy. (F. R, G. J, & G. H. C., Edits.) ISRN Spectroscopy, 2012(487040), 4. doi:10.5402/2012/487040
dc.relationLupano, C. (1997). DSC study of honey granulation stored at various temperatures. Food Research International, 30(9), 683-688. doi:10.1016/S0963-9969(98)00030-1
dc.relationMa, Y., Zhang, B., Li, H., Li, Y., Hu, J., Li, J., . . . Deng, Z. (2017). Chemical and molecular dynamics analysis of crystallization properties of honey. International Journal of Food Properties, 20(3), 725-733. doi:10.1080/10942912.2016.1178282
dc.relationManikis, I., & Thrasivoulou, A. (2001). The relation of physicochemical characteristics of honey and the crystallization sensitive parameters. Apiacta, 36(2).
dc.relationMaterials Desing, Inc. (2009). Crystal Structure of Glucose: Placing Hydrogen Atoms by Computations. Recuperado el 26 de Abril de 2018, de Crystal structure of α-glucose: http://my.materialsdesign.com/appnote/crystal-structure-glucose-placing-hydrogen-atoms-computations
dc.relationMathlouthi, M., Benmessaoud, G., & Rogé, B. (2012). Role of water in the polymorphic transitions of small carbohydrates. Food Chemistry, 132(4), 1630-1637. doi:https://doi.org/10.1016/j.foodchem.2011.11.103
dc.relationMaulny, A. P., Beckett, S. T., & Mackenzie, G. (May de 2005). Physical properties of co-crystalline sugar and honey. Journal of Food Science, 70(9), E567-E572. doi:10.1111/j.1365-2621.2005.tb08320.x
dc.relationMeixner, M., Weber, M., Lella, S., Rozhon, W., Dasbach, & Margot. (2023). Influence of Stirring Parameters on Creaminess of Spring Blossom Honey Measured by Crystal Size, Whiteness Index and Mouthfeel. Foods, 12(48), 1 - 11. doi:10.3390/foods12010048
dc.relationMoreno, E. (2010). Determinación de la solubilidad de mezclas de glucosa, fructosa y maltodextrina [Tesis para optar al título de ingeniera química]. Bucaramanga, Colombia: Universidad Industrial de Santander.
dc.relationNaik, R., Gandhi, N., Thakur, M., & Nanda, V. (15 de julio de 2019). Analysis of crystallization phenomenon in Indian honey using molecular dynamics simulations and artificial neural network. (E. Ltd., Ed.) Food Chemistry(300), 1 - 8. doi:https://doi.org/10.1016/j.foodchem.2019.125182
dc.relationNayik, G., Dar, B., & Nanda, V. (2019). Physico-chemical, rheological and sugar profile of different unifloral honeys from Kashmir valley of India. Arabian Journal of Chemistry, 12(8).
dc.relationNegueruela, A. I., & Perez-Arquillue, C. (Mayo de 2000). Color Measurement of Rosemary Honey in the Solid State by Reflectance Spectroscopy with Black Background. Journal of AOAC International, 83(3), 669-674. doi:10.1093/jaoac/83.3.669
dc.relationNurul Zaizuliana, R., Anis Mastura, A., Abd Jamil, Z., Norshazila, S., & Zarinah, Z. (2017). Effect of storage conditions on the crystallisation behaviour of selected Malaysian honeys. International Food Research Journal, 24, S475-S480. Obtenido de http://www.ifrj.upm.edu.my/24%20(07)%202017%20supplementary/(35)%20R1.pdf
dc.relationOroian, M. (2015). Influence of temperature, frequency and moisture content on honey viscoelastic parameters - Neural networks and adaptive neuro-fuzzy inference system prediction. LWT, 63(2), 1309-1316. doi:https://doi.org/10.1016/j.lwt.2015.04.051
dc.relationÖzcan, M., & Ölmez, Ç. (2014). Some qualitative properties of different monofloral honeys. Food Chemistry, 163, 212–218. doi:http://dx.doi.org/10.1016/j.foodchem.2014.04.072
dc.relationPaniagua Niño, Á. (7 de 2011). Evaluación sensorial de un subproducto apícola denominado crema-miel. Universidad de San Carlos de Guatemala, Licenciatura en Veterinaria. Ciudad de Guatemala, Guatemala: Universidad de San Carlos de Guatemala. Obtenido de http://www.repositorio.usac.edu.gt/2934/
dc.relationParada Silva, J. (2003). Desarrollo de una mezcla de “miel crema” de abeja (Apis mellifera) con avellana chilena (Gevuina avellana Mol) para consumo humano. Valdivia, Chile: Universidad Austral de Chile, Facultad de Ciencias Agrarias, Escuela de Ingeniería de Alimentos. Obtenido de http://cybertesis.uach.cl/tesis/uach/2003/fap222d/pdf/fap222d.pdf
dc.relationPenfield, M., & Campbell, A. M. (1990). Crystallization. En M. P. Penfield, & A. M. Campbell, Experimental Food Science (3 ed., págs. 494-503). Academic Press - Elsevier Inc. doi:10.1016/B978-0-12-157920-3.50028-4
dc.relationPeres, A., & Macedo, E. (1997). A modified UNIFAC model for the calculation of thermodynamic properties of aqueous and non-aqueous solutions containing sugars. Fluid Phase Equilibria, 139(1-2), 47-74. doi:10.1016/S0378-3812(97)00196-9
dc.relationPiotraszewska-Pająk, A., & Gliszczyńska-Świgło, A. (2015). Directions of colour changes of nectar honeys depending on honey type and storage conditions. Journal of Apicultural Science, 59(2). doi:10.1515/jas-2015-0019
dc.relationPoirot, B., Azémar, R., & Nevers, V. (9 de 2011). Study of crystal melting kinetics of honey during low heating conditions. Buenos Aires, Argentina. Obtenido de https://www.apinov.com/wp-content/uploads/2021/09/Study_of_crystal_melting_kinetics_on_honey_during_low_heating_conditions.pdf
dc.relationPuta, R. (18 de Enero de 1977). United States Patente nº US4004040A. Obtenido de https://patents.google.com/patent/US4004040A/en
dc.relationSánchez, O., Castañeda, P., Muños, G., & Tellez, G. (2013). Aportes para el análisis del sector Apícola Colombiano. CienciAgro, 2(4), 469-483. Obtenido de http://www.revistasbolivianas.ciencia.bo/scielo.php?script=sci_arttext&pid=S2072-14042013000100005&lng=es&nrm=iso
dc.relationSereti, Vasileia; Lazaridou, Athina; Tananaki, Chrysoula; Biliaderis, Costas G. (2021). Development of a Cotton Honey-Based Spread by Controlling Compositional and Processing Parameters. Food Biophysics, 16(3), 365–380. doi:https://doi.org/10.1007/s11483-021-09677-9
dc.relationShinn, J., & Wang, S. (1990). Textural Analysis of Crystallized Honey Using Response Surface Methodology. Canadian Institute of Food Science and Technology Journal, 23(4-5), 178-182. doi:10.1016/s0315-5463(90)70238-6
dc.relationSilva, A. (2010). Estudo da cristalização da frutose em diferentes meios. Sao Carlos, Brasil. Obtenido de https://repositorio.ufscar.br/handle/ufscar/4042?show=full
dc.relationSilvano, M., Varela, M., Palacio, M., Ruffinengo, S., & Yamul, D. (2014). Physicochemical parameters and sensory properties of honeys from Buenos Aires region. Food Chemistry, 152, 500–507. doi:http://dx.doi.org/10.1016/j.foodchem.2013.12.011
dc.relationSnider, E. J. (1931). Estados Unidos Patente nº US1908454A. Recuperado el 20 de Octubre de 2020, de https://patents.google.com/patent/US1908454A/en
dc.relationSopade, P., Halley, P., D'Arcy, B., Bhandari, B., & Caffin, N. (2004). Dynamic and steady-state rheology of Australian honeys at subzero temperatures. Journal of Food Process Engineering, 27(4), 284-309. doi:10.1111/j.1745-4530.2004.00468.x
dc.relationSoria, A., González, M., C. d., Martı́nez-Castro, I., & Sanz, J. (2004). Characterization of artisanal honeys from Madrid (Central Spain) on the basis of their melissopalynological, physicochemical and volatile composition data. Food Chemistry, 85, 121–130. doi:10.1016/j.foodchem.2003.06.012
dc.relationSrinual, K., & Intipunya, P. (2009). Effects of crystallization and processing on sensory and physicochemical qualities of Thai sunflower honey. Asian Journal of Food and Agro-Industry, 2(4), 749 - 754. Obtenido de https://www.semanticscholar.org/paper/Effects-of-crystallization-and-processing-on-and-of-Srinual-Intipunya/476f74e1817a08859fa4b64fbebf3d03c05413cc
dc.relationSrisa-nga, S. (2005). The effect of the mutarotation reaction on the crystallization of glucose monohydrate. Nakhon Ratchasima, Tailandia: Suranaree University of Technology. Recuperado el 20 de abril de 2022, de https://core.ac.uk/download/pdf/70931166.pdf
dc.relationStable Micro Systems. (12 de Febrero de 2015). Texture Analysis Professionals Blog. Obtenido de Texture Analysis in action: the Back Extrusion Rig: https://textureanalysisprofessionals.blogspot.com/2015/02/texture-analysis-in-action-back.html
dc.relationStasiak, D., & Dolatowski, Z. (2007). Effect of sonication on the crystallization of honeys. Polish journal of food and nutrition sciences, 57(3), 133-136. Obtenido de http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.891.9823&rep=rep1&type=pdf
dc.relationSterling, R. E. (1 de 1991). United States Patente nº US4986855A. Obtenido de https://patentimages.storage.googleapis.com/9a/79/47/c8a8f00dd743d4/US4986855.pdf
dc.relationSubbiah, B., Blank, U., & Morison, K. (2020). A review, analysis and extension of water activity data of sugars and model honey solutions. Food Chemistry, 326, 126981. doi:10.1016/j.foodchem.2020.126981
dc.relationSuriwong, V., Jaturonglumlert, S., Varith, J., Narkprasom, K., & Nitatwichit, C. (Agosto de 2020). Crystallisation behaviour of sunflower and longan honey with glucose addition by absorbance measurement. International Food Research Journal, 27(4), 717-734. Obtenido de http://www.ifrj.upm.edu.my/27%20(04)%202020/DONE%20-%2015%20-%20IFRJ20115.R2.pdf
dc.relationSzabó, R., Mézes, M., Szalai, T., Zajácz, E., & Weber, M. (2016). Colour identification of honey and methodical development of its instrumental measuring. Columella : Journal of Agricultural and Environmental Sciences, 3(1), 29-36. doi:10.18380/SZIE.COLUM.2016.3.1.29
dc.relationTan, P. (2004). Palatable Creamed Honey. Queensland, Australia: University of Queensland, Department of Chemical Engineering.
dc.relationTappi, S., Glicerina, V., Ragni, L., Dettori, A., Romani, S., & Rocculi, P. (marzo de 2021). Physical and structural properties of honey crystallized by static and dynamic processes. Journal of Food Engineering, 292, 110316. doi:10.1016/j.jfoodeng.2020.110316
dc.relationTappi, S., Laghi, L., Dettori, A., Piana, L., Ragni, L., & Rocculi, P. (1 de octubre de 2019). Investigation of water state during induced crystallization of honey. Food Chemistry, 294, 260-266. doi:10.1016/j.foodchem.2019.05.047
dc.relationThrasyvoulou, A., Manikis, J., & Tselios, D. (January de 1994). Liquefying crystallized honey with ultrasonic waves. Apidologie, 25(3), 297-302. doi:10.1051/apido:19940304
dc.relationTomaszewska-Gras, J., Bakier, S., Goderska, K., & Mansfeld, K. (2015). Differential scanning calorimetry for determining the thermodynamic properties of selected honeys. Journal of Apicultural Science, 59(1), 109–118. doi:10.1515/jas-2015-0012
dc.relationTosi, E., Ciappini, M., Ré, E., & Lucero, H. (2002). Honey thermal treatment effects on hydroxymethylfurfural content. Food Chemistry, 77(1), 71-74. doi:10.1016/S0308-8146(01)00325-9
dc.relationTosi, E., Ré, E., Lucero, H., & Bulacio, L. (2004). Effect of honey high-temperature short-time heating on parameters related to quality, crystallisation phenomena and fungal inhibition. LWT - Food Science and Technology, 37(6), 669-678. doi:10.1016/j.lwt.2004.02.005
dc.relationUmesh Hebbar, H., Rastogi, N., & Subramanian, R. (2008). Properties of Dried and Intermediate Moisture Honey Products: A Review. International Journal of Food Properties, 11(4), 804-819. doi:https://doi.org/10.1080/10942910701624736
dc.relationUSDA. (1985). United States Standards for Grades of Extracted Honey. (U. S.-D. Branch, Ed.) Federal register, 50FR15861(5), 14. Obtenido de https://books.google.com.pk/books?hl=en&lr=&id=O1zhx2OWftQC&oi=fnd&pg=PA287&dq=Kader,+A.+A.+(2002).+US+GRADE+STANDARDS.+Postharvest+technology+of+horticultural+crops,+3311,+287.&ots=4hy390DpGL&sig=WBSdjl7j2K8ddPYH2rgxhXCWNEI
dc.relationUwaha, M. (2015). Growth Kinetics: Basics of Crystal Growth Mechanisms. Handbook of Crystal Growth: Second Edition, 1.
dc.relationVargas Abella, J. (2016). Canales y márgenes de comercialización de los productos apícolas en la Provincia Centro (Departamento de Boyacá). Bogotá, Colombia: Trabajo de grado - Maestría. Obtenido de https://repositorio.unal.edu.co/handle/unal/51076?show=full
dc.relationVenir, E., Spaziani, M., & Maltini, E. (2010). Crystallization in "Tarassaco" Italian honey studied by DSC. Food Chemistry, 122(2), 410-415. doi:10.1016/j.foodchem.2009.04.012
dc.relationWhite Jr, J. (1975). Honey: A Comprehensive Survey. En E. Crane, Crane, & Russak (Edits.). Heinemann [for] the Bee Research Association.
dc.relationWright, S. L., Wright, S. L., Holliday, D. L., & Venable, K. L. (2 de 2007). United States Patente nº US20090047388A1. Obtenido de https://patents.google.com/patent/US20090047388A1/en
dc.relationYao, L., Bhandari, B., Datta, N., Singanusong, R., & D'Arcy, B. (2003). Crystallisation and moisture sorption properties of selected Australian unifloral honeys. Journal of the Science of Food and Agriculture, 83(9), 884-888. doi:10.1002/jsfa.1421
dc.relationZamora, M., & Chirife, J. (January de 2006). Determination of water activity change due to crystallization in honeys from Argentina. Food Control, 17(1), 59-64. doi:10.1016/j.foodcont.2004.09.003
dc.relationZamora, M., Chirife, J., & Roldán, D. (August de 2006). On the nature of the relationship between water activity and % moisture in honey. Food Control, 17(8), 642-647. doi:10.1016/j.foodcont.2005.04.002
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEvaluación del proceso de cristalización inducida en miel de plantaciones forestales de Acacia mangium
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución