dc.contributor | Rodriguez, John Jaime | |
dc.creator | Cifuentes Espitia, Luis Alejandro | |
dc.date.accessioned | 2022-10-27T16:57:26Z | |
dc.date.accessioned | 2023-06-06T23:39:26Z | |
dc.date.available | 2022-10-27T16:57:26Z | |
dc.date.available | 2023-06-06T23:39:26Z | |
dc.date.created | 2022-10-27T16:57:26Z | |
dc.date.issued | 2022 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/82506 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6651430 | |
dc.description.abstract | El propósito del presente documento en el que se desarrolla el trabajo final de maestra, es
estudiar la conjetura planteada en 1988 por el matemático Jun-ichi Igusa en [10]; la cual
asegura una relación entre los polos de la función zeta local de Igusa Z(s, f) y los ceros del
polinomio de Bernstein-Sato bf.
Además, se abordan conceptos básicos en el área de análisis p-ádico y se estudia el comportamiento de familias particulares de polinomios f ∈ Zp[x1, x2, ..., xn] en dicha conjetura. (Texto tomado de la fuente) | |
dc.description.abstract | The purpose of this document, in which the master thesis is presented, is to study the conjecture raised in 1988 by the mathematician Jun-ichi Igusa; which ensures a relationship between the poles of the Igusa local zeta function $Z(s,f)$ and the zeros of the Bernstein-Sato polynomial $b_f$.\\
Also, it addresses basic concepts in the area of $p$-adic analysis and aims to study the behavior of particular families of polynomials $f \in \mathbb Z_p[x_1,x_2 ,...,x_n]$, in said conjecture. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Matemáticas | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | RedCol | |
dc.relation | LaReferencia | |
dc.relation | Albeverio, S. ; Khrennikov, A. ; Shelkovich, V.: Theory of p-adic distributions: linear
and nonlinear models. Cambridge University Press, 2010 ( 370) | |
dc.relation | Albis, V. ; Zu ̃niga, W.: Una introducción elemental a la teoría de las funciones zeta locales
de Igusa. En: Lecturas Matemáticas, 20 (1999), Nr. 1, p. 5–33 | |
dc.relation | Borevich, I. ; Shafarevich, I.: Number theory. Academic press, 198 | |
dc.relation | Bories, B.: Zeta functions, Bernstein-Sato polynomials, and the monodromy conjecture.
(2013) | |
dc.relation | Denef, J.: Report on Igusa’s local zeta function. En: S ́eminaire Bourbaki 1990 (1991), Nr.
741, p. 359–386 | |
dc.relation | Field, R. ; Gargeya, V. ; Robinson, M. ; Schoenberg, F. ; Scott, R.: THE IGUSA
LOCAL ZETA FUNCTION FOR xn+ ym. (1994) | |
dc.relation | Galindo, W.A.Zu ̃niga: Igusa ́s local zeta functions of semicuasihomogeneous polynomials.
World Scientific, 2001 (Trans.Amer.Math) | |
dc.relation | Gelfand, I.: Generalized Functions: Properties and operations, by IM Gelfand and GE Shilov,
translated by E. Saletan. Vol. 1. Academic Press, 1964 | |
dc.relation | Igusa, J.: Complex powers and asymptotic expansions. (1974) | |
dc.relation | Igusa, J.: B-functions and p-adic integrals. En: Algebraic Analysis. Elsevier, 1988, p. 231–241 | |
dc.relation | Igusa, J.: An Introduction to the Theory of Local Zeta Functions. American Mathematical
Society, 2007 (AMS/IP studies in advanced mathematics.) | |
dc.relation | Igusa, J. ; Raghavan, S.: Lectures on forms of higher degree. Vol. 59. Springer Berlin-
Heidelberg-New York, 1978 | |
dc.relation | J, Denef. ; Hoornaert.K: Newton Polyhedra and Igusa’s Local Zeta Function. (2001) | |
dc.relation | Le, Dung T.: Algebraic Approach To Differential Equations. World Scientific, 2010 (World
Scientific) | |
dc.relation | Loeser, F.: Fonctions D’Igusa p-adiques et Polynomes de Berstein. En: American Journal of
Mathematics 110 (1988), Nr. 1, p. 1–21 | |
dc.relation | Noro.M: An efficient modular algorithm for computing the global b-function. (2002) | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Funciones Zeta locales de Igusa y polinomios de Bernstein | |
dc.type | Trabajo de grado - Maestría | |