dc.contributorMendivil Anaya, Carlos Olimpo
dc.contributorDiabetes, Lípidos y Metabolismo UniAndes
dc.contributorPaula Valentina Gaete Carrillo, 0000-0001-9387-6017
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000097625
dc.contributorhttps://www.researchgate.net/profile/Paula-Gaete
dc.contributorhttps://scholar.google.com/citations?user=Wd5n4WQAAAAJ&hl=es&authuser=1
dc.creatorGaete Carrillo, Paula Valentina
dc.date.accessioned2023-02-22T15:39:50Z
dc.date.accessioned2023-06-06T23:39:02Z
dc.date.available2023-02-22T15:39:50Z
dc.date.available2023-06-06T23:39:02Z
dc.date.created2023-02-22T15:39:50Z
dc.date.issued2023-02-21
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/83542
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6651426
dc.description.abstractPapel del receptor nuclear PPARβ/δ en la respuesta metabólica a ácidos grasos de cadena media en macrófagos murinos Objetivo: El objetivo de esta investigación es esclarecer la participación del receptor nuclear PPARβ/δ en la respuesta metabólica que desarrollan los macrófagos de ratón después de la exposición a ácidos grasos de cadena media (octanoico, C8:0 y decanoico, C10:0). Metodología: Se cultivaron macrófagos murinos J774A.1 en diferentes condiciones de tratamiento; en la mitad de las células se realizó un knock-down de la expresión para PPARβ/δ con un sistema de ácido ribonucleico pequeño de interferencia y el porcentaje de interferencia obtenido se verificó por RT-qPCR. El diseño experimental comparó 5 factores en las células a estudio: - Knockdown de PPARβ/δ (sí o no) - Exposición a ácido graso (cadena media vs cadena larga) - Exposición a un agonista de PPARβ/δ (GW501516) - Activación por lipopolisacárido (sí o no) - Control negativo En cada grupo de células se evaluó la expresión de genes relacionados con el metabolismo lipídico (Scarb1, Plin2, Npc1, Pltp, Cpt1, Abca1 y Abcg1) y con la función inmunitaria (Il6, Tnf, Ifng, Il10, Nos2, Ptgs2, Mcp1y Mmp9) mediante RT-qPCR. La expresión de cada gen se cuantificó de forma relativa al gen de la gliceraldeheido-3-fosfato deshidrogenasa utilizando el método ∆∆Ct. Para evaluar el impacto funcional de la exposición a ácidos grasos de cadena media sobre la fagocitosis de lipoproteínas, un paso fundamental de la aterogénesis, se realizó en cada subgrupo de tratamientos un ensayo de captación de lipoproteínas de baja densidad (LDL) fluorescentemente marcadas. Resultados y conclusiones: Este estudio amplió el conocimiento sobre la respuesta a los ácidos grasos de cadena media en la expresión de genes relacionados con el metabolismo de lípidos y la función inmune en macrófagos murinos, y en qué medida este efecto está mediado por el receptor nuclear PPARβ/δ. Palabras clave: Ppard, metabolismo, lípidos, colesterol, ateroesclerosis e inflamación. (Texto tomado de la fuente)
dc.description.abstractRole of the nuclear receptor PPARβ/δ in the metabolic response to medium-chain fatty acids in murine macrophages Aim: The aim of this investigation is to clarify the role of the nuclear receptor PPARβ/δ in the metabolic response that the murine macrophages develop after the exposition to medium-chain fatty acids (octanoic acid, C8:0 y decanoic acid, C10:0). Methods: J774A.1 murine macrophages were cultured under different treatment conditions; Half of the cells, had a knock-down against PPARβ/δ by using small interfering ribonucleic acids and the percentage of reduced expression was verified by RT-qPCR. The experimental design compared 5 factors in the cells under study: - PPARβ/δ knockdown (yes or no) - Exposure to fatty acid (medium chain vs. long chain) - Exposure to a PPARβ/δ agonist (GW501516) - Activation by lipopolysaccharide (yes or no) - Negative control The expression of genes related to lipid metabolism (Scarb1, Plin2, Npc1, Pltp, Cpt1, Abca1 and Abcg1) and immune function (Il6, Tnf, Ifng, Il10, Nos2, Ptgs2, Mcp1 and Mmp9) was evaluated in each group of cells by RT-qPCR. The expression of each gene was quantified relative to the glyceraldehyde-3-phosphate dehydrogenase gene using the ∆∆Ct method. To assess the functional impact of medium-chain fatty acid exposure on lipoprotein phagocytosis, a critical step in atherogenesis, a fluorescently labeled low-density lipoprotein (LDL) uptake assay was performed on each treatment subgroup. Conclusions and results: This study furthered our understanding of the response to medium-chain fatty acids in the expression of genes related to lipid metabolism and immune function in murine macrophages, and clarify the role of the nuclear receptor PPARβ/δ in this process. Key words: Ppard, metabolism, lipids, cholesterol, atherosclerosis and inflammation.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Medicina - Maestría en Bioquímica
dc.publisherFacultad de Medicina
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationZhao, X., Wang, J., Deng, Y., Liao, L., Zhou, M., Peng, C., & Li, Y. (2021). Quercetin as a protective agent for liver diseases: A comprehensive descriptive review of the molecular mechanism. Phytotherapy Research, 35(9), 4727-4747.
dc.relationZhang, X., Zhang, Y., Liu, Y., Wang, J., Xu, Q., Yu, X., ... & Xue, C. (2016). Medium-chain triglycerides promote macrophage reverse cholesterol transport and improve atherosclerosis in ApoE-deficient mice fed a high-fat diet. Nutrition Research, 36(9), 964-973.
dc.relationZhang, S., Li, L., Wang, J., Wang, S., Xing, D., & Chen, W. (2021). Recent advances in the regulation of ABCA1 and ABCG1 by lncRNAs. Clinica Chimica Acta.
dc.relationZhang, J. R., Coleman, T., Langmade, S. J., Scherrer, D. E., Lane, L., Lanier, M. H., ... & Ory, D. S. (2008). Niemann-Pick C1 protects against atherosclerosis in mice via regulation of macrophage intracellular cholesterol trafficking. The Journal of clinical investigation, 118(6), 2281-2290.
dc.relationZhang, J. (2022). Biomarkers of endothelial activation and dysfunction in cardiovascular diseases. Reviews in Cardiovascular Medicine, 23(2), 73.
dc.relationZieleniak, A., Wójcik, M., & Woźniak, L. A. (2008). Structure and physiological functions of the human peroxisome proliferator-activated receptor γ. Archivum immunologiae et therapiae experimentalis, 56(5), 331-345.
dc.relationWlaź, P., Socała, K., Nieoczym, D., Łuszczki, J. J., Żarnowska, I., Żarnowski, T., ... & Gasior, M. (2012). Anticonvulsant profile of caprylic acid, a main constituent of the medium-chain triglyceride (MCT) ketogenic diet, in mice. Neuropharmacology, 62(4), 1882-1889.
dc.relationWang, M. E., Singh, B. K., Hsu, M. C., Huang, C., Yen, P. M., Wu, L. S., ... & Chiu, C. H. (2017). Increasing dietary medium-chain fatty acid ratio mitigates high-fat diet-induced non-alcoholic steatohepatitis by regulating autophagy. Scientific reports, 7(1), 1-13.
dc.relationWakana, H., Kono, H., Fukushima, H., Nakata, Y., Akazawa, Y., Maruyama, S., ... & Ichikawa, D. (2019). Effects of medium-chain triglycerides administration in chemically induced carcinogenesis in mice. Anticancer research, 39(12), 6653-6660.
dc.relationWagner, N., & Wagner, K. D. (2020). PPAR beta/delta and the hallmarks of cancer. Cells, 9(5), 1133.
dc.relationVoloshyna, I., Littlefield, M. J., & Reiss, A. B. (2014). Atherosclerosis and interferon-γ: new insights and therapeutic targets. Trends in cardiovascular medicine, 24(1), 45-51.
dc.relationVergallo, R., & Crea, F. (2020). Atherosclerotic plaque healing. New England journal of medicine, 383(9), 846-857.
dc.relationVergallo, R., & Crea, F. (2020). Atherosclerotic plaque healing. New England journal of medicine, 383(9), 846-857.
dc.relationTan, Y., Wang, M., Yang, K., Chi, T., Liao, Z., & Wei, P. (2021). PPAR-α modulators as current and potential cancer treatments. Frontiers in oncology, 11, 707.
dc.relationTan, L., Lu, J., Liu, L., & Li, L. (2021). Fatty acid binding protein 3 deficiency limits atherosclerosis development via macrophage foam cell formation inhibition. Experimental Cell Research, 407(1), 112768.
dc.relationSung, M. H., Liao, F. H., & Chien, Y. W. (2018). Medium-chain triglycerides lower blood lipids and body weight in streptozotocin-induced type 2 diabetes rats. Nutrients, 10(8), 963.
dc.relationShim, S. Y., Yoon, H. Y., Yee, J., Han, J. M., & Gwak, H. S. (2021). Association between ABCA1 Gene Polymorphisms and Plasma Lipid Concentration: A Systematic Review and Meta-Analysis. Journal of personalized medicine, 11(9), 883.
dc.relationSaliba‐Gustafsson, P., Pedrelli, M. A. T. T. E. O., Gertow, K., Werngren, O., Janas, V., Pourteymour, S., ... & Schillaci, G. (2019). Subclinical atherosclerosis and its progression are modulated by PLIN2 through a feed‐forward loop between LXR and autophagy. Journal of internal medicine, 286(6), 660-675.
dc.relationRen, Y., Zhao, H., Yin, C., Lan, X., Wu, L., Du, X., ... & Gao, D. (2022). Adipokines, Hepatokines and Myokines: Focus on Their Role and Molecular Mechanisms in Adipose Tissue Inflammation. Frontiers in Endocrinology, 13.
dc.relationReiss, A. B., Siegart, N. M., & De Leon, J. (2017). Interleukin-6 in atherosclerosis: atherogenic or atheroprotective?. Clinical Lipidology, 12(1), 14-23.
dc.relationPark, B. H., Vogelstein, B., & Kinzler, K. W. (2001). Genetic disruption of PPAR δ decreases the tumorigenicity of human colon cancer cells. Proceedings of the National Academy of Sciences, 98(5), 2598-2603.
dc.relationPain, E., Shinhmar, S., & Williams, R. S. (2021). Using Dictyostelium to advance our understanding of the role of medium chain fatty acids in health and disease. Frontiers in cell and developmental biology, 2515.
dc.relationNowbar, A. N., Gitto, M., Howard, J. P., Francis, D. P., & Al-Lamee, R. (2019). Mortality from ischemic heart disease: Analysis of data from the World Health Organization and coronary artery disease risk factors From NCD Risk Factor Collaboration. Circulation: cardiovascular quality and outcomes, 12(6), e005375.
dc.relationNomura, M., Liu, J., Yu, Z. X., Yamazaki, T., Yan, Y., Kawagishi, H., ... & Finkel, T. (2019). Macrophage fatty acid oxidation inhibits atherosclerosis progression. Journal of molecular and cellular cardiology, 127, 270-276.
dc.relationNohara, R. (2001). Lipid metabolism in the heart—Contribution of BMIPP to the diseased heart—. Annals of nuclear medicine, 15(5), 403-409.
dc.relationNarayanan, A., Baskaran, S. A., Amalaradjou, M. A. R., & Venkitanarayanan, K. (2015). Anticarcinogenic properties of medium chain fatty acids on human colorectal, skin and breast cancer cells in vitro. International journal of molecular sciences, 16(3), 5014-5027.
dc.relationMalekmohammad, K., Bezsonov, E. E., & Rafieian-Kopaei, M. (2021). Role of Lipid Accumulation and Inflammation in Atherosclerosis: Focus on molecular and cellular mechanisms. Frontiers in cardiovascular medicine, 8.
dc.relationLiberato, M. V., Nascimento, A. S., Ayers, S. D., Lin, J. Z., Cvoro, A., Silveira, R. L., ... & Polikarpov, I. (2012). Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) γ activators and pan-PPAR partial agonists. PloS one, 7(5), e36297.
dc.relationLibby, P., Buring, J.E., Badimon, L. et al (2019). Atherosclerosis. Nature Reviews Disease Primers 5 (56), 1-18.
dc.relationLibby, P. (2021). The changing landscape of atherosclerosis. Nature, 592(7855), 524-533.
dc.relationLiao, Y., Zhu, E., & Zhou, W. (2021). Ox-LDL Aggravates the Oxidative Stress and Inflammatory Responses of THP-1 Macrophages by Reducing the Inhibition Effect of miR-491-5p on MMP-9. Frontiers in cardiovascular medicine, 8.
dc.relationKobiyama, K., & Ley, K. (2018). Atherosclerosis: A chronic inflammatory disease with an autoimmune component. Circulation Research, 123(10), 1118-1120.Lopez, A. D., & Murray, C. C. (2020). The global burden of disease, 1990–2020. Nature medicine, 4(11), 1241-1243.
dc.relationKiepura, A., Stachyra, K., & Olszanecki, R. (2021). Anti-atherosclerotic potential of free fatty acid receptor 4 (FFAR4). Biomedicines, 9(5), 467.
dc.relationKahremany, S., Livne, A., Gruzman, A., Senderowitz, H., & Sasson, S. (2015). Activation of PPAR δ: from computer modelling to biological effects. British journal of pharmacology, 172(3), 754-770.
dc.relationKaddatz, K., Adhikary, T., Finkernagel, F., Meissner, W., Müller-Brüsselbach, S., & Müller, R. (2010). Transcriptional Profiling Identifies Functional Interactions of TGFβ and PPARβ/δ Signaling: SYNERGISTIC INDUCTION OF ANGPTL4 TRANSCRIPTION [S]. Journal of Biological Chemistry, 285(38), 29469-29479.
dc.relationJump, D. B., Tripathy, S., & Depner, C. M. (2013). fatty acid–regulated transcription factors in the liver. Annual review of nutrition, 33, 249.
dc.relationJiang, X. C., & Yu, Y. (2021). The role of phospholipid transfer protein in the development of atherosclerosis. Current atherosclerosis reports, 23(3), 1-9.
dc.relationIwashita, A., Muramatsu, Y., Yamazaki, T., Muramoto, M., Kita, Y., Yamazaki, S., ... & Matsuoka, N. (2007). Neuroprotective efficacy of the peroxisome proliferator-activated receptor δ-selective agonists in vitro and in vivo. Journal of pharmacology and experimental therapeutics, 320(3), 1087-1096.
dc.relationIrene, G. R., César, M., Fernando, C., & Ana, C. (2021). SR-B1, a Key Receptor Involved in the Progression of Cardiovascular Disease: A Perspective from Mice and Human Genetic Studies. Biomedicines, 9(6), 612.
dc.relationHuangfu, N., Wang, Y., Xu, Z., Zheng, W., Tao, C., Li, Z., ... & Chen, X. (2021). TDP43 Exacerbates Atherosclerosis Progression by Promoting Inflammation and Lipid Uptake of Macrophages. Frontiers in Cell and Developmental Biology, 9, 1705.
dc.relationHelsen, C., & Claessens, F. (2014). Looking at nuclear receptors from a new angle. Molecular and cellular endocrinology, 382(1), 97-106.
dc.relationHansson, G. K., & Hermansson, A. (2011). The immune system in atherosclerosis. Nature immunology, 12(3), 204-212.
dc.relationHaidukewych, D., Forsythe, W. I., & Sills, M. (1982). Monitoring octanoic and decanoic acids in plasma from children with intractable epilepsy treated with medium-chain triglyceride diet. Clinical chemistry, 28(4), 642-645.
dc.relationGu, J., Geng, M., Qi, M., Wang, L., Zhang, Y., & Gao, J. (2021). The role of lysosomal membrane proteins in glucose and lipid metabolism. The FASEB Journal, 35(10), e21848.
dc.relationGao, W., Liu, H., Yuan, J., Wu, C., Huang, D., Ma, Y., ... & Ge, J. (2016). Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF‐α mediated NF‐κB pathway. Journal of cellular and molecular medicine, 20(12), 2318-2327.
dc.relationFang, L., Zhang, M., Li, Y., Liu, Y., Cui, Q., & Wang, N. (2016). PPARgene: a database of experimentally verified and computationally predicted PPAR target genes. PPAR research, 2016.
dc.relationEnayati, A., Ghojoghnejad, M., Roufogalis, B. D., Maollem, S. A., & Sahebkar, A. (2022). Impact of Phytochemicals on PPAR Receptors: Implications for Disease Treatments. PPAR research, 2022.
dc.relationEliopoulos, A. G., Dumitru, C. D., Wang, C. C., Cho, J., & Tsichlis, P. N. (2002). Induction of COX-2 by LPS in macrophages is regulated by Tpl2-dependent CREB activation signals. The EMBO journal, 21(18), 4831-4840.
dc.relationDressel, U., Allen, T. L., Pippal, J. B., Rohde, P. R., Lau, P., & Muscat, G. E. (2003). The peroxisome proliferator-activated receptor β/δ agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells. Molecular endocrinology, 17(12), 2477-2493.
dc.relationDíaz-Gandarilla, J. A., Osorio-Trujillo, C., Hernández-Ramírez, V. I., & Talamás-Rohana, P. (2013). PPAR activation induces M1 macrophage polarization via cPLA2-COX-2 inhibition, activating ROS production against Leishmania mexicana. BioMed research international, 2013.
dc.relationChojnacka, K., & Lewandowska, U. (2021). The influence of polyphenol-rich extracts on the production of pro-inflammatory mediators in macrophages. Journal of Physiology and Pharmacology: an Official Journal of the Polish Physiological Society, 72(2).
dc.relationChi, T., Wang, M., Wang, X., Yang, K., Xie, F., Liao, Z., & Wei, P. (2021). PPAR-γ modulators as current and potential cancer treatments. Frontiers in oncology, 11.
dc.relationCheng, R., Xu, X., Yang, S., Zhao, Y., Yu, F., & Ren, X. (2022). The underlying molecular mechanisms and biomarkers of plaque vulnerability based on bioinformatics analysis. European Journal of Medical Research, 27(1), 1-10.
dc.relationChen, M., Lin, W., Ye, R., Yi, J., & Zhao, Z. (2021). PPAR β/δ Agonist Alleviates Diabetic Osteoporosis via Regulating M1/M2 Macrophage Polarization. Frontiers in Cell and Developmental Biology, 3349.
dc.relationChang, P., Zuckermann, A. M., Williams, S., Close, A. J., Cano-Jaimez, M., McEvoy, J. P., ... & Williams, R. S. (2015). Seizure control by derivatives of medium chain fatty acids associated with the ketogenic diet show novel branching-point structure for enhanced potency. Journal of pharmacology and experimental therapeutics, 352(1), 43-52.
dc.relationCarrieri, A., Giudici, M., Parente, M., De Rosas, M., Piemontese, L., Fracchiolla, G., ... & Loiodice, F. (2013). Molecular determinants for nuclear receptors selectivity: Chemometric analysis, dockings and site-directed mutagenesis of dual peroxisome proliferator-activated receptors α/γ agonists. European journal of medicinal chemistry, 63, 321-332.
dc.relationCaligiuri, G., Rudling, M., Ollivier, V., Jacob, M. P., Michel, J. B., Hansson, G. K., & Nicoletti, A. (2003). Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice. Molecular medicine, 9(1), 10-17.
dc.relationBlunder, S., Pavel, P., Minzaghi, D., & Dubrac, S. (2021). PPARdelta in affected atopic dermatitis and psoriasis: A possible role in metabolic reprograming. International journal of molecular sciences, 22(14), 7354.
dc.relationBerlato, C., Cassatella, M. A., Kinjyo, I., Gatto, L., Yoshimura, A., & Bazzoni, F. (2002). Involvement of suppressor of cytokine signaling-3 as a mediator of the inhibitory effects of IL-10 on lipopolysaccharide-induced macrophage activation. The journal of immunology, 168(12), 6404-6411.
dc.relationBerger, J., & Moller, D. E. (2002). The mechanisms of action of PPARs. Annual review of medicine, 53(1), 409-435.
dc.relationBenetti, E., SA Patel, N., & Collino, M. (2011). The role of PPARβ/δ in the management of metabolic syndrome and its associated cardiovascular complications. Endocrine, metabolic & immune disorders-drug targets, 11(4), 273-284.
dc.relationBatista, F. A., Trivella, D. B., Bernardes, A., Gratieri, J., Oliveira, P. S., Figueira, A. C. M., ... & Polikarpov, I. (2012). Structural insights into human peroxisome proliferator activated receptor delta (PPAR-delta) selective ligand binding. PloS one, 7(5), e33643.
dc.relationBalta, I., Stef, L., Pet, I., Iancu, T., Stef, D., & Corcionivoschi, N. (2021). Essential fatty acids as biomedicines in cardiac health. Biomedicines, 9(10), 1466.
dc.relationBahiraii, S., Brenner, M., Yan, F., Weckwerth, W., & Heiss, E. H. (2022). Sulforaphane diminishes moonlighting of pyruvate kinase M2 and interleukin 1β expression in M1 (LPS) macrophages. Frontiers in immunology, 13.
dc.relationAnbalagan, M., Huderson, B., Murphy, L., & Rowan, B. G. (2012). Post-translational modifications of nuclear receptors and human disease. Nuclear receptor signaling, 10(1), nrs-10001.
dc.relationAlahmadi, A., & Ramji, D. P. (2022). Monitoring modified lipoprotein uptake and macropinocytosis associated with macrophage foam cell formation. In Atherosclerosis (pp. 247-255). Humana, New York, NY.
dc.relationAdhikary, T., Wortmann, A., Schumann, T., Finkernagel, F., Lieber, S., Roth, K., ... & Müller, R. (2015). The transcriptional PPARβ/δ network in human macrophages defines a unique agonist-induced activation state. Nucleic acids research, 43(10), 5033-5051.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titlePapel del receptor nuclear PPARβ/δ en la respuesta metabólica a ácidos grasos de cadena media en macrófagos murinos
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución