dc.contributorPinzón Velasco, Andres Mauricio
dc.contributorJanneth González Santos
dc.contributorGrupo de Investigación en Bioinformática y Biología de Sistemas - GIBBS
dc.creatorAngarita Rodríguez, María Andrea
dc.date.accessioned2022-10-05T23:38:20Z
dc.date.accessioned2023-06-06T23:38:01Z
dc.date.available2022-10-05T23:38:20Z
dc.date.available2023-06-06T23:38:01Z
dc.date.created2022-10-05T23:38:20Z
dc.date.issued2022-10-04
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/82354
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6651416
dc.description.abstractLos astrocitos juegan un papel importante en varios procesos en el cerebro, incluidas condiciones patológicas como las enfermedades neurodegenerativas. Estudios recientes han demostrado que el aumento de ácidos grasos saturados como el ácido palmítico (PA) desencadena vías proinflamatorias en el cerebro. El uso de neuroesteroides sintéticos como la tibolona ha demostrado mecanismos neuroprotectores. Sin embargo, faltan estudios amplios, con un punto de vista sistémico, sobre el papel neurodegenerativo de PA y los mecanismos neuroprotectores de la tibolona. En este estudio, realizamos la integración de datos multiómicos (transcriptoma y proteoma) en un modelo metabólico a escala genómica de astrocitos humanos para estudiar la respuesta astrocitaria durante el tratamiento con palmitato. Evaluamos los flujos metabólicos en tres escenarios (saludable, inflamación inducida por PA y tratamiento con tibolona bajo inflamación por PA). También aplicamos un enfoque de teoría de control para identificar aquellas reacciones que ejercen más control en el sistema astrocítico. Por último, analizamos las cavidades de las enzimas asociadas a estas reacciones para determinar sus potenciales sitios de unión caracterizándolos en función de puntajes de ligandabilidad y capacidad de interacción farmacológica (drogabilidad). Nuestros resultados sugieren que PA genera una modulación del metabolismo central y secundario, mostrando un cambio en el uso de la fuente de energía a través de la inhibición del ciclo del folato, la β-oxidación de ácidos grasos y la regulación positiva de la formación de cuerpos cetónicos. Encontramos 25 interruptores metabólicos bajo regulación celular mediada por PA, 9 de los cuales fueron críticos solo en el escenario inflamatorio pero no en el protector de tibolona. Dentro de estas reacciones, los perfiles de acoplamiento inhibitorio, total y direccional fueron hallazgos clave, que desempeñaron un papel fundamental en la desregulación de las vías metabólicas que pueden aumentar la neurotoxicidad. De los 25 interruptores metabólicos 16 presentaron cavidades potencialmente drogables que, a su vez, contienen el sitio activo de la proteína. En su conjunto, estas 16 enzimas se configuran como potenciales objetivos terapéuticos. Finalmente, el marco general de nuestro enfoque facilitó la comprensión de la regulación metabólica compleja y puede usarse para la exploración in silico de los mecanismos de regulación de las células astrocitarias, y potencialmente de otros tipos celulares, dirigiendo un trabajo experimental futuro más complejo en enfermedades neurodegenerativas. (Texto tomado de la fuente)
dc.description.abstractOur results suggest that PA generates a modulation of central and secondary metabolism, showing a change in the use of the energy source through the inhibition of the folate cycle, the β-oxidation of fatty acids and the positive regulation of the formation of fatty acids. ketone bodies. We found 25 metabolic switches under PA-mediated cellular regulation, 9 of which were critical only in the inflammatory but not in the protective tibolone scenario. Within these reactions, inhibitory, total, and directional coupling profiles were key findings, playing a critical role in the dysregulation of metabolic pathways that can increase neurotoxicity. Of the 25 metabolic switches, 16 presented potentially drugable cavities that, in turn, contain the active site of the protein. As a whole, these 16 enzymes are configured as potential therapeutic targets. Finally, the general framework of our approach facilitated the understanding of complex metabolic regulation and can be used for in silico exploration of regulatory mechanisms of astrocytic cells, and potentially other cell types, directing future more complex experimental work in diseases. neurodegenerative Our results suggest that PA generates a modulation of central and secondary metabolism, showing a switch in energy source use through inhibition of folate cycle and fatty acid β-oxidation and upregulation of ketone bodies formation. We found 25 metabolic switches under PA-mediated cellular regulation, 9 of which were critical only in the inflammatory but not in the protective tibolone scenario. Within these reactions, inhibitory, total, and directional coupling profiles were key findings, playing a critical role in the dysregulation of metabolic pathways that can increase neurotoxicity. Of the 25 metabolic switches, 16 presented potentially druggable cavities that, in turn, contain the protein's active site. As a whole, these 16 enzymes are configured as potential therapeutic targets. Finally, the general framework of our approach facilitated the understanding of complex metabolic regulation. It can be used for in silico exploration of regulatory mechanisms of astrocytic cells, and potentially other cell types, directing future more complex experimental work in neurodegenerative diseases.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ingeniería - Maestría en Bioinformática
dc.publisherDepartamento de Ingeniería de Sistemas e Industrial
dc.publisherFacultad de Ingeniería
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationÃ, G. B. S., & Park, E. (2003). Taurine : new implications for an old amino acid. 226, 195–202. https://doi.org/10.1016/S0378-1097(03)00611-6
dc.relationAgostinho, P., Cunha, R. a, & Oliveira, C. (2010). Neuroinflammation , Oxidative Stress and the Pathogenesis of Alzheimer ’ s Disease. Current Pharmacutical Design, 16, 2766–2778.
dc.relationAllen, N. J., Eroglu, C., Development, F., Studies, B., & Jolla, L. (2018). Cell biology of astrocyte-synapse interactions. Neuron., 96(3), 697–708. https://doi.org/10.1016/j.neuron.2017.09.056.Cell
dc.relationAltenbuchinger, M., Zacharias, H. U., Solbrig, S., Schäfer, A., Büyüközkan, M., Schultheiß, U. T., Kotsis, F., Köttgen, A., Spang, R., Oefner, P. J., Krumsiek, J., & Gronwald, W. (2019). A multi-source data integration approach reveals novel associations between metabolites and renal outcomes in the German Chronic Kidney Disease study. Scientific Reports, 9(1), 1–13. https://doi.org/10.1038/s41598-019-50346-2
dc.relationArevalo, M. A., Azcoitia, I., & Garcia-Segura, L. M. (2015). The neuroprotective actions of oestradiol and oestrogen receptors. Nature Reviews Neuroscience, 16(1), 17–29. https://doi.org/10.1038/nrn3856
dc.relationArnedo, M., Ramos, M., Puisac, B., Concepcion, M., Teresa, E., Pie, A., Bueno, G., J., F., Gomez-Puertas, P., & Pie, J. (2011). Mitochondrial HMG–CoA Synthase Deficiency. Advances in the Study of Genetic Disorders, February. https://doi.org/10.5772/22151
dc.relationAsgari, Y., Salehzadeh-Yazdi, A., Schreiber, F., & Masoudi-Nejad, A. (2013). Controllability in cancer metabolic networks according to drug targets as driver nodes. PLoS ONE, 8(11), 1–12. https://doi.org/10.1371/journal.pone.0079397
dc.relationÁvila, M., Garcia-segura, L. M., Cabezas, R., Torrente, D., Capani, F., Gonzalez, J., & Barreto, G. E. (2014). Journal of Steroid Biochemistry & Molecular Biology Tibolone protects T98G cells from glucose deprivation. Journal of Steroid Biochemistry and Molecular Biology, 144, 294–303. https://doi.org/10.1016/j.jsbmb.2014.07.009
dc.relationAyyildiz, M., Celiker, S., Ozhelvaci, F., & Akten, E. D. (2020). Identification of Alternative Allosteric Sites in Glycolytic Enzymes for Potential Use as Species-Specific Drug Targets. 7(May), 1–19. https://doi.org/10.3389/fmolb.2020.00088
dc.relationBadaut, J. (2010). Aquaglyceroporin 9 in brain pathologies. Neuroscience, 168(4), 1047–1057. https://doi.org/10.1016/j.neuroscience.2009.10.030
dc.relationBailey, L. B., & Gregory, J. F. (1999). Recent Advances in Nutritional Science Folate Metabolism and. The Journal of Nutrition, 129, 779–782.
dc.relationBalog, E. (2014). An Allosteric Signaling Pathway of Human 3- Phosphoglycerate Kinase from Force Distribution Analysis. 10(1). https://doi.org/10.1371/journal.pcbi.1003444
dc.relationBalsa, E., Perry, E. A., Bennett, C. F., Jedrychowski, M., Gygi, S. P., Doench, J. G., & Puigserver, P. (2020). Defective NADPH production in mitochondrial disease complex I causes in fl ammation and cell. Nature Communications, 1–12. https://doi.org/10.1038/s41467-020-16423-1
dc.relationBarinova, K., Khomyakova, E., Semenyuk, P., Schmalhausen, E., & Muronetz, V. (2018). SC. Archives of Biochemistry and Biophysics. https://doi.org/10.1016/j.abb.2018.02.002
dc.relationBasler, G., Grimbs, S., & Ebenho, O. (2012). Evolutionary significance of metabolic network properties. November 2011, 1168–1176.
dc.relationBasler, G., & Nikoloski, Z. (2011). JMassBalance : mass-balanced randomization and analysis of metabolic networks. 27(19), 2761–2762. https://doi.org/10.1093/bioinformatics/btr448
dc.relationBasler, G., Nikoloski, Z., Larhlimi, A., Barabási, A. L., & Liu, Y. Y. (2016). Control of fluxes in metabolic networks. Genome Research, 26(7), 956–968. https://doi.org/10.1101/gr.202648.115
dc.relationBecerra-Calixto, A., & Cardona-Gómez, G. P. (2017). The role of astrocytes in neuroprotection after brain stroke: Potential in cell therapy. Frontiers in Molecular Neuroscience, 10(April), 1–12. https://doi.org/10.3389/FNMOL.2017.00088
dc.relationBélanger, M., & Magistretti, P. J. (2009). The role of astroglia in neuroprotection. Dialogues in Clinical Neuroscience, 11(3), 281–296.
dc.relationBidkhori, G., Benfeitas, R., Elmas, E., Kararoudi, M. N., Arif, M., Uhlen, M., Nielsen, J., & Mardinoglu, A. (2018). Metabolic network-based identification and prioritization of anticancer targets based on expression data in hepatocellular carcinoma. Frontiers in Physiology, 9(JUL), 1–11. https://doi.org/10.3389/fphys.2018.00916
dc.relationBordbar, A, & Palsson, B. O. (2011). Using the reconstructed genome-scale human metabolic network to study physiology and pathology. 131–141. https://doi.org/10.1111/j.1365-2796.2011.02494.x
dc.relationBordbar, Aarash, Jamshidi, N., & Palsson, B. O. (2011). IAB-RBC-283: A proteomically derived knowledge-base of erythrocyte metabolism that can be used to simulate its physiological and patho-physiological states. BMC Systems Biology, 5, 1–12. https://doi.org/10.1186/1752-0509-5-110
dc.relationBordbar, Aarash, Monk, J. M., King, Z. A., & Palsson, B. O. (2014). Constraint-based models predict metabolic and associated cellular functions. 15(February), 107–120. https://doi.org/10.1038/nrg3643
dc.relationBordel, S., Agren, R., & Nielsen, J. (2010). Sampling the solution space in genome-scale metabolic networks reveals transcriptional regulation in key enzymes. PLoS Computational Biology, 6(7), 16. https://doi.org/10.1371/journal.pcbi.1000859
dc.relationBrunk, E., Sahoo, S., Zielinski, D. C., Altunkaya, A., Dräger, A., Mih, N., Gatto, F., Nilsson, A., Preciat Gonzalez, G. A., Aurich, M. K., Prlic, A., Sastry, A., Danielsdottir, A. D., Heinken, A., Noronha, A., Rose, P. W., Burley, S. K., Fleming, R. M. T., Nielsen, J., … Palsson, B. O. (2018). Recon3D enables a three-dimensional view of gene variation in human metabolism. Nature Biotechnology, 36(3), 272–281. https://doi.org/10.1038/nbt.4072
dc.relationBurgard, A. P., Nikolaev, E. V, Schilling, C. H., & Maranas, C. D. (2004). Flux Coupling Analysis of Genome-Scale Metabolic Network Reconstructions. 4, 301–312. https://doi.org/10.1101/gr.1926504.
dc.relationBurley, S. K., Bhikadiya, C., Bi, C., Bittrich, S., Chen, L., Crichlow, G. V, Christie, C. H., Dalenberg, K., Costanzo, L. Di, Duarte, J. M., Dutta, S., Feng, Z., Ganesan, S., Goodsell, D. S., Ghosh, S., Green, R. K., Guzenko, D., Hudson, B. P., Lawson, C. L., … Zhuravleva, M. (2021). RCSB Protein Data Bank : powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology , biomedicine , biotechnology , bioengineering and energy sciences. 49(November 2020), 437–451. https://doi.org/10.1093/nar/gkaa1038
dc.relationBuskila, Y., Bellot-Saez, A., & Morley, J. W. (2019). Generating Brain Waves, the Power of Astrocytes. Frontiers in Neuroscience, 13(October), 1–10. https://doi.org/10.3389/fnins.2019.01125
dc.relationButland, S. L., Sanders, S. S., Schmidt, M. E., Riechers, S. P., Lin, D. T. S., Martin, D. D. O., Vaid, K., Graham, R. K., Singaraja, R. R., Wanker, E. E., Conibear, E., & Hayden, M. R. (2014). The palmitoyl acyltransferase HIP14 shares a high proportion of interactors with huntingtin: Implications for a role in the pathogenesis of Huntington’s disease. Human Molecular Genetics, 23(15), 4142–4160. https://doi.org/10.1093/hmg/ddu137
dc.relationBylicky, M. A., Mueller, G. P., & Day, R. M. (2018). Mechanisms of endogenous neuroprotective effects of astrocytes in brain injury. Oxidative Medicine and Cellular Longevity, 2018. https://doi.org/10.1155/2018/6501031
dc.relationCabezas, R., El-Bachá, R. S., González, J., & Barreto, G. E. (2012). Mitochondrial functions in astrocytes: Neuroprotective implications from oxidative damage by rotenone. Neuroscience Research, 74(2), 80–90. https://doi.org/10.1016/j.neures.2012.07.008
dc.relationCammisa, M., Correra, A., Andreotti, G., & Cubellis, M. V. (2012). Identification and analysis of conserved pockets on protein surfaces. February 2014. https://doi.org/10.1186/1471-2105-14-S7-S9
dc.relationCarta, G., Murru, E., Banni, S., & Manca, C. (2017). Palmitic acid: Physiological role, metabolism and nutritional implications. Frontiers in Physiology, 8(NOV), 1–14. https://doi.org/10.3389/fphys.2017.00902
dc.relationCeccarelli, S. M., Chomienne, O., Gubler, M., & Arduini, A. (2011). Carnitine Palmitoyltransferase ( CPT ) Modulators : A Medicinal Chemistry Perspective on 35 Years of Research.
dc.relationChang, R. L., Xie, L., Xie, L., Bourne, P. E., & Palsson, B. (2010). Drug off-target effects predicted using structural analysis in the context of a metabolic network model. PLoS Computational Biology, 6(9). https://doi.org/10.1371/journal.pcbi.1000938
dc.relationChaudhry, F. A., Krizaj, D., Larsson, P., Reimer, R. J., Wreden, C., Storm-Mathisen, J., Copenhagen, D., Kavanaugh, M., & Edwards, R. H. (2001). Coupled and uncoupled proton movement by amino acid transport system N. EMBO Journal, 20(24), 7041–7051. https://doi.org/10.1093/emboj/20.24.7041
dc.relationChaudhry, F. A., Reimer, R. J., Krizaj, D., Barber, D., Storm-Mathisen, J., Copenhagen, D. R., & Edwards, R. H. (1999). Molecular analysis of system N suggests novel physiological roles in nitrogen metabolism and synaptic transmission. Cell, 99(7), 769–780. https://doi.org/10.1016/S0092-8674(00)81674-8
dc.relationChen, K., Wu, S., Ye, S., Huang, H., Zhou, Y., & Zhou, H. (2021). Dimethyl Fumarate Induces Metabolic Crisie to Suppress Pancreatic Carcinoma. 12(February), 1–14. https://doi.org/10.3389/fphar.2021.617714
dc.relationChen, P., Cheng, S., Lin, H., Lee, C., & Chou, C. (2018). Risk Factors for the Progression of Mild Cognitive Impairment in Different Types of Neurodegenerative Disorders. 2018. https://doi.org/10.1155/2018/6929732
dc.relationCoppedè, F. (2021). One-carbon epigenetics and redox biology of neurodegeneration. Free Radical Biology and Medicine, 170(October), 19–33. https://doi.org/10.1016/j.freeradbiomed.2020.12.002
dc.relationCoppedè, F., Mancuso, M., Siciliano, G., Migliore, L., & Murri, L. (2006). Genes and the environment in neurodegeneration. Bioscience Reports, 26(5), 341–367. https://doi.org/10.1007/s10540-006-9028-6
dc.relationCrespo-Castrillo, A., & Arevalo, M. A. (2020). Microglial and astrocytic function in physiological and pathological conditions: Estrogenic modulation. International Journal of Molecular Sciences, 21(9). https://doi.org/10.3390/ijms21093219
dc.relationCrespo-Castrillo, A., Yanguas-Casás, N., Arevalo, M. A., Azcoitia, I., Barreto, G. E., & Garcia-Segura, L. M. (2018). The Synthetic Steroid Tibolone Decreases Reactive Gliosis and Neuronal Death in the Cerebral Cortex of Female Mice After a Stab Wound Injury. Molecular Neurobiology, 55(11), 8651–8667. https://doi.org/10.1007/s12035-018-1008-x
dc.relationCummings, J. L., Morstorf, T., & Zhong, K. (2014). Alzrt269. 1–7.
dc.relationCurrais, A., Goldberg, J., Farrokhi, C., Chang, M., Prior, M., Dargusch, R., Daugherty, D., Armando, A., Quehenberger, O., Maher, P., & Schubert, D. (2015). A comprehensive multiomics approach toward understanding the relationship between aging and dementia. Aging, 7(11), 937–955. https://doi.org/10.18632/aging.100838
dc.relationDas, A., Banik, N. L., & Ray, S. K. (2010). Flavonoids Activated Caspases for Apoptosis in Human Glioblastoma T98G and U87MG Cells But Not in Human Normal Astrocytes. 164–176. https://doi.org/10.1002/cncr.24699
dc.relationDavid, L., Marashi, S. A., Larhlimi, A., Mieth, B., & Bockmayr, A. (2011). FFCA: A feasibility-based method for flux coupling analysis of metabolic networks. BMC Bioinformatics, 12(1), 236. https://doi.org/10.1186/1471-2105-12-236
dc.relationDe Carvalho, C. C. C. R., & Caramujo, M. J. (2018). The various roles of fatty acids. Molecules, 23(10). https://doi.org/10.3390/molecules23102583
dc.relationDe Young, G. W., & Keizer, J. (1992). A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proceedings of the National Academy of Sciences of the United States of America, 89(20), 9895–9899. https://doi.org/10.1073/pnas.89.20.9895
dc.relationDevkota, P., & Wuchty, S. (2020). Controllability analysis of molecular pathways points to proteins that control the entire interaction network. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-59717-6
dc.relationDhandapani, K. M., Wade, F. M., Mahesh, V. B., & Brann, D. W. (2005). Astrocyte-derived transforming growth factor-β mediates the neuroprotective effects of 17β-estradiol: Involvement of nonclassical genomic signaling pathways. Endocrinology, 146(6), 2749–2759. https://doi.org/10.1210/en.2005-0014
dc.relationDhote, V., Mandloi, A. S., Singour, P. K., Kawadkar, M., Ganeshpurkar, A., & Jadhav, M. P. (2022). Neuroprotective Effects of Combined Trimetazidine and Progesterone on Cerebral Reperfusion Injury. Current Research in Pharmacology and Drug Discovery, 100108. https://doi.org/10.1016/j.crphar.2022.100108
dc.relationDilcan, G., Doruker, P., & Demet, E. (2019). binding affinity of alternative conformers of human β 2 - ­ adrenergic receptor in the presence of intracellular loop 3 ( ICL3 ) and their potential use in virtual screening studies. June 2018, 883–899. https://doi.org/10.1111/cbdd.13478
dc.relationDoengi, M., Hirnet, D., Coulon, P., Pape, H., Deitmer, J. W., & Lohr, C. (2009). GABA uptake-dependent Ca 2 ؉ signaling in developing olfactory bulb astrocytes. 1–6.
dc.relationDuarte, N. C., Becker, S. A., Jamshidi, N., Thiele, I., Mo, M. L., Vo, T. D., Srivas, R., & Palsson, B. Ø. (2007). Global reconstruction of the human metabolic network based on genomic and bibliomic data. 104(6).
dc.relationDupuis, J. R., Ruiz-Arce, R., Barr, N. B., Thomas, D. B., & Geib, S. M. (2019). Range-wide population genomics of the Mexican fruit fly: Toward development of pathway analysis tools. Evolutionary Applications, 12(8), 1641–1660. https://doi.org/10.1111/eva.12824
dc.relationDurkee, C. A., & Araque, A. (2019). Diversity and Specificity of Astrocyte–neuron Communication. Neuroscience, 396(November), 73–78. https://doi.org/10.1016/j.neuroscience.2018.11.010
dc.relationFarfa, E. D., & Gallardo, J. M. (2014). Tibolone Prevents Oxidation and Ameliorates Cholinergic Deficit Induced by Ozone Exposure in the Male Rat Hippocampus. 1776–1786. https://doi.org/10.1007/s11064-014-1385-0
dc.relationFarmer, B. C., Walsh, A. E., Kluemper, J. C., & Johnson, L. A. (2020). Lipid Droplets in Neurodegenerative Disorders. Frontiers in Neuroscience, 14(July), 1–14. https://doi.org/10.3389/fnins.2020.00742
dc.relationFatima, S., Hu, X., Gong, R. H., Huang, C., Chen, M., Wong, H. L. X., Bian, Z., & Kwan, H. Y. (2019). Palmitic acid is an intracellular signaling molecule involved in disease development. Cellular and Molecular Life Sciences, 76(13), 2547–2557. https://doi.org/10.1007/s00018-019-03092-7
dc.relationFell, D. A. (2005). Enzymes, metabolites and fluxes. Journal of Experimental Botany, 56(410), 267–272. https://doi.org/10.1093/jxb/eri011
dc.relationFellner, L., Irschick, R., Schanda, K., Reindl, M., Klimaschewski, L., Poewe, W., Wenning, G. K., & Stefanova, N. (2013). Toll-like receptor 4 is required for α-synuclein dependent activation of microglia and astroglia. Glia, 61(3), 349–360. https://doi.org/10.1002/glia.22437
dc.relationField, M. S., Kamynina, E., Agunloye, O. C., Liebenthal, R. P., Lamarre, S. G., Brosnan, M. E., Brosnan, J. T., & Stover, P. J. (2014). Nuclear enrichment of folate cofactors and methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) protect de novo thymidylate biosynthesis during folate deficiency. Journal of Biological Chemistry, 289(43), 29642–29650. https://doi.org/10.1074/jbc.M114.599589
dc.relationFlott, B., & Seifert, W. (1991). Characterization of glutamate uptake systems in astrocyte primary cultures from rat brain. Glia, 4(3), 293–304. https://doi.org/10.1002/glia.440040307
dc.relationFrago, L. M., Canelles, S., Freire-Regatillo, A., Argente-Arizón, P., Barrios, V., Argente, J., Garcia-Segura, L. M., & Chowen, J. A. (2017). Estradiol uses different mechanisms in astrocytes from the hippocampus of male and female rats to protect against damage induced by palmitic acid. Frontiers in Molecular Neuroscience, 10(October), 1–17. https://doi.org/10.3389/fnmol.2017.00330
dc.relationFumagalli, M., Lecca, D., Abbracchio, M. P., & Ceruti, S. (2017). Pathophysiological role of purines and pyrimidines in neurodevelopment: Unveiling new pharmacological approaches to congenital brain diseases. Frontiers in Pharmacology, 8(DEC), 1–18. https://doi.org/10.3389/fphar.2017.00941
dc.relationGelius-Dietrich, G., Desouki, A. A., Fritzemeier, C. J., & Lercher, M. J. (2013). Sybil - Efficient constraint-based modelling in R. BMC Systems Biology, 7(November). https://doi.org/10.1186/1752-0509-7-125
dc.relationGianchandani, E. P., Chavali, A. K., & Papin, J. A. (2010). The application of flux balance analysis in systems biology. https://doi.org/10.1002/wsbm.60
dc.relationGille, C., Bölling, C., Hoppe, A., Bulik, S., Hoffmann, S., Hübner, K., Karlstädt, A., Ganeshan, R., König, M., Rother, K., Weidlich, M., Behre, J., & Holzhütter, H. G. (2010). HepatoNet1: A comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology. Molecular Systems Biology, 6(411). https://doi.org/10.1038/msb.2010.62
dc.relationGonzález-giraldo, Y., Forero, D. A., Echeverria, V., Garcia-segura, L. M., & Barreto, G. E. (2019). Molecular and Cellular Endocrinology Tibolone attenuates in fl ammatory response by palmitic acid and preserves mitochondrial membrane potential in astrocytic cells through estrogen receptor beta. Molecular and Cellular Endocrinology, 486(February), 65–78. https://doi.org/10.1016/j.mce.2019.02.017
dc.relationGonzález, J., Pinzón, A., Angarita-Rodríguez, A., Aristizabal, A. F., Barreto, G. E., & Martín-Jiménez, C. (2020). Advances in Astrocyte Computational Models: From Metabolic Reconstructions to Multi-omic Approaches. Frontiers in Neuroinformatics, 14(August), 1–13. https://doi.org/10.3389/fninf.2020.00035
dc.relationGreener, J. G., & Sternberg, M. J. E. (2015). AlloPred : prediction of allosteric pockets on proteins using normal mode perturbation analysis. 1–7. https://doi.org/10.1186/s12859-015-0771-1
dc.relationGu, C., Kim, G. B., Kim, W. J., Kim, H. U., & Lee, S. Y. (2019). Current status and applications of genome-scale metabolic models. Genome Biology, 20(1), 1–18. https://doi.org/10.1186/s13059-019-1730-3
dc.relationGuilloux, V. Le, Schmidtke, P., & Tuffery, P. (2009). Fpocket : An open source platform for ligand pocket detection. February. https://doi.org/10.1186/1471-2105-10-168
dc.relationGulsen, M., Yesilova, Z., Bagci, S., Uygun, A., Ozcan, A., Ercin, C. N., Erdil, A., Sanisoglu, S. Y., Ates, Y., Erbil, M. K., Karaeren, N., & Dagalp, K. (2005). Elevated plasma homocysteine concentrations as a predictor of steatohepatitis in patients with non-alcoholic fatty liver disease. October 2004, 1448–1455. https://doi.org/10.1111/j.1440-1746.2005.03891.x
dc.relationGuo, W. F., Zhang, S. W., Shi, Q. Q., Zhang, C. M., Zeng, T., & Chen, L. (2018). A novel algorithm for finding optimal driver nodes to target control complex networks and its applications for drug targets identification. BMC Genomics, 19(Suppl 1). https://doi.org/10.1186/s12864-017-4332-z
dc.relationGupta, M., Sharma, R., & Kumar, A. (2018). Docking techniques in pharmacology: How much promising? Computational Biology and Chemistry, 76, 210–217. https://doi.org/10.1016/j.compbiolchem.2018.06.005
dc.relationHan, X., Zhang, T., Liu, H., Mi, Y., & Gou, X. (2020). Astrocyte Senescence and Alzheimer’s Disease: A Review. Frontiers in Aging Neuroscience, 12(June), 1–13. https://doi.org/10.3389/fnagi.2020.00148
dc.relationHaroon, E., Miller, A. H., & Sanacora, G. (2017). Inflammation, Glutamate, and Glia: A Trio of Trouble in Mood Disorders. Neuropsychopharmacology, 42(1), 193–215. https://doi.org/10.1038/npp.2016.199
dc.relationHashimoto, M., & Hossain, S. (2018). Fatty Acids: From Membrane Ingredients to Signaling Molecules. Biochemistry and Health Benefits of Fatty Acids. https://doi.org/10.5772/intechopen.80430
dc.relationHerculano-Houzel, S., & Dos Santos, S. (2018). You Do Not Mess with the Glia. Neuroglia, 1(1), 193–219. https://doi.org/10.3390/neuroglia1010014
dc.relationHidalgo-lanussa, O., Ávila-rodriguez, M., Baez-jurado, E., Zamudio, J., Echeverria, V., Garcia-segura, L. M., Barreto, G. E., & Garcia-segura, L. M. (2017). Tibolone Reduces Oxidative Damage and Inflammation in Microglia Stimulated with Palmitic Acid through Mechanisms Involving Estrogen Receptor Beta. https://doi.org/10.1007/s12035-017-0777-y
dc.relationHidalgo-Lanussa, O., Baez-Jurado, E., Echeverria, V., Ashraf, G. M., Sahebkar, A., Garcia-Segura, L. M., Melcangi, R. C., & Barreto, G. E. (2020). Lipotoxicity, neuroinflammation, glial cells and oestrogenic compounds. Journal of Neuroendocrinology, 32(1), 1–15. https://doi.org/10.1111/jne.12776
dc.relationHilton, B. J., Lang, B. T., & Cregg, J. M. (2012). Keratan Sulfate Proteoglycans in Plasticity and Recovery after Spinal Cord Injury. 32(13), 4331–4333. https://doi.org/10.1523/JNEUROSCI.0333-12.2012
dc.relationHöfer, T., Venance, L., & Giaume, C. (2002). Control and Plasticity of Intercellular Calcium Waves in Astrocytes: A Modeling Approach. Journal of Neuroscience, 22(12), 4850–4859. https://doi.org/10.1523/jneurosci.22-12-04850.2002
dc.relationHood, L., & Friend, S. H. (2011). Predictive, personalized, preventive, participatory (P4) cancer medicine. Nature Reviews Clinical Oncology, 8(3), 184–187. https://doi.org/10.1038/nrclinonc.2010.227
dc.relationHood, L., Heath, J. R., Phelps, M. E., & Lin, B. (2004). Systems biology and new technologies enable predictive and preventative medicine. Science, 306(5696), 640–643. https://doi.org/10.1126/science.1104635
dc.relationHornak, V., Okur, A., Rizzo, R. C., & Simmerling, C. (2006). HIV-1 Protease Flaps Spontaneously Close to the Correct Structure in Simulations Following Manual Placement of an Inhibitor into the Open State. 2812–2813.
dc.relationHu, X., Zhu, X., Yu, W., Zhang, Y., Yang, K., & Liu, Z. (2022). European Journal of Medicinal Chemistry Reports A mini review of small-molecule inhibitors targeting palmitoyltransferases. 5(August 2021).
dc.relationHuang, J., Hou, J., Li, L., & Wang, Y. (2020). Flux balance analysis of glucose degradation by anaerobic digestion in negative pressure. International Journal of Hydrogen Energy, 45(51), 26822–26830. https://doi.org/10.1016/j.ijhydene.2020.07.053
dc.relationHuang, Y. N., Lai, C. C., Chiu, C. T., Lin, J. J., & Wang, J. Y. (2014). L-ascorbate attenuates the endotoxin-induced production of inflammatory mediators by inhibiting MAPK activation and NF- κB translocation in cortical neurons/glia cocultures. PLoS ONE, 9(7), 1–12. https://doi.org/10.1371/journal.pone.0097276
dc.relationHyduke, D., Hyduke, D., Schellenberger, J., Que, R., Fleming, R., Thiele, I., Orth, J., Feist, A., Zielinski, D., Bordbar, A., Lewis, N., Rahmanian, S., Kang, J., & Palsson, B. (2011). COBRA Toolbox 2.0. Protocol Exchange, May, 0–1. https://doi.org/10.1038/protex.2011.234
dc.relationIpata, P. L., & Tozzi, M. G. (2006). Recent advances in structure and function of cytosolic IMP-GMP specific 5′-nucleotidase II (cN-II). Purinergic Signalling, 2(4), 669–675. https://doi.org/10.1007/s11302-006-9009-
dc.relationIto, Z., Sakamoto, K., Imagama, S., Matsuyama, Y., Zhang, H., Hirano, K., Ando, K., Yamashita, T., Ishiguro, N., & Kadomatsu, K. (2010). N -Acetylglucosamine 6- O -Sulfotransferase-1-Deficient Mice Show Better Functional Recovery after Spinal Cord Injury. 30(17), 5937–5947. https://doi.org/10.1523/JNEUROSCI.2570-09.2010
dc.relationJacobs, A. H., & Tavitian, B. (2012). Noninvasive molecular imaging of neuroinflammation. Journal of Cerebral Blood Flow and Metabolism, 32(7), 1393–1415. https://doi.org/10.1038/jcbfm.2012.53
dc.relationJarugumilli, G., Chen, B., & Wu, X. (n.d.). Chemical Probes to Directly Profile Palmitoleoylation of Proteins.
dc.relationJendoubi, T. (2021). Approaches to integrating metabolomics and multi-omics data: A primer. Metabolites, 11(3). https://doi.org/10.3390/metabo11030184
dc.relationJiang, P., Wang, H., Li, W., Zang, C., Li, B., Wong, Y. J., Meyer, C., Liu, J. S., Aster, J. C., & Liu, X. S. (2015). Network analysis of gene essentiality in functional genomics experiments. Genome Biology, 16(1), 1–10. https://doi.org/10.1186/s13059-015-0808-9
dc.relationJones, L. L., & Tuszynski, M. H. (2002). Spinal Cord Injury Elicits Expression of Keratan Sulfate Proteoglycans by Macrophages, Reactive Microglia, and Oligodendrocyte Progenitors. Journal of Neuroscience, 22(11), 4611–4624. https://doi.org/10.1523/jneurosci.22-11-04611.2002
dc.relationKanhaiya, K. (2020). Target Controllability of Cancer Networks. Åbo Akademi University, 1, 1–68.
dc.relationKarahalil, B. (2017). Overview of Systems Biology and Omics Technologies Overview of Systems Biology and Omics Technologies. September 2016. https://doi.org/10.2174/0929867323666160926
dc.relationKawabata, T. (2009). Detection of multiscale pockets on protein surfaces using mathematical morphology. 1195–1211. https://doi.org/10.1002/prot.22639
dc.relationKim, M., Rai, N., Zorraquino, V., & Tagkopoulos, I. (2016). state in unexplored conditions for Escherichia coli. Nature Communications, 7, 1–12. https://doi.org/10.1038/ncomms13090
dc.relationKim, Y., Park, J., & Choi, Y. K. (2019). The role of astrocytes in the central nervous system focused on BK channel and heme oxygenase metabolites: A review. Antioxidants, 8(5), 7–13. https://doi.org/10.3390/antiox8050121
dc.relationKohl, P., Crampin, E. J., Quinn, T. A., & Noble, D. (2010). Systems biology: An approach. Clinical Pharmacology and Therapeutics, 88(1), 25–33. https://doi.org/10.1038/clpt.2010.92
dc.relationLarhlimi, A., David, L., Selbig, J., & Bockmayr, A. (2012). F2C2 : a fast tool for the computation of flux coupling in genome-scale metabolic networks.
dc.relationLe Foll, C., & Levin, B. E. (2016). Fatty acid-induced astrocyte ketone production and the control of food intake. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 310(11), R1186–R1192. https://doi.org/10.1152/ajpregu.00113.2016
dc.relationLeanza, L., Ferraro, P., Reichard, P., & Bianchi, V. (2008). Metabolic interrelations within guanine deoxynucleotide pools for mitochondrial and nuclear DNA maintenance. Journal of Biological Chemistry, 283(24), 16437–16445. https://doi.org/10.1074/jbc.M801572200
dc.relationLee, W., Reyes, R. C., Gottipati, M. K., Lewis, K., Lesort, M., Parpura, V., & Gray, M. (2013). Enhanced Ca2+-dependent glutamate release from astrocytes of the BACHD Huntington’file:///D:/Escritorio/MAestria/profundización1/artículos/10.1016@j.neuint.2018.08.010.pdfs disease mouse model. Neurobiology of Disease, 58, 192–199. https://doi.org/10.1016/j.nbd.2013.06.002
dc.relationLewis, N. E., & Abdel-Haleem, A. M. (2013). The evolution of genome-scale models of cancer metabolism. Frontiers in Physiology, 4 SEP(September), 1–7. https://doi.org/10.3389/fphys.2013.00237
dc.relationLewis, N. E., Nagarajan, H., & Palsson, B. O. (2012). Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nature Reviews Microbiology, 10(4), 291–305. https://doi.org/10.1038/nrmicro2737
dc.relationLi, J., Wei, Z., Zheng, M., Gu, X., Deng, Y., Qiu, R., Chen, F., Ji, C., Gong, W., Xie, Y., & Mao, Y. (2006). Crystal Structure of Human Guanosine Monophosphate Reductase 2 ( GMPR2 ) in Complex with GMP. 2, 980–988. https://doi.org/10.1016/j.jmb.2005.11.047
dc.relationLi, K., Li, J., Zheng, J., & Qin, S. (2019). Reactive Astrocytes in Neurodegenerative Diseases. Aging and Disease, 10(3), 664. https://doi.org/10.14336/ad.2018.0720
dc.relationLi, X., Li, M., Tian, L., Chen, J., Liu, R., & Ning, B. (2020). Review Article Reactive Astrogliosis : Implications in Spinal Cord Injury Progression and Therapy. 2020.
dc.relationLi, Y. X., & Rinzel, J. (1994). Equations for InsP3 receptor-mediated [Ca2+](i) oscillations derived from a detailed kinetic model: A hodgkin-huxley like formalism. In Journal of Theoretical Biology (Vol. 166, Issue 4, pp. 461–473). https://doi.org/10.1006/jtbi.1994.1041
dc.relationLiu, H., Luo, K., & Luo, D. (2018). Guanosine monophosphate reductase 1 is a potential therapeutic target for Alzheimer ’ s disease. Scientific Reports, November 2017, 1–10. https://doi.org/10.1038/s41598-018-21256-6
dc.relationLiu, X., & Pan, L. (2014). Detection of driver metabolites in the human liver metabolic network using structural controllability analysis. BMC Systems Biology, 8(1), 1–17. https://doi.org/10.1186/1752-0509-8-51
dc.relationLiu, Y. Y., Slotine, J. J., & Barabási, A. L. (2011). Controllability of complex networks. Nature, 473(7346), 167–173. https://doi.org/10.1038/nature10011
dc.relationLuterman, J. D., Haroutunian, V., Yemul, S., Ho, L., Purohit, D., Aisen, P. S., Mohs, R., & Pasinetti, G. M. (2000). Cytokine gene expression as a function of the clinical progression of Alzheimer disease dementia. Archives of Neurology, 57(8), 1153–1160. https://doi.org/10.1001/archneur.57.8.1153
dc.relationMa, H., & Zhao, H. (2013). Drug target inference through pathway analysis of genomics data. Advanced Drug Delivery Reviews, 65(7), 966–972. https://doi.org/10.1016/j.addr.2012.12.004
dc.relationMaarleveld, T. R., Khandelwal, R. A., Olivier, B. G., Teusink, B., & Bruggeman, F. J. (2013). Basic concepts and principles of stoichiometric modeling of metabolic networks. Biotechnology Journal, 8(9), 997–1008. https://doi.org/10.1002/biot.201200291
dc.relationMahmoud, S., Gharagozloo, M., Simard, C., & Gris, D. (2019). Astrocytes Maintain Glutamate Homeostasis in the CNS by Controlling the Balance between Glutamate Uptake and Release. 1–27. https://doi.org/10.3390/cells8020184
dc.relationManninen, T., Havela, R., & Linne, M.-L. (2019). Computational Models of Astrocytes and Astrocyte–Neuron Interactions: Characterization, Reproducibility, and Future Perspectives (pp. 423–454). https://doi.org/10.1007/978-3-030-00817-8_16
dc.relationMardinoglu, A., Agren, R., Kampf, C., Asplund, A., Nookaew, I., Jacobson, P., Walley, A. J., Froguel, P., Carlsson, L. M., Uhlen, M., & Nielsen, J. (2013). Integration of clinical data with a genome-scale metabolic model of the human adipocyte. Molecular Systems Biology, 9(649), 1–16. https://doi.org/10.1038/msb.2013.5
dc.relationMardinoglu, A., Agren, R., Kampf, C., Asplund, A., Uhlen, M., & Nielsen, J. (2014). non-alcoholic fatty liver disease. Nature Communications, 5(May 2013), 1–11. https://doi.org/10.1038/ncomms4083
dc.relationMartín-Jiménez, C. A., Salazar-Barreto, D., Barreto, G. E., & González, J. (2017). Genome-scale reconstruction of the human astrocyte metabolic network. Frontiers in Aging Neuroscience, 9(FEB), 1–17. https://doi.org/10.3389/fnagi.2017.00023
dc.relationMartin-jiménez, C., & González, J. (2020). Tibolone Ameliorates the Lipotoxic Effect of Palmitic Acid in Normal Human Astrocytes.
dc.relationMarttinen, M., Paananen, J., Neme, A., Mitra, V., Takalo, M., Natunen, T., Paldanius, K. M. A., Mäkinen, P., Bremang, M., Kurki, M. I., Rauramaa, T., Leinonen, V., Soininen, H., Haapasalo, A., Pike, I., & Hiltunen, M. (2019). A multiomic approach to characterize the temporal sequence in Alzheimer’s disease-related pathology. Neurobiology of Disease, 124, 454–468. https://doi.org/10.1016/j.nbd.2018.12.009
dc.relationMasid, M., Ataman, M., & Hatzimanikatis, V. (2020). Analysis of human metabolism by reducing the complexity of the genome-scale models using redHUMAN. Nature Communications, 11(1), 1–12. https://doi.org/10.1038/s41467-020-16549-2
dc.relationMatias, I., Morgado, J., & Gomes, F. C. A. (2019). Astrocyte Heterogeneity: Impact to Brain Aging and Disease. Frontiers in Aging Neuroscience, 11(March), 1–18. https://doi.org/10.3389/fnagi.2019.00059
dc.relationMatyash, V., & Kettenmann, H. (2009). Heterogeneity in astrocyte morphology and physiology. Brain Research Reviews, 63(1–2), 2–10. https://doi.org/10.1016/j.brainresrev.2009.12.001
dc.relationMcCloskey, D., Palsson, B., & Feist, A. M. (2013). Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Molecular Systems Biology, 9(1), 1–15. https://doi.org/10.1038/msb.2013.18
dc.relationMelo, H. M., Santos, L. E., & Ferreira, S. T. (2019). Diet-Derived Fatty Acids, Brain Inflammation, and Mental Health. Frontiers in Neuroscience, 13(March), 1–12. https://doi.org/10.3389/fnins.2019.00265
dc.relationMenara, T., Bianchin, G., Innocenti, M., & Pasqualetti, F. (2017). On the number of strongly structurally controllable networks. Proceedings of the American Control Conference, 340–345. https://doi.org/10.23919/ACC.2017.7962976
dc.relationMichael Hay, David W Thomas, John L Craighead, C. E. & J. R. (2009). Clinical development success rates for investigational drugs. Gastrointestinal Cancer Research, 3(1), 20–28.
dc.relationModelska, K., & Cummings, S. (2015). CLINICAL REVIEW 140 Tibolone for Postmenopausal Women : Systematic Review of Randomized Trials. 87(November), 16–23.
dc.relationMoncada, S. & Higgs, A. (1993). The L-arginine-nitric oxide pathway. N. Engl. J. Med., 329, 2002–2012.
dc.relationNagelhus, E. A., & Ottersen, O. P. (2013). Physiological roles of Aquaporin-4 in brain. Physiological Reviews, 93(4), 1543–1562. https://doi.org/10.1152/physrev.00011.2013
dc.relationNielsen, J. (2017a). Systems Biology of Metabolism: A Driver for Developing Personalized and Precision Medicine. Cell Metabolism, 25(3), 572–579. https://doi.org/10.1016/j.cmet.2017.02.002
dc.relationNielsen, J. (2017b). Systems Biology of Metabolism: A Driver for Developing Personalized and Precision Medicine. Cell Metabolism, 25(3), 572–579. https://doi.org/10.1016/j.cmet.2017.02.002
dc.relationNielsen, J. (2017c). Systems Biology of Metabolism. Annual Review of Biochemistry, 86(1), 245–275. https://doi.org/10.1146/annurev-biochem-061516-044757
dc.relationNiu, Y. C., Feng, R. N., Hou, Y., Li, K., Kang, Z., Wang, J., Sun, C. H., & Li, Y. (2012). Histidine and arginine are associated with inflammation and oxidative stress in obese women. British Journal of Nutrition, 108(1), 57–61. https://doi.org/10.1017/S0007114511005289
dc.relationNurse, P., & Hayles, J. (2011). The cell in an era of systems biology. Cell, 144(6), 850–854. https://doi.org/10.1016/j.cell.2011.02.045
dc.relationNussinov, R., & Tsai, C. (2013). Review Allostery in Disease and in Drug Discovery. Cell, 153(2), 293–305. https://doi.org/10.1016/j.cell.2013.03.034
dc.relationOliveira, A. de A. B., Melo, N. de F. M., Vieira, É. dos S., Nogueira, P. A. S., Coope, A., Velloso, L. A., Dezonne, R. S., Ueira-Vieira, C., Botelho, F. V., Gomes, J. de A. S., & Zanon, R. G. (2018). Palmitate treated-astrocyte conditioned medium contains increased glutathione and interferes in hypothalamic synaptic network in vitro. Neurochemistry International, 120, 140–148. https://doi.org/10.1016/j.neuint.2018.08.010
dc.relationOrth, J. D., Conrad, T. M., Na, J., Lerman, J. A., Nam, H., Feist, A. M., & Palsson, B. (2011). A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011. Molecular Systems Biology, 7(535), 1–9. https://doi.org/10.1038/msb.2011.65
dc.relationOrth, J. D., Thiele, I., & Palsson, B. O. (2010). What is flux balance analysis? Nature Biotechnology, 28(3), 245–248. https://doi.org/10.1038/nbt.1614
dc.relationOrtiz-Rodriguez, A., Acaz-Fonseca, E., Boya, P., Arevalo, M. A., & Garcia-Segura, L. M. (2019). Lipotoxic Effects of Palmitic Acid on Astrocytes Are Associated with Autophagy Impairment. Molecular Neurobiology, 56(3), 1665–1680. https://doi.org/10.1007/s12035-018-1183-9
dc.relationOrtiz-Rodriguez, A., & Arevalo, M. A. (2020). The contribution of astrocyte autophagy to systemic metabolism. International Journal of Molecular Sciences, 21(7). https://doi.org/10.3390/ijms21072479
dc.relationOsorio, D., Botero, K., Gonzalez, J., and Pinzon, A. (2016). “exp2flux” Convierte datos de Gene EXPression a FBA FLUXes. Package Version 0.1. https://doi.org/10.13140/RG.2.2.14401.56168
dc.relationOsorio, D., Pinzón, A., Martín-Jiménez, C., Barreto, G. E., & González, J. (2020a). Multiple Pathways Involved in Palmitic Acid-Induced Toxicity: A System Biology Approach. Frontiers in Neuroscience, 13(January), 1–14. https://doi.org/10.3389/fnins.2019.01410
dc.relationPalsson, B. (2009). Metabolic systems biology. FEBS Letters, 583(24), 3900–3904. https://doi.org/10.1016/j.febslet.2009.09.031
dc.relationPandey, V., Gardiol, D. H., & Chiappino-pepe, A. (2019). Running head : TEX-FBA TEX-FBA : A constraint-based method for integrating gene expression , thermodynamics , and metabolomics data into genome-scale metabolic models 1 Laboratory of Computational Systems Biotechnology , École Polytechnique Fédérale de La. 1–30.
dc.relationPapin, J. A., Hunter, T., Palsson, B. O., & Subramaniam, S. (2005). Reconstruction of cellular signalling networks and analysis of their properties. Nature Reviews Molecular Cell Biology, 6(2), 99–111. https://doi.org/10.1038/nrm1570
dc.relationParaiso, W. K. D., Garcia-chica, J., Ariza, X., Zagmutt, S., Fukushima, S., Garcia, J., Mochida, Y., Serra, D., Herrero, L., Kinoh, H., Casals, N., Kataoka, K., Rodríguez-rodríguez, R., & Quader, S. (2021). Biomaterials Science conjugated CPT1A inhibitors to modulate lipid metabolism in brain cells †. https://doi.org/10.1039/d1bm00689d
dc.relationPardo, B., Contreras, L., & Satrústegui, J. (2013). De novo Synthesis of Glial Glutamate and Glutamine in Young Mice Requires Aspartate Provided by the Neuronal Mitochondrial Aspartate-Glutamate Carrier Aralar/AGC1. Frontiers in Endocrinology, 4(October), 15–18. https://doi.org/10.3389/fendo.2013.00149
dc.relationPatil, S., Melrose, J., & Chan, C. (2007). Involvement of astroglial ceramide in palmitic acid-induced Alzheimer-like changes in primary neurons. European Journal of Neuroscience, 26(8), 2131–2141. https://doi.org/10.1111/j.1460-9568.2007.05797.x
dc.relationPatil, S., Sheng, L., Masserang, A., & Chan, C. (2006). Palmitic acid-treated astrocytes induce BACE1 upregulation and accumulation of C-terminal fragment of APP in primary cortical neurons. Neuroscience Letters, 406(1–2), 55–59. https://doi.org/10.1016/j.neulet.2006.07.015
dc.relationPeracchi, A., & Mozzarelli, A. (2011). Biochimica et Biophysica Acta Exploring and exploiting allostery : Models , evolution , and drug targeting ☆. BBA - Proteins and Proteomics, 1814(8), 922–933. https://doi.org/10.1016/j.bbapap.2010.10.008
dc.relationPiccolis, M., Bond, L. M., Kampmann, M., Pulimeno, P., Chitraju, C., Jayson, C. B. K., Vaites, L. P., Boland, S., Lai, Z. W., Gabriel, K. R., Elliott, S. D., Paulo, J. A., Harper, J. W., Weissman, J. S., Walther, T. C., & Farese, R. V. (2019). Probing the Global Cellular Responses to Lipotoxicity Caused by Saturated Fatty Acids. Molecular Cell, 74(1), 32-44.e8. https://doi.org/10.1016/j.molcel.2019.01.036
dc.relationPietzke, M., Meiser, J., & Vazquez, A. (2020). Formate metabolism in health and disease. Molecular Metabolism, 33(xxxx), 23–37. https://doi.org/10.1016/j.molmet.2019.05.012
dc.relationPinu, F. R., Beale, D. J., Paten, A. M., Kouremenos, K., Swarup, S., Schirra, H. J., & Wishart, D. (2019). Systems biology and multi-omics integration: Viewpoints from the metabolomics research community. Metabolites, 9(4), 1–31. https://doi.org/10.3390/metabo9040076
dc.relationPrice, N. D., Reed, J. L., & Palsson, B. (2004). Genome-scale models of microbial cells: Evaluating the consequences of constraints. Nature Reviews Microbiology, 2(11), 886–897. https://doi.org/10.1038/nrmicro1023
dc.relationRamon, C., Gollub, M. G., & Stelling, J. (2018). Integrating -omics data into genome-scale metabolic network models: Principles and challenges. Essays in Biochemistry, 62(4), 563–574. https://doi.org/10.1042/EBC20180011
dc.relationRavindran, V., Nacher, J. C., Akutsu, T., Ishitsuka, M., Osadcenco, A., Sunitha, V., Bagler, G., Schwartz, J. M., & Robertson, D. L. (2019). Network controllability analysis of intracellular signalling reveals viruses are actively controlling molecular systems. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-018-38224-9
dc.relationRezola, A., Pey, J., Tobalina, L., Rubio, Á., Beasley, J. E., & Planes, F. J. (2015). Advances in network-basedmetabolic pathway analysis and gene expression data integration. Briefings in Bioinformatics, 16(2), 1–15. https://doi.org/10.1093/bib/bbu009
dc.relationRobertson, J. M. (2018). The gliocentric brain. International Journal of Molecular Sciences, 19(10). https://doi.org/10.3390/ijms19103033
dc.relationRonneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Ballard, A. J., Cowie, A., Romera-paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., … Kavukcuoglu, K. (2021). Highly accurate protein structure prediction with AlphaFold. May, 1–12. https://doi.org/10.1038/s41586-021-03819-2
dc.relationRose, J., Brian, C., Pappa, A., Panayiotidis, M. I., & Franco, R. (2020). Mitochondrial Metabolism in Astrocytes Regulates Brain Bioenergetics, Neurotransmission and Redox Balance. Frontiers in Neuroscience, 14(November), 1–20. https://doi.org/10.3389/fnins.2020.536682
dc.relationSajitz-Hermstein, M., & Nikoloski, Z. (2013). Structural Control of Metabolic Flux. PLoS Computational Biology, 9(12). https://doi.org/10.1371/journal.pcbi.1003368
dc.relationSalvatore, D., Bartha, T., & Larsen, P. R. (1998). The Guanosine Monophosphate Reductase Gene Is Conserved in Rats and Its Expression Increases Rapidly in Brown Adipose Tissue during Cold Exposure *. Journal of Biological Chemistry, 273(47), 31092–31096. https://doi.org/10.1074/jbc.273.47.31092
dc.relationSchafer, J. R. A., Fell, D. A., Rothman, D., & Shulman, R. G. (2004). Protein phosphorylation can regulate metabolite concentrations rather than control flux: The example of glycogen synthase. Proceedings of the National Academy of Sciences of the United States of America, 101(6), 1485–1490. https://doi.org/10.1073/pnas.0307299101
dc.relationSchousboe, A., Bak, L. K., & Waagepetersen, H. S. (2013). Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA. Frontiers in Endocrinology, 4(AUG), 1–11. https://doi.org/10.3389/fendo.2013.00102
dc.relationSchrödinger, L. (2015). The {PyMOL} Molecular Graphics System, Version~2.4. February. https://doi.org/10.13140/RG.2.2.33676.64641
dc.relationSchuetz, R., Kuepfer, L., & Sauer, U. (2007). Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Molecular Systems Biology, 3(119). https://doi.org/10.1038/msb4100162
dc.relationSchwartz, J. M., Otokuni, H., Akutsu, T., & Nacher, J. C. (2019). Probabilistic controllability approach to metabolic fluxes in normal and cancer tissues. Nature Communications, 10(1), 1–10. https://doi.org/10.1038/s41467-019-10616-z
dc.relationSegrè, D., Vitkup, D., & Church, G. M. (2002). Analysis of optimality in natural and perturbed metabolic networks. Proceedings of the National Academy of Sciences of the United States of America, 99(23), 15112–15117. https://doi.org/10.1073/pnas.232349399
dc.relationSertbaş, M., Ülgen, K., & Çakir, T. (2014). Systematic analysis of transcription-level effects of neurodegenerative diseases on human brain metabolism by a newly reconstructed brain-specific metabolic network. FEBS Open Bio, 4, 542–553. https://doi.org/10.1016/j.fob.2014.05.006
dc.relationShi, L. F., Zhang, Q., Shou, X. Y., & Niu, H. J. (2021). Expression and prognostic value identification of methylenetetrahydrofolate dehydrogenase 2 (Mthfd2) in brain low-grade glioma. International Journal of General Medicine, 14, 4517–4527. https://doi.org/10.2147/IJGM.S323858
dc.relationShlomi, T., Berkman, O., & Ruppin, E. (2005). Regulatory on ͞ off minimization of metabolic flux. Pnas, 102(21), 7695–7700. https://doi.org/10.1073/pnas.0406346102
dc.relationSingh, A., Kukreti, R., Saso, L., & Kukreti, S. (2019). Oxidative stress: A key modulator in neurodegenerative diseases. Molecules, 24(8), 1–20. https://doi.org/10.3390/molecules24081583
dc.relationSingh, D., & Lercher, M. J. (2020). Network reduction methods for genome-scale metabolic models. Cellular and Molecular Life Sciences, 77(3), 481–488. https://doi.org/10.1007/s00018-019-03383-z
dc.relationSiracusa, R., Fusco, R., & Cuzzocrea, S. (2019). Astrocytes: Role and functions in brain pathologies. Frontiers in Pharmacology, 10(SEP), 1–10. https://doi.org/10.3389/fphar.2019.01114
dc.relationSofroniew M. V. (2009). Molecular dissection of reactive astrogliosis and glial scar formation. Trends in Neuroscience, 32(12), 638–647. https://doi.org/10.1016/j.tins.2009.08.002.Molecular
dc.relationSofroniew, J. E. B. and M. V. (2015). Reactive gliosis and the multicellular response to CNS damage and disease. Neuron, 81(2), 229–248. https://doi.org/10.1016/j.neuron.2013.12.034.Reactive
dc.relationSofroniew, M. V. (2014). Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators. Neuroscientist, 20(2), 160–172. https://doi.org/10.1177/1073858413504466
dc.relationSon, D. O., Satsu, H., & Shimizu, M. (2005). Histidine inhibits oxidative stress- and TNF- a -induced interleukin-8 secretion in intestinal epithelial cells. 579, 4671–4677. https://doi.org/10.1016/j.febslet.2005.07.038
dc.relationSonnewald, U., Akiho, H., Koshiya, K., & Iwai, A. (1998). Effect of orotic acid on the metabolism of cerebral cortical astrocytes during hypoxia and reoxygenation: An NMR spectroscopy study. Journal of Neuroscience Research, 51(1), 103–108. https://doi.org/10.1002/(SICI)1097-4547(19980101)51:1<103::AID-JNR11>3.0.CO;2-C
dc.relationSouders, C. L., Zubcevic, J., & Martyniuk, C. J. (2021). Tumor Necrosis Factor Alpha and the Gastrointestinal Epithelium: Implications for the Gut-Brain Axis and Hypertension. Cellular and Molecular Neurobiology, 0123456789. https://doi.org/10.1007/s10571-021-01044-z
dc.relationSouza, D. G., Almeida, R. F., Souza, D. O., & Zimmer, E. R. (2019). The astrocyte biochemistry. Seminars in Cell and Developmental Biology, 95(April), 142–150. https://doi.org/10.1016/j.semcdb.2019.04.002
dc.relationStank, A., Kokh, D. B., Fuller, J. C., & Wade, R. C. (2016). Protein Binding Pocket Dynamics. https://doi.org/10.1021/acs.accounts.5b00516
dc.relationSuthers, P. F., Zomorrodi, A., & Maranas, C. D. (2009). Genome-scale gene/reaction essentiality and synthetic lethality analysis. Molecular Systems Biology, 5(301), 1–17. https://doi.org/10.1038/msb.2009.56
dc.relationSweetlove, L. J., & George Ratcliffe, R. (2011). Flux-balance modeling of plant metabolism. Frontiers in Plant Science, 2(AUG), 1–10. https://doi.org/10.3389/fpls.2011.00038
dc.relationTerzer, M., & Stelling, J. (2008). Large-scale computation of elementary flux modes with bit pattern trees. Bioinformatics, 24(19), 2229–2235. https://doi.org/10.1093/bioinformatics/btn401
dc.relationThiele, I., Swainston, N., Fleming, R. M. T., Hoppe, A., Sahoo, S., Aurich, M. K., Haraldsdottir, H., Mo, M. L., Rolfsson, O., Stobbe, M. D., Thorleifsson, S. G., Agren, R., Bölling, C., Bordel, S., Chavali, A. K., Dobson, P., Dunn, W. B., Endler, L., Hala, D., … Palsson, B. O. (2013a). A community-driven global reconstruction of human metabolism. Nature Biotechnology, 31(5), 419–425. https://doi.org/10.1038/nbt.2488
dc.relationThiele, I., Swainston, N., Fleming, R. M. T., Hoppe, A., Sahoo, S., Aurich, M. K., Haraldsdottir, H., Mo, M. L., Rolfsson, O., Stobbe, M. D., Thorleifsson, S. G., Agren, R., Bölling, C., Bordel, S., Chavali, A. K., Dobson, P., Dunn, W. B., Endler, L., Hala, D., … Palsson, B. O. (2013b). A community-driven global reconstruction of human metabolism. Nature Biotechnology, 31(5), 419–425. https://doi.org/10.1038/nbt.2488
dc.relationTong, X., Ao, Y., Faas, G. C., Nwaobi, S. E., Xu, J., Haustein, M. D., Anderson, M. A., Mody, I., Olsen, M. L., Sofroniew, M. V, & Khakh, B. S. (2014). Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nature Neuroscience, 17(5), 694–703. https://doi.org/10.1038/nn.3691
dc.relationTrott, O. and Olson, A. J. (2011). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. 31(2), 455–461. https://doi.org/10.1002/jcc.21334.AutoDock
dc.relationUssher, J. R., Keung, W., Fillmore, N., Koves, T. R., Mori, J., Zhang, L., Lopaschuk, D. G., Ilkayeva, O. R., Wagg, C. S., Jaswal, J. S., Muoio, D. M., & Lopaschuk, G. D. (2014). Treatment with the 3-Ketoacyl-CoA Thiolase Inhibitor Trimetazidine Does Not Exacerbate Whole-Body Insulin Resistance in Obese Mice. June, 487–496.
dc.relationValenza, G., Pioggia, G., Armato, A., Ferro, M., Scilingo, E. P., & De Rossi, D. (2011). A neuron-astrocyte transistor-like model for neuromorphic dressed neurons. Neural Networks, 24(7), 679–685. https://doi.org/10.1016/j.neunet.2011.03.013
dc.relationVerkhratsky, A., and Nedergaard, M. (2018). PHYSIOLOGY OF ASTROGLIA. Physiol. Rev, 98, 239–389. https://doi.org/10.1152/physrev.00042.2016
dc.relationVerkhratsky, A., & Butt, A. (2018). The History of the Decline and Fall of the Glial Numbers Legend. Neuroglia, 1(1), 188–192. https://doi.org/10.3390/neuroglia1010013
dc.relationVicente-Gutierrez, C., Bonora, N., Bobo-Jimenez, V., Jimenez-Blasco, D., Lopez-Fabuel, I., Fernandez, E., Josephine, C., Bonvento, G., Enriquez, J. A., Almeida, A., & Bolaños, J. P. (2019). Astrocytic mitochondrial ROS modulate brain metabolism and mouse behaviour. Nature Metabolism, 1(2), 201–211. https://doi.org/10.1038/s42255-018-0031-6
dc.relationVoillet, V., Besse, P., Liaubet, L., Cristobal, M. S., & González, I. (2016). Handling missing rows in multi-omics data integration : multiple imputation in multiple factor analysis framework. BMC Bioinformatics, 1–17. https://doi.org/10.1186/s12859-016-1273-5
dc.relationVolkamer, A., Kuhn, D., Rippmann, F., & Rarey, M. (2012). DoGSiteScorer : a web server for automatic binding site prediction , analysis and druggability assessment. 28(15), 2074–2075. https://doi.org/10.1093/bioinformatics/bts310
dc.relationVolterra, A., & Meldolesi, J. (2005). Astrocytes, from brain glue to communication elements: The revolution continues. Nature Reviews Neuroscience, 6(8), 626–640. https://doi.org/10.1038/nrn1722
dc.relationWang, W., Jiang, Z., Hu, C., Chen, C., Hu, Z., Wang, A., Wang, L., & Liu, J. (2020). Pharmacologically inhibiting phosphoglycerate kinase 1 for glioma with NG52. Acta Pharmacologica Sinica, July. https://doi.org/10.1038/s41401-020-0465-8
dc.relationWang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics in Western Equatoria State. Nature Reviews Genetics, 10(1), 57.
dc.relationWaterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., Beer, T. A. P. De, Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL : homology modelling of protein structures and complexes. May, 1–8. https://doi.org/10.1093/nar/gky427
dc.relationWong, K. L., Wu, Y. R., Cheng, K. S., Chan, P., Cheung, C. W., Lu, D. Y., Su, T. H., Liu, Z. M., & Leung, Y. M. (2014a). Palmitic acid-induced lipotoxicity and protection by (+)-catechin in rat cortical astrocytes. Pharmacological Reports, 66(6), 1106–1113. https://doi.org/10.1016/j.pharep.2014.07.009
dc.relationWong, K. L., Wu, Y. R., Cheng, K. S., Chan, P., Cheung, C. W., Lu, D. Y., Su, T. H., Liu, Z. M., & Leung, Y. M. (2014b). Palmitic acid-induced lipotoxicity and protection by (+)-catechin in rat cortical astrocytes. Pharmacological Reports, 66(6), 1106–1113. https://doi.org/10.1016/j.pharep.2014.07.009
dc.relationWörheide, M. A., Krumsiek, J., Kastenmüller, G., & Arnold, M. (2021). Multi-omics integration in biomedical research – A metabolomics-centric review. Analytica Chimica Acta, 1141, 144–162. https://doi.org/10.1016/j.aca.2020.10.038
dc.relationWu, Z., Li, W., Liu, G., & Tang, Y. (2018). Network-Based Methods for Prediction of Drug-Target Interactions. 9(October), 1–14. https://doi.org/10.3389/fphar.2018.01134
dc.relationWuchty, S. (2019). Controllability of molecular pathways. BioRxiv, 560375. https://doi.org/10.1101/560375
dc.relationXia, C., Fu, Z., Battaile, K. P., & Kim, J. P. (2019). Crystal structure of human mitochondrial trifunctional protein , a fatty acid β -oxidation metabolon. 116(13), 6069–6074. https://doi.org/10.1073/pnas.1816317116
dc.relationXiao, Q., Yan, P., Ma, X., Liu, H., Perez, R., Zhu, A., Gonzales, E., Burchett, J. M., Schuler, D. R., Cirrito, J. R., Diwan, A., & Lee, J. M. (2014). Enhancing astrocytic lysosome biogenesis facilitates Aβ clearance and attenuates amyloid plaque pathogenesis. Journal of Neuroscience, 34(29), 9607–9620. https://doi.org/10.1523/JNEUROSCI.3788-13.2014
dc.relationXu, Y., Wang, S., Hu, Q., Gao, S., Ma, X., Zhang, W., Shen, Y., Chen, F., Lai, L., Pei, J., & Cavpharmer, C. (2018). CavityPlus : a web server for protein cavity detection with pharmacophore modelling , allosteric site identification and covalent ligand binding ability prediction. 46(May), 374–379. https://doi.org/10.1093/nar/gky380
dc.relationYang, M., & Vousden, K. H. (2016). Serine and one-carbon metabolism in cancer. Nature Reviews Cancer, 16(10), 650–662. https://doi.org/10.1038/nrc.2016.81
dc.relationYang, S. Y., He, X. Y., & Schulz, H. (1987). Fatty acid oxidation in rat brain is limited by the low activity of 3-ketoacyl-coenzyme A thiolase. The Journal of Biological Chemistry, 262(27), 13027–13032. https://doi.org/10.1016/s0021-9258(18)45161-7
dc.relationYin, K. (2015). Positive correlation between expression level of mitochondrial serine hydroxymethyltransferase and breast cancer grade. OncoTargets and Therapy, 8, 1069–1074. https://doi.org/10.2147/OTT.S82433
dc.relationYing, L., Tippetts, T. S., & Chaurasia, B. (2019). Ceramide dependent lipotoxicity in metabolic diseases. Nutrition and Healthy Aging, 5(1), 1–12. https://doi.org/10.3233/NHA-170032
dc.relationYoung, F. B., Butland, S. L., Sanders, S. S., Sutton, L. M., & Hayden, M. R. (2012). Putting proteins in their place: Palmitoylation in Huntington disease and other neuropsychiatric diseases. Progress in Neurobiology, 97(2), 220–238. https://doi.org/10.1016/j.pneurobio.2011.11.002
dc.relationYousofshahi, M., Ullah, E., Stern, R., & Hassoun, S. (2013). MC3: A steady-state model and constraint consistency checker for biochemical networks. BMC Systems Biology, 7. https://doi.org/10.1186/1752-0509-7-129
dc.relationYu, J., Zhou, Y., Tanaka, I., & Yao, M. (2010). Roll : a new algorithm for the detection of protein pockets and cavities with a rolling probe sphere. 26(1), 46–52. https://doi.org/10.1093/bioinformatics/btp599
dc.relationYuan, Z., Zhao, C., Di, Z., Wang, W. X., & Lai, Y. C. (2013). Exact controllability of complex networks. Nature Communications, 4. https://doi.org/10.1038/ncomms3447
dc.relationZahra, W., Rai, S. N., Birla, H., Singh, S. Sen, Rathore, A. S., Dilnashin, H., Keswani, C., & Singh, S. P. (2019). Economic importance of medicinal plants in Asian countries. In Bioeconomy for Sustainable Development. https://doi.org/10.1007/978-981-13-9431-7_19
dc.relationZhang, H., Muramatsu, T., Murase, A., Yuasa, S., Uchimura, K., & Kadomatsu, K. (2006). N-Acetylglucosamine 6-O-sulfotransferase-1 is required for brain keratan sulfate biosynthesis and glial scar formation after brain injury. Glycobiology, 16(8), 702–710. https://doi.org/10.1093/glycob/cwj115
dc.relationZhang, H., Uchimura, K., & Kadomatsu, K. (2006). Brain keratan sulfate and glial scar formation. Annals of the New York Academy of Sciences, 1086, 81–90. https://doi.org/10.1196/annals.1377.014
dc.relationZhang, N., Qi, M., Gao, X., Zhao, L., Liu, J., Gu, C., Song, W., Steven, C., Sun, L., & Qi, D. (2016). Response of the hepatic transcriptome to a fl atoxin B 1 in ducklings. 111, 69–76. https://doi.org/10.1016/j.toxicon.2015.12.022
dc.relationZierer, J., Pallister, T., Tsai, P. C., Krumsiek, J., Bell, J. T., Lauc, G., Spector, T. D., Menni, C., & Kastenmüller, G. (2016). Exploring the molecular basis of age-related disease comorbidities using a multi-omics graphical model. Scientific Reports, 6(October), 1–10. https://doi.org/10.1038/srep37646
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleIdentificación de reacciones controladoras en un modelo computacional multi­-ómico astrocitario de lipotoxicidad inducida por ácido palmítico
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución