dc.contributor | Pinzón Velasco, Andres Mauricio | |
dc.contributor | Janneth González Santos | |
dc.contributor | Grupo de Investigación en Bioinformática y Biología de Sistemas - GIBBS | |
dc.creator | Angarita Rodríguez, María Andrea | |
dc.date.accessioned | 2022-10-05T23:38:20Z | |
dc.date.accessioned | 2023-06-06T23:38:01Z | |
dc.date.available | 2022-10-05T23:38:20Z | |
dc.date.available | 2023-06-06T23:38:01Z | |
dc.date.created | 2022-10-05T23:38:20Z | |
dc.date.issued | 2022-10-04 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/82354 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6651416 | |
dc.description.abstract | Los astrocitos juegan un papel importante en varios procesos en el cerebro, incluidas condiciones patológicas como las enfermedades neurodegenerativas. Estudios recientes han demostrado que el aumento de ácidos grasos saturados como el ácido palmítico (PA) desencadena vías proinflamatorias en el cerebro. El uso de neuroesteroides sintéticos como la tibolona ha demostrado mecanismos neuroprotectores. Sin embargo, faltan estudios amplios, con un punto de vista sistémico, sobre el papel neurodegenerativo de PA y los mecanismos neuroprotectores de la tibolona. En este estudio, realizamos la integración de datos multiómicos (transcriptoma y proteoma) en un modelo metabólico a escala genómica de astrocitos humanos para estudiar la respuesta astrocitaria durante el tratamiento con palmitato. Evaluamos los flujos metabólicos en tres escenarios (saludable, inflamación inducida por PA y tratamiento con tibolona bajo inflamación por PA). También aplicamos un enfoque de teoría de control para identificar aquellas reacciones que ejercen más control en el sistema astrocítico. Por último, analizamos las cavidades de las enzimas asociadas a estas reacciones para determinar sus potenciales sitios de unión caracterizándolos en función de puntajes de ligandabilidad y capacidad de interacción farmacológica (drogabilidad).
Nuestros resultados sugieren que PA genera una modulación del metabolismo central y secundario, mostrando un cambio en el uso de la fuente de energía a través de la inhibición del ciclo del folato, la β-oxidación de ácidos grasos y la regulación positiva de la formación de cuerpos cetónicos. Encontramos 25 interruptores metabólicos bajo regulación celular mediada por PA, 9 de los cuales fueron críticos solo en el escenario inflamatorio pero no en el protector de tibolona. Dentro de estas reacciones, los perfiles de acoplamiento inhibitorio, total y direccional fueron hallazgos clave, que desempeñaron un papel fundamental en la desregulación de las vías metabólicas que pueden aumentar la neurotoxicidad. De los 25 interruptores metabólicos 16 presentaron cavidades potencialmente drogables que, a su vez, contienen el sitio activo de la proteína. En su conjunto, estas 16 enzimas se configuran como potenciales objetivos terapéuticos. Finalmente, el marco general de nuestro enfoque facilitó la comprensión de la regulación metabólica compleja y puede usarse para la exploración in silico de los mecanismos de regulación de las células astrocitarias, y potencialmente de otros tipos celulares, dirigiendo un trabajo experimental futuro más complejo en enfermedades neurodegenerativas. (Texto tomado de la fuente) | |
dc.description.abstract | Our results suggest that PA generates a modulation of central and secondary metabolism, showing a change in the use of the energy source through the inhibition of the folate cycle, the β-oxidation of fatty acids and the positive regulation of the formation of fatty acids. ketone bodies. We found 25 metabolic switches under PA-mediated cellular regulation, 9 of which were critical only in the inflammatory but not in the protective tibolone scenario. Within these reactions, inhibitory, total, and directional coupling profiles were key findings, playing a critical role in the dysregulation of metabolic pathways that can increase neurotoxicity. Of the 25 metabolic switches, 16 presented potentially drugable cavities that, in turn, contain the active site of the protein. As a whole, these 16 enzymes are configured as potential therapeutic targets. Finally, the general framework of our approach facilitated the understanding of complex metabolic regulation and can be used for in silico exploration of regulatory mechanisms of astrocytic cells, and potentially other cell types, directing future more complex experimental work in diseases. neurodegenerative
Our results suggest that PA generates a modulation of central and secondary metabolism, showing a switch in energy source use through inhibition of folate cycle and fatty acid β-oxidation and upregulation of ketone bodies formation. We found 25 metabolic switches under PA-mediated cellular regulation, 9 of which were critical only in the inflammatory but not in the protective tibolone scenario. Within these reactions, inhibitory, total, and directional coupling profiles were key findings, playing a critical role in the dysregulation of metabolic pathways that can increase neurotoxicity. Of the 25 metabolic switches, 16 presented potentially druggable cavities that, in turn, contain the protein's active site. As a whole, these 16 enzymes are configured as potential therapeutic targets. Finally, the general framework of our approach facilitated the understanding of complex metabolic regulation. It can be used for in silico exploration of regulatory mechanisms of astrocytic cells, and potentially other cell types, directing future more complex experimental work in neurodegenerative diseases. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ingeniería - Maestría en Bioinformática | |
dc.publisher | Departamento de Ingeniería de Sistemas e Industrial | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Ã, G. B. S., & Park, E. (2003). Taurine : new implications for an old amino acid. 226, 195–202. https://doi.org/10.1016/S0378-1097(03)00611-6 | |
dc.relation | Agostinho, P., Cunha, R. a, & Oliveira, C. (2010). Neuroinflammation , Oxidative Stress and the Pathogenesis of Alzheimer ’ s Disease. Current Pharmacutical Design, 16, 2766–2778. | |
dc.relation | Allen, N. J., Eroglu, C., Development, F., Studies, B., & Jolla, L. (2018). Cell biology of astrocyte-synapse interactions. Neuron., 96(3), 697–708. https://doi.org/10.1016/j.neuron.2017.09.056.Cell | |
dc.relation | Altenbuchinger, M., Zacharias, H. U., Solbrig, S., Schäfer, A., Büyüközkan, M., Schultheiß, U. T., Kotsis, F., Köttgen, A., Spang, R., Oefner, P. J., Krumsiek, J., & Gronwald, W. (2019). A multi-source data integration approach reveals novel associations between metabolites and renal outcomes in the German Chronic Kidney Disease study. Scientific Reports, 9(1), 1–13. https://doi.org/10.1038/s41598-019-50346-2 | |
dc.relation | Arevalo, M. A., Azcoitia, I., & Garcia-Segura, L. M. (2015). The neuroprotective actions of oestradiol and oestrogen receptors. Nature Reviews Neuroscience, 16(1), 17–29. https://doi.org/10.1038/nrn3856 | |
dc.relation | Arnedo, M., Ramos, M., Puisac, B., Concepcion, M., Teresa, E., Pie, A., Bueno, G., J., F., Gomez-Puertas, P., & Pie, J. (2011). Mitochondrial HMG–CoA Synthase Deficiency. Advances in the Study of Genetic Disorders, February. https://doi.org/10.5772/22151 | |
dc.relation | Asgari, Y., Salehzadeh-Yazdi, A., Schreiber, F., & Masoudi-Nejad, A. (2013). Controllability in cancer metabolic networks according to drug targets as driver nodes. PLoS ONE, 8(11), 1–12. https://doi.org/10.1371/journal.pone.0079397 | |
dc.relation | Ávila, M., Garcia-segura, L. M., Cabezas, R., Torrente, D., Capani, F., Gonzalez, J., & Barreto, G. E. (2014). Journal of Steroid Biochemistry & Molecular Biology Tibolone protects T98G cells from glucose deprivation. Journal of Steroid Biochemistry and Molecular Biology, 144, 294–303. https://doi.org/10.1016/j.jsbmb.2014.07.009 | |
dc.relation | Ayyildiz, M., Celiker, S., Ozhelvaci, F., & Akten, E. D. (2020). Identification of Alternative Allosteric Sites in Glycolytic Enzymes for Potential Use as Species-Specific Drug Targets. 7(May), 1–19. https://doi.org/10.3389/fmolb.2020.00088 | |
dc.relation | Badaut, J. (2010). Aquaglyceroporin 9 in brain pathologies. Neuroscience, 168(4), 1047–1057. https://doi.org/10.1016/j.neuroscience.2009.10.030 | |
dc.relation | Bailey, L. B., & Gregory, J. F. (1999). Recent Advances in Nutritional Science Folate Metabolism and. The Journal of Nutrition, 129, 779–782. | |
dc.relation | Balog, E. (2014). An Allosteric Signaling Pathway of Human 3- Phosphoglycerate Kinase from Force Distribution Analysis. 10(1). https://doi.org/10.1371/journal.pcbi.1003444 | |
dc.relation | Balsa, E., Perry, E. A., Bennett, C. F., Jedrychowski, M., Gygi, S. P., Doench, J. G., & Puigserver, P. (2020). Defective NADPH production in mitochondrial disease complex I causes in fl ammation and cell. Nature Communications, 1–12. https://doi.org/10.1038/s41467-020-16423-1 | |
dc.relation | Barinova, K., Khomyakova, E., Semenyuk, P., Schmalhausen, E., & Muronetz, V. (2018). SC. Archives of Biochemistry and Biophysics. https://doi.org/10.1016/j.abb.2018.02.002 | |
dc.relation | Basler, G., Grimbs, S., & Ebenho, O. (2012). Evolutionary significance of metabolic network properties. November 2011, 1168–1176. | |
dc.relation | Basler, G., & Nikoloski, Z. (2011). JMassBalance : mass-balanced randomization and analysis of metabolic networks. 27(19), 2761–2762. https://doi.org/10.1093/bioinformatics/btr448 | |
dc.relation | Basler, G., Nikoloski, Z., Larhlimi, A., Barabási, A. L., & Liu, Y. Y. (2016). Control of fluxes in metabolic networks. Genome Research, 26(7), 956–968. https://doi.org/10.1101/gr.202648.115 | |
dc.relation | Becerra-Calixto, A., & Cardona-Gómez, G. P. (2017). The role of astrocytes in neuroprotection after brain stroke: Potential in cell therapy. Frontiers in Molecular Neuroscience, 10(April), 1–12. https://doi.org/10.3389/FNMOL.2017.00088 | |
dc.relation | Bélanger, M., & Magistretti, P. J. (2009). The role of astroglia in neuroprotection. Dialogues in Clinical Neuroscience, 11(3), 281–296. | |
dc.relation | Bidkhori, G., Benfeitas, R., Elmas, E., Kararoudi, M. N., Arif, M., Uhlen, M., Nielsen, J., & Mardinoglu, A. (2018). Metabolic network-based identification and prioritization of anticancer targets based on expression data in hepatocellular carcinoma. Frontiers in Physiology, 9(JUL), 1–11. https://doi.org/10.3389/fphys.2018.00916 | |
dc.relation | Bordbar, A, & Palsson, B. O. (2011). Using the reconstructed genome-scale human metabolic network to study physiology and pathology. 131–141. https://doi.org/10.1111/j.1365-2796.2011.02494.x | |
dc.relation | Bordbar, Aarash, Jamshidi, N., & Palsson, B. O. (2011). IAB-RBC-283: A proteomically derived knowledge-base of erythrocyte metabolism that can be used to simulate its physiological and patho-physiological states. BMC Systems Biology, 5, 1–12. https://doi.org/10.1186/1752-0509-5-110 | |
dc.relation | Bordbar, Aarash, Monk, J. M., King, Z. A., & Palsson, B. O. (2014). Constraint-based models predict metabolic and associated cellular functions. 15(February), 107–120. https://doi.org/10.1038/nrg3643 | |
dc.relation | Bordel, S., Agren, R., & Nielsen, J. (2010). Sampling the solution space in genome-scale metabolic networks reveals transcriptional regulation in key enzymes. PLoS Computational Biology, 6(7), 16. https://doi.org/10.1371/journal.pcbi.1000859 | |
dc.relation | Brunk, E., Sahoo, S., Zielinski, D. C., Altunkaya, A., Dräger, A., Mih, N., Gatto, F., Nilsson, A., Preciat Gonzalez, G. A., Aurich, M. K., Prlic, A., Sastry, A., Danielsdottir, A. D., Heinken, A., Noronha, A., Rose, P. W., Burley, S. K., Fleming, R. M. T., Nielsen, J., … Palsson, B. O. (2018). Recon3D enables a three-dimensional view of gene variation in human metabolism. Nature Biotechnology, 36(3), 272–281. https://doi.org/10.1038/nbt.4072 | |
dc.relation | Burgard, A. P., Nikolaev, E. V, Schilling, C. H., & Maranas, C. D. (2004). Flux Coupling Analysis of Genome-Scale Metabolic Network Reconstructions. 4, 301–312. https://doi.org/10.1101/gr.1926504. | |
dc.relation | Burley, S. K., Bhikadiya, C., Bi, C., Bittrich, S., Chen, L., Crichlow, G. V, Christie, C. H., Dalenberg, K., Costanzo, L. Di, Duarte, J. M., Dutta, S., Feng, Z., Ganesan, S., Goodsell, D. S., Ghosh, S., Green, R. K., Guzenko, D., Hudson, B. P., Lawson, C. L., … Zhuravleva, M. (2021). RCSB Protein Data Bank : powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology , biomedicine , biotechnology , bioengineering and energy sciences. 49(November 2020), 437–451. https://doi.org/10.1093/nar/gkaa1038 | |
dc.relation | Buskila, Y., Bellot-Saez, A., & Morley, J. W. (2019). Generating Brain Waves, the Power of Astrocytes. Frontiers in Neuroscience, 13(October), 1–10. https://doi.org/10.3389/fnins.2019.01125 | |
dc.relation | Butland, S. L., Sanders, S. S., Schmidt, M. E., Riechers, S. P., Lin, D. T. S., Martin, D. D. O., Vaid, K., Graham, R. K., Singaraja, R. R., Wanker, E. E., Conibear, E., & Hayden, M. R. (2014). The palmitoyl acyltransferase HIP14 shares a high proportion of interactors with huntingtin: Implications for a role in the pathogenesis of Huntington’s disease. Human Molecular Genetics, 23(15), 4142–4160. https://doi.org/10.1093/hmg/ddu137 | |
dc.relation | Bylicky, M. A., Mueller, G. P., & Day, R. M. (2018). Mechanisms of endogenous neuroprotective effects of astrocytes in brain injury. Oxidative Medicine and Cellular Longevity, 2018. https://doi.org/10.1155/2018/6501031 | |
dc.relation | Cabezas, R., El-Bachá, R. S., González, J., & Barreto, G. E. (2012). Mitochondrial functions in astrocytes: Neuroprotective implications from oxidative damage by rotenone. Neuroscience Research, 74(2), 80–90. https://doi.org/10.1016/j.neures.2012.07.008 | |
dc.relation | Cammisa, M., Correra, A., Andreotti, G., & Cubellis, M. V. (2012). Identification and analysis of conserved pockets on protein surfaces. February 2014. https://doi.org/10.1186/1471-2105-14-S7-S9 | |
dc.relation | Carta, G., Murru, E., Banni, S., & Manca, C. (2017). Palmitic acid: Physiological role, metabolism and nutritional implications. Frontiers in Physiology, 8(NOV), 1–14. https://doi.org/10.3389/fphys.2017.00902 | |
dc.relation | Ceccarelli, S. M., Chomienne, O., Gubler, M., & Arduini, A. (2011). Carnitine Palmitoyltransferase ( CPT ) Modulators : A Medicinal Chemistry Perspective on 35 Years of Research. | |
dc.relation | Chang, R. L., Xie, L., Xie, L., Bourne, P. E., & Palsson, B. (2010). Drug off-target effects predicted using structural analysis in the context of a metabolic network model. PLoS Computational Biology, 6(9). https://doi.org/10.1371/journal.pcbi.1000938 | |
dc.relation | Chaudhry, F. A., Krizaj, D., Larsson, P., Reimer, R. J., Wreden, C., Storm-Mathisen, J., Copenhagen, D., Kavanaugh, M., & Edwards, R. H. (2001). Coupled and uncoupled proton movement by amino acid transport system N. EMBO Journal, 20(24), 7041–7051. https://doi.org/10.1093/emboj/20.24.7041 | |
dc.relation | Chaudhry, F. A., Reimer, R. J., Krizaj, D., Barber, D., Storm-Mathisen, J., Copenhagen, D. R., & Edwards, R. H. (1999). Molecular analysis of system N suggests novel physiological roles in nitrogen metabolism and synaptic transmission. Cell, 99(7), 769–780. https://doi.org/10.1016/S0092-8674(00)81674-8 | |
dc.relation | Chen, K., Wu, S., Ye, S., Huang, H., Zhou, Y., & Zhou, H. (2021). Dimethyl Fumarate Induces Metabolic Crisie to Suppress Pancreatic Carcinoma. 12(February), 1–14. https://doi.org/10.3389/fphar.2021.617714 | |
dc.relation | Chen, P., Cheng, S., Lin, H., Lee, C., & Chou, C. (2018). Risk Factors for the Progression of Mild Cognitive Impairment in Different Types of Neurodegenerative Disorders. 2018. https://doi.org/10.1155/2018/6929732 | |
dc.relation | Coppedè, F. (2021). One-carbon epigenetics and redox biology of neurodegeneration. Free Radical Biology and Medicine, 170(October), 19–33. https://doi.org/10.1016/j.freeradbiomed.2020.12.002 | |
dc.relation | Coppedè, F., Mancuso, M., Siciliano, G., Migliore, L., & Murri, L. (2006). Genes and the environment in neurodegeneration. Bioscience Reports, 26(5), 341–367. https://doi.org/10.1007/s10540-006-9028-6 | |
dc.relation | Crespo-Castrillo, A., & Arevalo, M. A. (2020). Microglial and astrocytic function in physiological and pathological conditions: Estrogenic modulation. International Journal of Molecular Sciences, 21(9). https://doi.org/10.3390/ijms21093219 | |
dc.relation | Crespo-Castrillo, A., Yanguas-Casás, N., Arevalo, M. A., Azcoitia, I., Barreto, G. E., & Garcia-Segura, L. M. (2018). The Synthetic Steroid Tibolone Decreases Reactive Gliosis and Neuronal Death in the Cerebral Cortex of Female Mice After a Stab Wound Injury. Molecular Neurobiology, 55(11), 8651–8667. https://doi.org/10.1007/s12035-018-1008-x | |
dc.relation | Cummings, J. L., Morstorf, T., & Zhong, K. (2014). Alzrt269. 1–7. | |
dc.relation | Currais, A., Goldberg, J., Farrokhi, C., Chang, M., Prior, M., Dargusch, R., Daugherty, D., Armando, A., Quehenberger, O., Maher, P., & Schubert, D. (2015). A comprehensive multiomics approach toward understanding the relationship between aging and dementia. Aging, 7(11), 937–955. https://doi.org/10.18632/aging.100838 | |
dc.relation | Das, A., Banik, N. L., & Ray, S. K. (2010). Flavonoids Activated Caspases for Apoptosis in Human Glioblastoma T98G and U87MG Cells But Not in Human Normal Astrocytes. 164–176. https://doi.org/10.1002/cncr.24699 | |
dc.relation | David, L., Marashi, S. A., Larhlimi, A., Mieth, B., & Bockmayr, A. (2011). FFCA: A feasibility-based method for flux coupling analysis of metabolic networks. BMC Bioinformatics, 12(1), 236. https://doi.org/10.1186/1471-2105-12-236 | |
dc.relation | De Carvalho, C. C. C. R., & Caramujo, M. J. (2018). The various roles of fatty acids. Molecules, 23(10). https://doi.org/10.3390/molecules23102583 | |
dc.relation | De Young, G. W., & Keizer, J. (1992). A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proceedings of the National Academy of Sciences of the United States of America, 89(20), 9895–9899. https://doi.org/10.1073/pnas.89.20.9895 | |
dc.relation | Devkota, P., & Wuchty, S. (2020). Controllability analysis of molecular pathways points to proteins that control the entire interaction network. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-59717-6 | |
dc.relation | Dhandapani, K. M., Wade, F. M., Mahesh, V. B., & Brann, D. W. (2005). Astrocyte-derived transforming growth factor-β mediates the neuroprotective effects of 17β-estradiol: Involvement of nonclassical genomic signaling pathways. Endocrinology, 146(6), 2749–2759. https://doi.org/10.1210/en.2005-0014 | |
dc.relation | Dhote, V., Mandloi, A. S., Singour, P. K., Kawadkar, M., Ganeshpurkar, A., & Jadhav, M. P. (2022). Neuroprotective Effects of Combined Trimetazidine and Progesterone on Cerebral Reperfusion Injury. Current Research in Pharmacology and Drug Discovery, 100108. https://doi.org/10.1016/j.crphar.2022.100108 | |
dc.relation | Dilcan, G., Doruker, P., & Demet, E. (2019). binding affinity of alternative conformers of human β 2 - adrenergic receptor in the presence of intracellular loop 3 ( ICL3 ) and their potential use in virtual screening studies. June 2018, 883–899. https://doi.org/10.1111/cbdd.13478 | |
dc.relation | Doengi, M., Hirnet, D., Coulon, P., Pape, H., Deitmer, J. W., & Lohr, C. (2009). GABA uptake-dependent Ca 2 ؉ signaling in developing olfactory bulb astrocytes. 1–6. | |
dc.relation | Duarte, N. C., Becker, S. A., Jamshidi, N., Thiele, I., Mo, M. L., Vo, T. D., Srivas, R., & Palsson, B. Ø. (2007). Global reconstruction of the human metabolic network based on genomic and bibliomic data. 104(6). | |
dc.relation | Dupuis, J. R., Ruiz-Arce, R., Barr, N. B., Thomas, D. B., & Geib, S. M. (2019). Range-wide population genomics of the Mexican fruit fly: Toward development of pathway analysis tools. Evolutionary Applications, 12(8), 1641–1660. https://doi.org/10.1111/eva.12824 | |
dc.relation | Durkee, C. A., & Araque, A. (2019). Diversity and Specificity of Astrocyte–neuron Communication. Neuroscience, 396(November), 73–78. https://doi.org/10.1016/j.neuroscience.2018.11.010 | |
dc.relation | Farfa, E. D., & Gallardo, J. M. (2014). Tibolone Prevents Oxidation and Ameliorates Cholinergic Deficit Induced by Ozone Exposure in the Male Rat Hippocampus. 1776–1786. https://doi.org/10.1007/s11064-014-1385-0 | |
dc.relation | Farmer, B. C., Walsh, A. E., Kluemper, J. C., & Johnson, L. A. (2020). Lipid Droplets in Neurodegenerative Disorders. Frontiers in Neuroscience, 14(July), 1–14. https://doi.org/10.3389/fnins.2020.00742 | |
dc.relation | Fatima, S., Hu, X., Gong, R. H., Huang, C., Chen, M., Wong, H. L. X., Bian, Z., & Kwan, H. Y. (2019). Palmitic acid is an intracellular signaling molecule involved in disease development. Cellular and Molecular Life Sciences, 76(13), 2547–2557. https://doi.org/10.1007/s00018-019-03092-7 | |
dc.relation | Fell, D. A. (2005). Enzymes, metabolites and fluxes. Journal of Experimental Botany, 56(410), 267–272. https://doi.org/10.1093/jxb/eri011 | |
dc.relation | Fellner, L., Irschick, R., Schanda, K., Reindl, M., Klimaschewski, L., Poewe, W., Wenning, G. K., & Stefanova, N. (2013). Toll-like receptor 4 is required for α-synuclein dependent activation of microglia and astroglia. Glia, 61(3), 349–360. https://doi.org/10.1002/glia.22437 | |
dc.relation | Field, M. S., Kamynina, E., Agunloye, O. C., Liebenthal, R. P., Lamarre, S. G., Brosnan, M. E., Brosnan, J. T., & Stover, P. J. (2014). Nuclear enrichment of folate cofactors and methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) protect de novo thymidylate biosynthesis during folate deficiency. Journal of Biological Chemistry, 289(43), 29642–29650. https://doi.org/10.1074/jbc.M114.599589 | |
dc.relation | Flott, B., & Seifert, W. (1991). Characterization of glutamate uptake systems in astrocyte primary cultures from rat brain. Glia, 4(3), 293–304. https://doi.org/10.1002/glia.440040307 | |
dc.relation | Frago, L. M., Canelles, S., Freire-Regatillo, A., Argente-Arizón, P., Barrios, V., Argente, J., Garcia-Segura, L. M., & Chowen, J. A. (2017). Estradiol uses different mechanisms in astrocytes from the hippocampus of male and female rats to protect against damage induced by palmitic acid. Frontiers in Molecular Neuroscience, 10(October), 1–17. https://doi.org/10.3389/fnmol.2017.00330 | |
dc.relation | Fumagalli, M., Lecca, D., Abbracchio, M. P., & Ceruti, S. (2017). Pathophysiological role of purines and pyrimidines in neurodevelopment: Unveiling new pharmacological approaches to congenital brain diseases. Frontiers in Pharmacology, 8(DEC), 1–18. https://doi.org/10.3389/fphar.2017.00941 | |
dc.relation | Gelius-Dietrich, G., Desouki, A. A., Fritzemeier, C. J., & Lercher, M. J. (2013). Sybil - Efficient constraint-based modelling in R. BMC Systems Biology, 7(November). https://doi.org/10.1186/1752-0509-7-125 | |
dc.relation | Gianchandani, E. P., Chavali, A. K., & Papin, J. A. (2010). The application of flux balance analysis in systems biology. https://doi.org/10.1002/wsbm.60 | |
dc.relation | Gille, C., Bölling, C., Hoppe, A., Bulik, S., Hoffmann, S., Hübner, K., Karlstädt, A., Ganeshan, R., König, M., Rother, K., Weidlich, M., Behre, J., & Holzhütter, H. G. (2010). HepatoNet1: A comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology. Molecular Systems Biology, 6(411). https://doi.org/10.1038/msb.2010.62 | |
dc.relation | González-giraldo, Y., Forero, D. A., Echeverria, V., Garcia-segura, L. M., & Barreto, G. E. (2019). Molecular and Cellular Endocrinology Tibolone attenuates in fl ammatory response by palmitic acid and preserves mitochondrial membrane potential in astrocytic cells through estrogen receptor beta. Molecular and Cellular Endocrinology, 486(February), 65–78. https://doi.org/10.1016/j.mce.2019.02.017 | |
dc.relation | González, J., Pinzón, A., Angarita-Rodríguez, A., Aristizabal, A. F., Barreto, G. E., & Martín-Jiménez, C. (2020). Advances in Astrocyte Computational Models: From Metabolic Reconstructions to Multi-omic Approaches. Frontiers in Neuroinformatics, 14(August), 1–13. https://doi.org/10.3389/fninf.2020.00035 | |
dc.relation | Greener, J. G., & Sternberg, M. J. E. (2015). AlloPred : prediction of allosteric pockets on proteins using normal mode perturbation analysis. 1–7. https://doi.org/10.1186/s12859-015-0771-1 | |
dc.relation | Gu, C., Kim, G. B., Kim, W. J., Kim, H. U., & Lee, S. Y. (2019). Current status and applications of genome-scale metabolic models. Genome Biology, 20(1), 1–18. https://doi.org/10.1186/s13059-019-1730-3 | |
dc.relation | Guilloux, V. Le, Schmidtke, P., & Tuffery, P. (2009). Fpocket : An open source platform for ligand pocket detection. February. https://doi.org/10.1186/1471-2105-10-168 | |
dc.relation | Gulsen, M., Yesilova, Z., Bagci, S., Uygun, A., Ozcan, A., Ercin, C. N., Erdil, A., Sanisoglu, S. Y., Ates, Y., Erbil, M. K., Karaeren, N., & Dagalp, K. (2005). Elevated plasma homocysteine concentrations as a predictor of steatohepatitis in patients with non-alcoholic fatty liver disease. October 2004, 1448–1455. https://doi.org/10.1111/j.1440-1746.2005.03891.x | |
dc.relation | Guo, W. F., Zhang, S. W., Shi, Q. Q., Zhang, C. M., Zeng, T., & Chen, L. (2018). A novel algorithm for finding optimal driver nodes to target control complex networks and its applications for drug targets identification. BMC Genomics, 19(Suppl 1). https://doi.org/10.1186/s12864-017-4332-z | |
dc.relation | Gupta, M., Sharma, R., & Kumar, A. (2018). Docking techniques in pharmacology: How much promising? Computational Biology and Chemistry, 76, 210–217. https://doi.org/10.1016/j.compbiolchem.2018.06.005 | |
dc.relation | Han, X., Zhang, T., Liu, H., Mi, Y., & Gou, X. (2020). Astrocyte Senescence and Alzheimer’s Disease: A Review. Frontiers in Aging Neuroscience, 12(June), 1–13. https://doi.org/10.3389/fnagi.2020.00148 | |
dc.relation | Haroon, E., Miller, A. H., & Sanacora, G. (2017). Inflammation, Glutamate, and Glia: A Trio of Trouble in Mood Disorders. Neuropsychopharmacology, 42(1), 193–215. https://doi.org/10.1038/npp.2016.199 | |
dc.relation | Hashimoto, M., & Hossain, S. (2018). Fatty Acids: From Membrane Ingredients to Signaling Molecules. Biochemistry and Health Benefits of Fatty Acids. https://doi.org/10.5772/intechopen.80430 | |
dc.relation | Herculano-Houzel, S., & Dos Santos, S. (2018). You Do Not Mess with the Glia. Neuroglia, 1(1), 193–219. https://doi.org/10.3390/neuroglia1010014 | |
dc.relation | Hidalgo-lanussa, O., Ávila-rodriguez, M., Baez-jurado, E., Zamudio, J., Echeverria, V., Garcia-segura, L. M., Barreto, G. E., & Garcia-segura, L. M. (2017). Tibolone Reduces Oxidative Damage and Inflammation in Microglia Stimulated with Palmitic Acid through Mechanisms Involving Estrogen Receptor Beta. https://doi.org/10.1007/s12035-017-0777-y | |
dc.relation | Hidalgo-Lanussa, O., Baez-Jurado, E., Echeverria, V., Ashraf, G. M., Sahebkar, A., Garcia-Segura, L. M., Melcangi, R. C., & Barreto, G. E. (2020). Lipotoxicity, neuroinflammation, glial cells and oestrogenic compounds. Journal of Neuroendocrinology, 32(1), 1–15. https://doi.org/10.1111/jne.12776 | |
dc.relation | Hilton, B. J., Lang, B. T., & Cregg, J. M. (2012). Keratan Sulfate Proteoglycans in Plasticity and Recovery after Spinal Cord Injury. 32(13), 4331–4333. https://doi.org/10.1523/JNEUROSCI.0333-12.2012 | |
dc.relation | Höfer, T., Venance, L., & Giaume, C. (2002). Control and Plasticity of Intercellular Calcium Waves in Astrocytes: A Modeling Approach. Journal of Neuroscience, 22(12), 4850–4859. https://doi.org/10.1523/jneurosci.22-12-04850.2002 | |
dc.relation | Hood, L., & Friend, S. H. (2011). Predictive, personalized, preventive, participatory (P4) cancer medicine. Nature Reviews Clinical Oncology, 8(3), 184–187. https://doi.org/10.1038/nrclinonc.2010.227 | |
dc.relation | Hood, L., Heath, J. R., Phelps, M. E., & Lin, B. (2004). Systems biology and new technologies enable predictive and preventative medicine. Science, 306(5696), 640–643. https://doi.org/10.1126/science.1104635 | |
dc.relation | Hornak, V., Okur, A., Rizzo, R. C., & Simmerling, C. (2006). HIV-1 Protease Flaps Spontaneously Close to the Correct Structure in Simulations Following Manual Placement of an Inhibitor into the Open State. 2812–2813. | |
dc.relation | Hu, X., Zhu, X., Yu, W., Zhang, Y., Yang, K., & Liu, Z. (2022). European Journal of Medicinal Chemistry Reports A mini review of small-molecule inhibitors targeting palmitoyltransferases. 5(August 2021). | |
dc.relation | Huang, J., Hou, J., Li, L., & Wang, Y. (2020). Flux balance analysis of glucose degradation by anaerobic digestion in negative pressure. International Journal of Hydrogen Energy, 45(51), 26822–26830. https://doi.org/10.1016/j.ijhydene.2020.07.053 | |
dc.relation | Huang, Y. N., Lai, C. C., Chiu, C. T., Lin, J. J., & Wang, J. Y. (2014). L-ascorbate attenuates the endotoxin-induced production of inflammatory mediators by inhibiting MAPK activation and NF- κB translocation in cortical neurons/glia cocultures. PLoS ONE, 9(7), 1–12. https://doi.org/10.1371/journal.pone.0097276 | |
dc.relation | Hyduke, D., Hyduke, D., Schellenberger, J., Que, R., Fleming, R., Thiele, I., Orth, J., Feist, A., Zielinski, D., Bordbar, A., Lewis, N., Rahmanian, S., Kang, J., & Palsson, B. (2011). COBRA Toolbox 2.0. Protocol Exchange, May, 0–1. https://doi.org/10.1038/protex.2011.234 | |
dc.relation | Ipata, P. L., & Tozzi, M. G. (2006). Recent advances in structure and function of cytosolic IMP-GMP specific 5′-nucleotidase II (cN-II). Purinergic Signalling, 2(4), 669–675. https://doi.org/10.1007/s11302-006-9009- | |
dc.relation | Ito, Z., Sakamoto, K., Imagama, S., Matsuyama, Y., Zhang, H., Hirano, K., Ando, K., Yamashita, T., Ishiguro, N., & Kadomatsu, K. (2010). N -Acetylglucosamine 6- O -Sulfotransferase-1-Deficient Mice Show Better Functional Recovery after Spinal Cord Injury. 30(17), 5937–5947. https://doi.org/10.1523/JNEUROSCI.2570-09.2010 | |
dc.relation | Jacobs, A. H., & Tavitian, B. (2012). Noninvasive molecular imaging of neuroinflammation. Journal of Cerebral Blood Flow and Metabolism, 32(7), 1393–1415. https://doi.org/10.1038/jcbfm.2012.53 | |
dc.relation | Jarugumilli, G., Chen, B., & Wu, X. (n.d.). Chemical Probes to Directly Profile Palmitoleoylation of Proteins. | |
dc.relation | Jendoubi, T. (2021). Approaches to integrating metabolomics and multi-omics data: A primer. Metabolites, 11(3). https://doi.org/10.3390/metabo11030184 | |
dc.relation | Jiang, P., Wang, H., Li, W., Zang, C., Li, B., Wong, Y. J., Meyer, C., Liu, J. S., Aster, J. C., & Liu, X. S. (2015). Network analysis of gene essentiality in functional genomics experiments. Genome Biology, 16(1), 1–10. https://doi.org/10.1186/s13059-015-0808-9 | |
dc.relation | Jones, L. L., & Tuszynski, M. H. (2002). Spinal Cord Injury Elicits Expression of Keratan Sulfate Proteoglycans by Macrophages, Reactive Microglia, and Oligodendrocyte Progenitors. Journal of Neuroscience, 22(11), 4611–4624. https://doi.org/10.1523/jneurosci.22-11-04611.2002 | |
dc.relation | Kanhaiya, K. (2020). Target Controllability of Cancer Networks. Åbo Akademi University, 1, 1–68. | |
dc.relation | Karahalil, B. (2017). Overview of Systems Biology and Omics Technologies Overview of Systems Biology and Omics Technologies. September 2016. https://doi.org/10.2174/0929867323666160926 | |
dc.relation | Kawabata, T. (2009). Detection of multiscale pockets on protein surfaces using mathematical morphology. 1195–1211. https://doi.org/10.1002/prot.22639 | |
dc.relation | Kim, M., Rai, N., Zorraquino, V., & Tagkopoulos, I. (2016). state in unexplored conditions for Escherichia coli. Nature Communications, 7, 1–12. https://doi.org/10.1038/ncomms13090 | |
dc.relation | Kim, Y., Park, J., & Choi, Y. K. (2019). The role of astrocytes in the central nervous system focused on BK channel and heme oxygenase metabolites: A review. Antioxidants, 8(5), 7–13. https://doi.org/10.3390/antiox8050121 | |
dc.relation | Kohl, P., Crampin, E. J., Quinn, T. A., & Noble, D. (2010). Systems biology: An approach. Clinical Pharmacology and Therapeutics, 88(1), 25–33. https://doi.org/10.1038/clpt.2010.92 | |
dc.relation | Larhlimi, A., David, L., Selbig, J., & Bockmayr, A. (2012). F2C2 : a fast tool for the computation of flux coupling in genome-scale metabolic networks. | |
dc.relation | Le Foll, C., & Levin, B. E. (2016). Fatty acid-induced astrocyte ketone production and the control of food intake. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 310(11), R1186–R1192. https://doi.org/10.1152/ajpregu.00113.2016 | |
dc.relation | Leanza, L., Ferraro, P., Reichard, P., & Bianchi, V. (2008). Metabolic interrelations within guanine deoxynucleotide pools for mitochondrial and nuclear DNA maintenance. Journal of Biological Chemistry, 283(24), 16437–16445. https://doi.org/10.1074/jbc.M801572200 | |
dc.relation | Lee, W., Reyes, R. C., Gottipati, M. K., Lewis, K., Lesort, M., Parpura, V., & Gray, M. (2013). Enhanced Ca2+-dependent glutamate release from astrocytes of the BACHD Huntington’file:///D:/Escritorio/MAestria/profundización1/artículos/10.1016@j.neuint.2018.08.010.pdfs disease mouse model. Neurobiology of Disease, 58, 192–199. https://doi.org/10.1016/j.nbd.2013.06.002 | |
dc.relation | Lewis, N. E., & Abdel-Haleem, A. M. (2013). The evolution of genome-scale models of cancer metabolism. Frontiers in Physiology, 4 SEP(September), 1–7. https://doi.org/10.3389/fphys.2013.00237 | |
dc.relation | Lewis, N. E., Nagarajan, H., & Palsson, B. O. (2012). Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nature Reviews Microbiology, 10(4), 291–305. https://doi.org/10.1038/nrmicro2737 | |
dc.relation | Li, J., Wei, Z., Zheng, M., Gu, X., Deng, Y., Qiu, R., Chen, F., Ji, C., Gong, W., Xie, Y., & Mao, Y. (2006). Crystal Structure of Human Guanosine Monophosphate Reductase 2 ( GMPR2 ) in Complex with GMP. 2, 980–988. https://doi.org/10.1016/j.jmb.2005.11.047 | |
dc.relation | Li, K., Li, J., Zheng, J., & Qin, S. (2019). Reactive Astrocytes in Neurodegenerative Diseases. Aging and Disease, 10(3), 664. https://doi.org/10.14336/ad.2018.0720 | |
dc.relation | Li, X., Li, M., Tian, L., Chen, J., Liu, R., & Ning, B. (2020). Review Article Reactive Astrogliosis : Implications in Spinal Cord Injury Progression and Therapy. 2020. | |
dc.relation | Li, Y. X., & Rinzel, J. (1994). Equations for InsP3 receptor-mediated [Ca2+](i) oscillations derived from a detailed kinetic model: A hodgkin-huxley like formalism. In Journal of Theoretical Biology (Vol. 166, Issue 4, pp. 461–473). https://doi.org/10.1006/jtbi.1994.1041 | |
dc.relation | Liu, H., Luo, K., & Luo, D. (2018). Guanosine monophosphate reductase 1 is a potential therapeutic target for Alzheimer ’ s disease. Scientific Reports, November 2017, 1–10. https://doi.org/10.1038/s41598-018-21256-6 | |
dc.relation | Liu, X., & Pan, L. (2014). Detection of driver metabolites in the human liver metabolic network using structural controllability analysis. BMC Systems Biology, 8(1), 1–17. https://doi.org/10.1186/1752-0509-8-51 | |
dc.relation | Liu, Y. Y., Slotine, J. J., & Barabási, A. L. (2011). Controllability of complex networks. Nature, 473(7346), 167–173. https://doi.org/10.1038/nature10011 | |
dc.relation | Luterman, J. D., Haroutunian, V., Yemul, S., Ho, L., Purohit, D., Aisen, P. S., Mohs, R., & Pasinetti, G. M. (2000). Cytokine gene expression as a function of the clinical progression of Alzheimer disease dementia. Archives of Neurology, 57(8), 1153–1160. https://doi.org/10.1001/archneur.57.8.1153 | |
dc.relation | Ma, H., & Zhao, H. (2013). Drug target inference through pathway analysis of genomics data. Advanced Drug Delivery Reviews, 65(7), 966–972. https://doi.org/10.1016/j.addr.2012.12.004 | |
dc.relation | Maarleveld, T. R., Khandelwal, R. A., Olivier, B. G., Teusink, B., & Bruggeman, F. J. (2013). Basic concepts and principles of stoichiometric modeling of metabolic networks. Biotechnology Journal, 8(9), 997–1008. https://doi.org/10.1002/biot.201200291 | |
dc.relation | Mahmoud, S., Gharagozloo, M., Simard, C., & Gris, D. (2019). Astrocytes Maintain Glutamate Homeostasis in the CNS by Controlling the Balance between Glutamate Uptake and Release. 1–27. https://doi.org/10.3390/cells8020184 | |
dc.relation | Manninen, T., Havela, R., & Linne, M.-L. (2019). Computational Models of Astrocytes and Astrocyte–Neuron Interactions: Characterization, Reproducibility, and Future Perspectives (pp. 423–454). https://doi.org/10.1007/978-3-030-00817-8_16 | |
dc.relation | Mardinoglu, A., Agren, R., Kampf, C., Asplund, A., Nookaew, I., Jacobson, P., Walley, A. J., Froguel, P., Carlsson, L. M., Uhlen, M., & Nielsen, J. (2013). Integration of clinical data with a genome-scale metabolic model of the human adipocyte. Molecular Systems Biology, 9(649), 1–16. https://doi.org/10.1038/msb.2013.5 | |
dc.relation | Mardinoglu, A., Agren, R., Kampf, C., Asplund, A., Uhlen, M., & Nielsen, J. (2014). non-alcoholic fatty liver disease. Nature Communications, 5(May 2013), 1–11. https://doi.org/10.1038/ncomms4083 | |
dc.relation | Martín-Jiménez, C. A., Salazar-Barreto, D., Barreto, G. E., & González, J. (2017). Genome-scale reconstruction of the human astrocyte metabolic network. Frontiers in Aging Neuroscience, 9(FEB), 1–17. https://doi.org/10.3389/fnagi.2017.00023 | |
dc.relation | Martin-jiménez, C., & González, J. (2020). Tibolone Ameliorates the Lipotoxic Effect of Palmitic Acid in Normal Human Astrocytes. | |
dc.relation | Marttinen, M., Paananen, J., Neme, A., Mitra, V., Takalo, M., Natunen, T., Paldanius, K. M. A., Mäkinen, P., Bremang, M., Kurki, M. I., Rauramaa, T., Leinonen, V., Soininen, H., Haapasalo, A., Pike, I., & Hiltunen, M. (2019). A multiomic approach to characterize the temporal sequence in Alzheimer’s disease-related pathology. Neurobiology of Disease, 124, 454–468. https://doi.org/10.1016/j.nbd.2018.12.009 | |
dc.relation | Masid, M., Ataman, M., & Hatzimanikatis, V. (2020). Analysis of human metabolism by reducing the complexity of the genome-scale models using redHUMAN. Nature Communications, 11(1), 1–12. https://doi.org/10.1038/s41467-020-16549-2 | |
dc.relation | Matias, I., Morgado, J., & Gomes, F. C. A. (2019). Astrocyte Heterogeneity: Impact to Brain Aging and Disease. Frontiers in Aging Neuroscience, 11(March), 1–18. https://doi.org/10.3389/fnagi.2019.00059 | |
dc.relation | Matyash, V., & Kettenmann, H. (2009). Heterogeneity in astrocyte morphology and physiology. Brain Research Reviews, 63(1–2), 2–10. https://doi.org/10.1016/j.brainresrev.2009.12.001 | |
dc.relation | McCloskey, D., Palsson, B., & Feist, A. M. (2013). Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Molecular Systems Biology, 9(1), 1–15. https://doi.org/10.1038/msb.2013.18 | |
dc.relation | Melo, H. M., Santos, L. E., & Ferreira, S. T. (2019). Diet-Derived Fatty Acids, Brain Inflammation, and Mental Health. Frontiers in Neuroscience, 13(March), 1–12. https://doi.org/10.3389/fnins.2019.00265 | |
dc.relation | Menara, T., Bianchin, G., Innocenti, M., & Pasqualetti, F. (2017). On the number of strongly structurally controllable networks. Proceedings of the American Control Conference, 340–345. https://doi.org/10.23919/ACC.2017.7962976 | |
dc.relation | Michael Hay, David W Thomas, John L Craighead, C. E. & J. R. (2009). Clinical development success rates for investigational drugs. Gastrointestinal Cancer Research, 3(1), 20–28. | |
dc.relation | Modelska, K., & Cummings, S. (2015). CLINICAL REVIEW 140 Tibolone for Postmenopausal Women : Systematic Review of Randomized Trials. 87(November), 16–23. | |
dc.relation | Moncada, S. & Higgs, A. (1993). The L-arginine-nitric oxide pathway. N. Engl. J. Med., 329, 2002–2012. | |
dc.relation | Nagelhus, E. A., & Ottersen, O. P. (2013). Physiological roles of Aquaporin-4 in brain. Physiological Reviews, 93(4), 1543–1562. https://doi.org/10.1152/physrev.00011.2013 | |
dc.relation | Nielsen, J. (2017a). Systems Biology of Metabolism: A Driver for Developing Personalized and Precision Medicine. Cell Metabolism, 25(3), 572–579. https://doi.org/10.1016/j.cmet.2017.02.002 | |
dc.relation | Nielsen, J. (2017b). Systems Biology of Metabolism: A Driver for Developing Personalized and Precision Medicine. Cell Metabolism, 25(3), 572–579. https://doi.org/10.1016/j.cmet.2017.02.002 | |
dc.relation | Nielsen, J. (2017c). Systems Biology of Metabolism. Annual Review of Biochemistry, 86(1), 245–275. https://doi.org/10.1146/annurev-biochem-061516-044757 | |
dc.relation | Niu, Y. C., Feng, R. N., Hou, Y., Li, K., Kang, Z., Wang, J., Sun, C. H., & Li, Y. (2012). Histidine and arginine are associated with inflammation and oxidative stress in obese women. British Journal of Nutrition, 108(1), 57–61. https://doi.org/10.1017/S0007114511005289 | |
dc.relation | Nurse, P., & Hayles, J. (2011). The cell in an era of systems biology. Cell, 144(6), 850–854. https://doi.org/10.1016/j.cell.2011.02.045 | |
dc.relation | Nussinov, R., & Tsai, C. (2013). Review Allostery in Disease and in Drug Discovery. Cell, 153(2), 293–305. https://doi.org/10.1016/j.cell.2013.03.034 | |
dc.relation | Oliveira, A. de A. B., Melo, N. de F. M., Vieira, É. dos S., Nogueira, P. A. S., Coope, A., Velloso, L. A., Dezonne, R. S., Ueira-Vieira, C., Botelho, F. V., Gomes, J. de A. S., & Zanon, R. G. (2018). Palmitate treated-astrocyte conditioned medium contains increased glutathione and interferes in hypothalamic synaptic network in vitro. Neurochemistry International, 120, 140–148. https://doi.org/10.1016/j.neuint.2018.08.010 | |
dc.relation | Orth, J. D., Conrad, T. M., Na, J., Lerman, J. A., Nam, H., Feist, A. M., & Palsson, B. (2011). A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011. Molecular Systems Biology, 7(535), 1–9. https://doi.org/10.1038/msb.2011.65 | |
dc.relation | Orth, J. D., Thiele, I., & Palsson, B. O. (2010). What is flux balance analysis? Nature Biotechnology, 28(3), 245–248. https://doi.org/10.1038/nbt.1614 | |
dc.relation | Ortiz-Rodriguez, A., Acaz-Fonseca, E., Boya, P., Arevalo, M. A., & Garcia-Segura, L. M. (2019). Lipotoxic Effects of Palmitic Acid on Astrocytes Are Associated with Autophagy Impairment. Molecular Neurobiology, 56(3), 1665–1680. https://doi.org/10.1007/s12035-018-1183-9 | |
dc.relation | Ortiz-Rodriguez, A., & Arevalo, M. A. (2020). The contribution of astrocyte autophagy to systemic metabolism. International Journal of Molecular Sciences, 21(7). https://doi.org/10.3390/ijms21072479 | |
dc.relation | Osorio, D., Botero, K., Gonzalez, J., and Pinzon, A. (2016). “exp2flux” Convierte datos de Gene EXPression a FBA FLUXes. Package Version 0.1. https://doi.org/10.13140/RG.2.2.14401.56168 | |
dc.relation | Osorio, D., Pinzón, A., Martín-Jiménez, C., Barreto, G. E., & González, J. (2020a). Multiple Pathways Involved in Palmitic Acid-Induced Toxicity: A System Biology Approach. Frontiers in Neuroscience, 13(January), 1–14. https://doi.org/10.3389/fnins.2019.01410 | |
dc.relation | Palsson, B. (2009). Metabolic systems biology. FEBS Letters, 583(24), 3900–3904. https://doi.org/10.1016/j.febslet.2009.09.031 | |
dc.relation | Pandey, V., Gardiol, D. H., & Chiappino-pepe, A. (2019). Running head : TEX-FBA TEX-FBA : A constraint-based method for integrating gene expression , thermodynamics , and metabolomics data into genome-scale metabolic models 1 Laboratory of Computational Systems Biotechnology , École Polytechnique Fédérale de La. 1–30. | |
dc.relation | Papin, J. A., Hunter, T., Palsson, B. O., & Subramaniam, S. (2005). Reconstruction of cellular signalling networks and analysis of their properties. Nature Reviews Molecular Cell Biology, 6(2), 99–111. https://doi.org/10.1038/nrm1570 | |
dc.relation | Paraiso, W. K. D., Garcia-chica, J., Ariza, X., Zagmutt, S., Fukushima, S., Garcia, J., Mochida, Y., Serra, D., Herrero, L., Kinoh, H., Casals, N., Kataoka, K., Rodríguez-rodríguez, R., & Quader, S. (2021). Biomaterials Science conjugated CPT1A inhibitors to modulate lipid metabolism in brain cells †. https://doi.org/10.1039/d1bm00689d | |
dc.relation | Pardo, B., Contreras, L., & Satrústegui, J. (2013). De novo Synthesis of Glial Glutamate and Glutamine in Young Mice Requires Aspartate Provided by the Neuronal Mitochondrial Aspartate-Glutamate Carrier Aralar/AGC1. Frontiers in Endocrinology, 4(October), 15–18. https://doi.org/10.3389/fendo.2013.00149 | |
dc.relation | Patil, S., Melrose, J., & Chan, C. (2007). Involvement of astroglial ceramide in palmitic acid-induced Alzheimer-like changes in primary neurons. European Journal of Neuroscience, 26(8), 2131–2141. https://doi.org/10.1111/j.1460-9568.2007.05797.x | |
dc.relation | Patil, S., Sheng, L., Masserang, A., & Chan, C. (2006). Palmitic acid-treated astrocytes induce BACE1 upregulation and accumulation of C-terminal fragment of APP in primary cortical neurons. Neuroscience Letters, 406(1–2), 55–59. https://doi.org/10.1016/j.neulet.2006.07.015 | |
dc.relation | Peracchi, A., & Mozzarelli, A. (2011). Biochimica et Biophysica Acta Exploring and exploiting allostery : Models , evolution , and drug targeting ☆. BBA - Proteins and Proteomics, 1814(8), 922–933. https://doi.org/10.1016/j.bbapap.2010.10.008 | |
dc.relation | Piccolis, M., Bond, L. M., Kampmann, M., Pulimeno, P., Chitraju, C., Jayson, C. B. K., Vaites, L. P., Boland, S., Lai, Z. W., Gabriel, K. R., Elliott, S. D., Paulo, J. A., Harper, J. W., Weissman, J. S., Walther, T. C., & Farese, R. V. (2019). Probing the Global Cellular Responses to Lipotoxicity Caused by Saturated Fatty Acids. Molecular Cell, 74(1), 32-44.e8. https://doi.org/10.1016/j.molcel.2019.01.036 | |
dc.relation | Pietzke, M., Meiser, J., & Vazquez, A. (2020). Formate metabolism in health and disease. Molecular Metabolism, 33(xxxx), 23–37. https://doi.org/10.1016/j.molmet.2019.05.012 | |
dc.relation | Pinu, F. R., Beale, D. J., Paten, A. M., Kouremenos, K., Swarup, S., Schirra, H. J., & Wishart, D. (2019). Systems biology and multi-omics integration: Viewpoints from the metabolomics research community. Metabolites, 9(4), 1–31. https://doi.org/10.3390/metabo9040076 | |
dc.relation | Price, N. D., Reed, J. L., & Palsson, B. (2004). Genome-scale models of microbial cells: Evaluating the consequences of constraints. Nature Reviews Microbiology, 2(11), 886–897. https://doi.org/10.1038/nrmicro1023 | |
dc.relation | Ramon, C., Gollub, M. G., & Stelling, J. (2018). Integrating -omics data into genome-scale metabolic network models: Principles and challenges. Essays in Biochemistry, 62(4), 563–574. https://doi.org/10.1042/EBC20180011 | |
dc.relation | Ravindran, V., Nacher, J. C., Akutsu, T., Ishitsuka, M., Osadcenco, A., Sunitha, V., Bagler, G., Schwartz, J. M., & Robertson, D. L. (2019). Network controllability analysis of intracellular signalling reveals viruses are actively controlling molecular systems. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-018-38224-9 | |
dc.relation | Rezola, A., Pey, J., Tobalina, L., Rubio, Á., Beasley, J. E., & Planes, F. J. (2015). Advances in network-basedmetabolic pathway analysis and gene expression data integration. Briefings in Bioinformatics, 16(2), 1–15. https://doi.org/10.1093/bib/bbu009 | |
dc.relation | Robertson, J. M. (2018). The gliocentric brain. International Journal of Molecular Sciences, 19(10). https://doi.org/10.3390/ijms19103033 | |
dc.relation | Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Ballard, A. J., Cowie, A., Romera-paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., … Kavukcuoglu, K. (2021). Highly accurate protein structure prediction with AlphaFold. May, 1–12. https://doi.org/10.1038/s41586-021-03819-2 | |
dc.relation | Rose, J., Brian, C., Pappa, A., Panayiotidis, M. I., & Franco, R. (2020). Mitochondrial Metabolism in Astrocytes Regulates Brain Bioenergetics, Neurotransmission and Redox Balance. Frontiers in Neuroscience, 14(November), 1–20. https://doi.org/10.3389/fnins.2020.536682 | |
dc.relation | Sajitz-Hermstein, M., & Nikoloski, Z. (2013). Structural Control of Metabolic Flux. PLoS Computational Biology, 9(12). https://doi.org/10.1371/journal.pcbi.1003368 | |
dc.relation | Salvatore, D., Bartha, T., & Larsen, P. R. (1998). The Guanosine Monophosphate Reductase Gene Is Conserved in Rats and Its Expression Increases Rapidly in Brown Adipose Tissue during Cold Exposure *. Journal of Biological Chemistry, 273(47), 31092–31096. https://doi.org/10.1074/jbc.273.47.31092 | |
dc.relation | Schafer, J. R. A., Fell, D. A., Rothman, D., & Shulman, R. G. (2004). Protein phosphorylation can regulate metabolite concentrations rather than control flux: The example of glycogen synthase. Proceedings of the National Academy of Sciences of the United States of America, 101(6), 1485–1490. https://doi.org/10.1073/pnas.0307299101 | |
dc.relation | Schousboe, A., Bak, L. K., & Waagepetersen, H. S. (2013). Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA. Frontiers in Endocrinology, 4(AUG), 1–11. https://doi.org/10.3389/fendo.2013.00102 | |
dc.relation | Schrödinger, L. (2015). The {PyMOL} Molecular Graphics System, Version~2.4. February. https://doi.org/10.13140/RG.2.2.33676.64641 | |
dc.relation | Schuetz, R., Kuepfer, L., & Sauer, U. (2007). Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Molecular Systems Biology, 3(119). https://doi.org/10.1038/msb4100162 | |
dc.relation | Schwartz, J. M., Otokuni, H., Akutsu, T., & Nacher, J. C. (2019). Probabilistic controllability approach to metabolic fluxes in normal and cancer tissues. Nature Communications, 10(1), 1–10. https://doi.org/10.1038/s41467-019-10616-z | |
dc.relation | Segrè, D., Vitkup, D., & Church, G. M. (2002). Analysis of optimality in natural and perturbed metabolic networks. Proceedings of the National Academy of Sciences of the United States of America, 99(23), 15112–15117. https://doi.org/10.1073/pnas.232349399 | |
dc.relation | Sertbaş, M., Ülgen, K., & Çakir, T. (2014). Systematic analysis of transcription-level effects of neurodegenerative diseases on human brain metabolism by a newly reconstructed brain-specific metabolic network. FEBS Open Bio, 4, 542–553. https://doi.org/10.1016/j.fob.2014.05.006 | |
dc.relation | Shi, L. F., Zhang, Q., Shou, X. Y., & Niu, H. J. (2021). Expression and prognostic value identification of methylenetetrahydrofolate dehydrogenase 2 (Mthfd2) in brain low-grade glioma. International Journal of General Medicine, 14, 4517–4527. https://doi.org/10.2147/IJGM.S323858 | |
dc.relation | Shlomi, T., Berkman, O., & Ruppin, E. (2005). Regulatory on ͞ off minimization of metabolic flux. Pnas, 102(21), 7695–7700. https://doi.org/10.1073/pnas.0406346102 | |
dc.relation | Singh, A., Kukreti, R., Saso, L., & Kukreti, S. (2019). Oxidative stress: A key modulator in neurodegenerative diseases. Molecules, 24(8), 1–20. https://doi.org/10.3390/molecules24081583 | |
dc.relation | Singh, D., & Lercher, M. J. (2020). Network reduction methods for genome-scale metabolic models. Cellular and Molecular Life Sciences, 77(3), 481–488. https://doi.org/10.1007/s00018-019-03383-z | |
dc.relation | Siracusa, R., Fusco, R., & Cuzzocrea, S. (2019). Astrocytes: Role and functions in brain pathologies. Frontiers in Pharmacology, 10(SEP), 1–10. https://doi.org/10.3389/fphar.2019.01114 | |
dc.relation | Sofroniew M. V. (2009). Molecular dissection of reactive astrogliosis and glial scar formation. Trends in Neuroscience, 32(12), 638–647. https://doi.org/10.1016/j.tins.2009.08.002.Molecular | |
dc.relation | Sofroniew, J. E. B. and M. V. (2015). Reactive gliosis and the multicellular response to CNS damage and disease. Neuron, 81(2), 229–248. https://doi.org/10.1016/j.neuron.2013.12.034.Reactive | |
dc.relation | Sofroniew, M. V. (2014). Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators. Neuroscientist, 20(2), 160–172. https://doi.org/10.1177/1073858413504466 | |
dc.relation | Son, D. O., Satsu, H., & Shimizu, M. (2005). Histidine inhibits oxidative stress- and TNF- a -induced interleukin-8 secretion in intestinal epithelial cells. 579, 4671–4677. https://doi.org/10.1016/j.febslet.2005.07.038 | |
dc.relation | Sonnewald, U., Akiho, H., Koshiya, K., & Iwai, A. (1998). Effect of orotic acid on the metabolism of cerebral cortical astrocytes during hypoxia and reoxygenation: An NMR spectroscopy study. Journal of Neuroscience Research, 51(1), 103–108. https://doi.org/10.1002/(SICI)1097-4547(19980101)51:1<103::AID-JNR11>3.0.CO;2-C | |
dc.relation | Souders, C. L., Zubcevic, J., & Martyniuk, C. J. (2021). Tumor Necrosis Factor Alpha and the Gastrointestinal Epithelium: Implications for the Gut-Brain Axis and Hypertension. Cellular and Molecular Neurobiology, 0123456789. https://doi.org/10.1007/s10571-021-01044-z | |
dc.relation | Souza, D. G., Almeida, R. F., Souza, D. O., & Zimmer, E. R. (2019). The astrocyte biochemistry. Seminars in Cell and Developmental Biology, 95(April), 142–150. https://doi.org/10.1016/j.semcdb.2019.04.002 | |
dc.relation | Stank, A., Kokh, D. B., Fuller, J. C., & Wade, R. C. (2016). Protein Binding Pocket Dynamics. https://doi.org/10.1021/acs.accounts.5b00516 | |
dc.relation | Suthers, P. F., Zomorrodi, A., & Maranas, C. D. (2009). Genome-scale gene/reaction essentiality and synthetic lethality analysis. Molecular Systems Biology, 5(301), 1–17. https://doi.org/10.1038/msb.2009.56 | |
dc.relation | Sweetlove, L. J., & George Ratcliffe, R. (2011). Flux-balance modeling of plant metabolism. Frontiers in Plant Science, 2(AUG), 1–10. https://doi.org/10.3389/fpls.2011.00038 | |
dc.relation | Terzer, M., & Stelling, J. (2008). Large-scale computation of elementary flux modes with bit pattern trees. Bioinformatics, 24(19), 2229–2235. https://doi.org/10.1093/bioinformatics/btn401 | |
dc.relation | Thiele, I., Swainston, N., Fleming, R. M. T., Hoppe, A., Sahoo, S., Aurich, M. K., Haraldsdottir, H., Mo, M. L., Rolfsson, O., Stobbe, M. D., Thorleifsson, S. G., Agren, R., Bölling, C., Bordel, S., Chavali, A. K., Dobson, P., Dunn, W. B., Endler, L., Hala, D., … Palsson, B. O. (2013a). A community-driven global reconstruction of human metabolism. Nature Biotechnology, 31(5), 419–425. https://doi.org/10.1038/nbt.2488 | |
dc.relation | Thiele, I., Swainston, N., Fleming, R. M. T., Hoppe, A., Sahoo, S., Aurich, M. K., Haraldsdottir, H., Mo, M. L., Rolfsson, O., Stobbe, M. D., Thorleifsson, S. G., Agren, R., Bölling, C., Bordel, S., Chavali, A. K., Dobson, P., Dunn, W. B., Endler, L., Hala, D., … Palsson, B. O. (2013b). A community-driven global reconstruction of human metabolism. Nature Biotechnology, 31(5), 419–425. https://doi.org/10.1038/nbt.2488 | |
dc.relation | Tong, X., Ao, Y., Faas, G. C., Nwaobi, S. E., Xu, J., Haustein, M. D., Anderson, M. A., Mody, I., Olsen, M. L., Sofroniew, M. V, & Khakh, B. S. (2014). Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nature Neuroscience, 17(5), 694–703. https://doi.org/10.1038/nn.3691 | |
dc.relation | Trott, O. and Olson, A. J. (2011). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. 31(2), 455–461. https://doi.org/10.1002/jcc.21334.AutoDock | |
dc.relation | Ussher, J. R., Keung, W., Fillmore, N., Koves, T. R., Mori, J., Zhang, L., Lopaschuk, D. G., Ilkayeva, O. R., Wagg, C. S., Jaswal, J. S., Muoio, D. M., & Lopaschuk, G. D. (2014). Treatment with the 3-Ketoacyl-CoA Thiolase Inhibitor Trimetazidine Does Not Exacerbate Whole-Body Insulin Resistance in Obese Mice. June, 487–496. | |
dc.relation | Valenza, G., Pioggia, G., Armato, A., Ferro, M., Scilingo, E. P., & De Rossi, D. (2011). A neuron-astrocyte transistor-like model for neuromorphic dressed neurons. Neural Networks, 24(7), 679–685. https://doi.org/10.1016/j.neunet.2011.03.013 | |
dc.relation | Verkhratsky, A., and Nedergaard, M. (2018). PHYSIOLOGY OF ASTROGLIA. Physiol. Rev, 98, 239–389. https://doi.org/10.1152/physrev.00042.2016 | |
dc.relation | Verkhratsky, A., & Butt, A. (2018). The History of the Decline and Fall of the Glial Numbers Legend. Neuroglia, 1(1), 188–192. https://doi.org/10.3390/neuroglia1010013 | |
dc.relation | Vicente-Gutierrez, C., Bonora, N., Bobo-Jimenez, V., Jimenez-Blasco, D., Lopez-Fabuel, I., Fernandez, E., Josephine, C., Bonvento, G., Enriquez, J. A., Almeida, A., & Bolaños, J. P. (2019). Astrocytic mitochondrial ROS modulate brain metabolism and mouse behaviour. Nature Metabolism, 1(2), 201–211. https://doi.org/10.1038/s42255-018-0031-6 | |
dc.relation | Voillet, V., Besse, P., Liaubet, L., Cristobal, M. S., & González, I. (2016). Handling missing rows in multi-omics data integration : multiple imputation in multiple factor analysis framework. BMC Bioinformatics, 1–17. https://doi.org/10.1186/s12859-016-1273-5 | |
dc.relation | Volkamer, A., Kuhn, D., Rippmann, F., & Rarey, M. (2012). DoGSiteScorer : a web server for automatic binding site prediction , analysis and druggability assessment. 28(15), 2074–2075. https://doi.org/10.1093/bioinformatics/bts310 | |
dc.relation | Volterra, A., & Meldolesi, J. (2005). Astrocytes, from brain glue to communication elements: The revolution continues. Nature Reviews Neuroscience, 6(8), 626–640. https://doi.org/10.1038/nrn1722 | |
dc.relation | Wang, W., Jiang, Z., Hu, C., Chen, C., Hu, Z., Wang, A., Wang, L., & Liu, J. (2020). Pharmacologically inhibiting phosphoglycerate kinase 1 for glioma with NG52. Acta Pharmacologica Sinica, July. https://doi.org/10.1038/s41401-020-0465-8 | |
dc.relation | Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics in Western Equatoria State. Nature Reviews Genetics, 10(1), 57. | |
dc.relation | Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., Beer, T. A. P. De, Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL : homology modelling of protein structures and complexes. May, 1–8. https://doi.org/10.1093/nar/gky427 | |
dc.relation | Wong, K. L., Wu, Y. R., Cheng, K. S., Chan, P., Cheung, C. W., Lu, D. Y., Su, T. H., Liu, Z. M., & Leung, Y. M. (2014a). Palmitic acid-induced lipotoxicity and protection by (+)-catechin in rat cortical astrocytes. Pharmacological Reports, 66(6), 1106–1113. https://doi.org/10.1016/j.pharep.2014.07.009 | |
dc.relation | Wong, K. L., Wu, Y. R., Cheng, K. S., Chan, P., Cheung, C. W., Lu, D. Y., Su, T. H., Liu, Z. M., & Leung, Y. M. (2014b). Palmitic acid-induced lipotoxicity and protection by (+)-catechin in rat cortical astrocytes. Pharmacological Reports, 66(6), 1106–1113. https://doi.org/10.1016/j.pharep.2014.07.009 | |
dc.relation | Wörheide, M. A., Krumsiek, J., Kastenmüller, G., & Arnold, M. (2021). Multi-omics integration in biomedical research – A metabolomics-centric review. Analytica Chimica Acta, 1141, 144–162. https://doi.org/10.1016/j.aca.2020.10.038 | |
dc.relation | Wu, Z., Li, W., Liu, G., & Tang, Y. (2018). Network-Based Methods for Prediction of Drug-Target Interactions. 9(October), 1–14. https://doi.org/10.3389/fphar.2018.01134 | |
dc.relation | Wuchty, S. (2019). Controllability of molecular pathways. BioRxiv, 560375. https://doi.org/10.1101/560375 | |
dc.relation | Xia, C., Fu, Z., Battaile, K. P., & Kim, J. P. (2019). Crystal structure of human mitochondrial trifunctional protein , a fatty acid β -oxidation metabolon. 116(13), 6069–6074. https://doi.org/10.1073/pnas.1816317116 | |
dc.relation | Xiao, Q., Yan, P., Ma, X., Liu, H., Perez, R., Zhu, A., Gonzales, E., Burchett, J. M., Schuler, D. R., Cirrito, J. R., Diwan, A., & Lee, J. M. (2014). Enhancing astrocytic lysosome biogenesis facilitates Aβ clearance and attenuates amyloid plaque pathogenesis. Journal of Neuroscience, 34(29), 9607–9620. https://doi.org/10.1523/JNEUROSCI.3788-13.2014 | |
dc.relation | Xu, Y., Wang, S., Hu, Q., Gao, S., Ma, X., Zhang, W., Shen, Y., Chen, F., Lai, L., Pei, J., & Cavpharmer, C. (2018). CavityPlus : a web server for protein cavity detection with pharmacophore modelling , allosteric site identification and covalent ligand binding ability prediction. 46(May), 374–379. https://doi.org/10.1093/nar/gky380 | |
dc.relation | Yang, M., & Vousden, K. H. (2016). Serine and one-carbon metabolism in cancer. Nature Reviews Cancer, 16(10), 650–662. https://doi.org/10.1038/nrc.2016.81 | |
dc.relation | Yang, S. Y., He, X. Y., & Schulz, H. (1987). Fatty acid oxidation in rat brain is limited by the low activity of 3-ketoacyl-coenzyme A thiolase. The Journal of Biological Chemistry, 262(27), 13027–13032. https://doi.org/10.1016/s0021-9258(18)45161-7 | |
dc.relation | Yin, K. (2015). Positive correlation between expression level of mitochondrial serine hydroxymethyltransferase and breast cancer grade. OncoTargets and Therapy, 8, 1069–1074. https://doi.org/10.2147/OTT.S82433 | |
dc.relation | Ying, L., Tippetts, T. S., & Chaurasia, B. (2019). Ceramide dependent lipotoxicity in metabolic diseases. Nutrition and Healthy Aging, 5(1), 1–12. https://doi.org/10.3233/NHA-170032 | |
dc.relation | Young, F. B., Butland, S. L., Sanders, S. S., Sutton, L. M., & Hayden, M. R. (2012). Putting proteins in their place: Palmitoylation in Huntington disease and other neuropsychiatric diseases. Progress in Neurobiology, 97(2), 220–238. https://doi.org/10.1016/j.pneurobio.2011.11.002 | |
dc.relation | Yousofshahi, M., Ullah, E., Stern, R., & Hassoun, S. (2013). MC3: A steady-state model and constraint consistency checker for biochemical networks. BMC Systems Biology, 7. https://doi.org/10.1186/1752-0509-7-129 | |
dc.relation | Yu, J., Zhou, Y., Tanaka, I., & Yao, M. (2010). Roll : a new algorithm for the detection of protein pockets and cavities with a rolling probe sphere. 26(1), 46–52. https://doi.org/10.1093/bioinformatics/btp599 | |
dc.relation | Yuan, Z., Zhao, C., Di, Z., Wang, W. X., & Lai, Y. C. (2013). Exact controllability of complex networks. Nature Communications, 4. https://doi.org/10.1038/ncomms3447 | |
dc.relation | Zahra, W., Rai, S. N., Birla, H., Singh, S. Sen, Rathore, A. S., Dilnashin, H., Keswani, C., & Singh, S. P. (2019). Economic importance of medicinal plants in Asian countries. In Bioeconomy for Sustainable Development. https://doi.org/10.1007/978-981-13-9431-7_19 | |
dc.relation | Zhang, H., Muramatsu, T., Murase, A., Yuasa, S., Uchimura, K., & Kadomatsu, K. (2006). N-Acetylglucosamine 6-O-sulfotransferase-1 is required for brain keratan sulfate biosynthesis and glial scar formation after brain injury. Glycobiology, 16(8), 702–710. https://doi.org/10.1093/glycob/cwj115 | |
dc.relation | Zhang, H., Uchimura, K., & Kadomatsu, K. (2006). Brain keratan sulfate and glial scar formation. Annals of the New York Academy of Sciences, 1086, 81–90. https://doi.org/10.1196/annals.1377.014 | |
dc.relation | Zhang, N., Qi, M., Gao, X., Zhao, L., Liu, J., Gu, C., Song, W., Steven, C., Sun, L., & Qi, D. (2016). Response of the hepatic transcriptome to a fl atoxin B 1 in ducklings. 111, 69–76. https://doi.org/10.1016/j.toxicon.2015.12.022 | |
dc.relation | Zierer, J., Pallister, T., Tsai, P. C., Krumsiek, J., Bell, J. T., Lauc, G., Spector, T. D., Menni, C., & Kastenmüller, G. (2016). Exploring the molecular basis of age-related disease comorbidities using a multi-omics graphical model. Scientific Reports, 6(October), 1–10. https://doi.org/10.1038/srep37646 | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Identificación de reacciones controladoras en un modelo computacional multi-ómico astrocitario de lipotoxicidad inducida por ácido palmítico | |
dc.type | Trabajo de grado - Maestría | |