dc.contributorRodríguez Villate, Alia
dc.contributorUribe Vélez, Daniel
dc.creatorFernández Casanova, Belén Rocío
dc.date.accessioned2023-02-07T16:04:07Z
dc.date.accessioned2023-06-06T23:35:33Z
dc.date.available2023-02-07T16:04:07Z
dc.date.available2023-06-06T23:35:33Z
dc.date.created2023-02-07T16:04:07Z
dc.date.issued2022-08
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/83353
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6651388
dc.description.abstractLa papa es el cultivo no cerealero más grande del mundo, el cuarto cultivo de importancia para la seguridad alimentaria mundial, y actualmente, uno de los productos más encarecidos de la canasta familiar por los altos costos de producción debido en parte a los precios de los fertilizantes. El fósforo (P) es un elemento esencial y uno de los que se usa en mas altas dosis en el cultivo de papa, representando un alto porcentaje del costo de la fertilización. Se ha planteado el uso de microorganismos del suelo que potencialmente pueden interactuar sinérgicamente en beneficio del P, es el caso de hongos formadores de micorrizas arbusculares (HFMA) y bacterias solubilizadoras de fósforo (BSF), sin embargo, se deben estudiar sus interacciones. Este trabajo evaluó la interacción de cepas de BSF Pseudomonas fluorescens, y el HFMA Rhizophagus irregularis, bajo dos escenarios, in vitro e in vivo. Se midieron la formación de biopelícula y motilidad de las cepas bacterianas, su influencia en el crecimiento y colonización del hongo, así como la concentración de P foliar de plantas papa criolla. Se encontró que cepas de P. fluorescens formaron biopelículas sobre hifas de R. irregularis, influyeron en el crecimiento del HFMA y en la colonización de raíces de papa. Su co-inoculación en suelos para la producción de papa, generaron incrementos en el contenido de P foliar de plantas de papa en presencia de una comunidad microbiana, con roca fosfórica, lo cual puede ser una alternativa para remplazar el uso de fuentes de P soluble. (Texto tomado de la fuente)
dc.description.abstractThe potato is the largest non-cereal crop in the world, the fourth most important crop for global food security, actually, one of the most expensive products of the cost of living due to high production costs due in part to fertilizer prices. Phosphorus (P) is an essential element and one of the highest doses of application in potato cultivation, representing a high percentage of fertilization costs. The use of soil microorganisms that can potentially interact synergistically for the benefit of P has been proposed, as is the case of arbuscular mycorrhizal fungi (AMF) and phosphorus-solubilizing bacteria (PSB), however, much remains to be studied of their interactions. This study evaluated the interaction between strains of PSB Pseudomonas fluorescens, and AMF Rhizophagus irregularis, under two scenarios, in vitro and in vivo. Biofilm formation and motility of the bacterial strains were measured, as well as their influence on the growth and colonization of the fungus, and the foliar P concentration of potato plants. It was found that P. fluorescens strains formed biofilms on R. irregularis hyphae, influenced the growth of AMF and the colonization of potato roots. Its co-inoculation in soils for potato production generated increases in the foliar P content of potato plants in the presence of a microbial community, with phosphate rock, which can be an alternative to replace the use of soluble P sources, which can be polluting and expensive.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.publisherFacultad de Ciencias Agrarias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAgnolucci, M., Battini, F., Cristani, C., Giovannetti, M. (2015). Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates. Biol. Fertility Soils 51, 379–389. doi: 10.1007/s00374-014-0989-5
dc.relationAgvise Laboratories. (2013). Plant Nutrient Analysis Sampling Guide. http://www.agvise.com/wp-content/uploads/2012/07/Plant-Tissue-SamplingGuide2013.pdf
dc.relationAhmad, I., Khan, M., Altaf, M., Qais, F., Ansari, F., Rumbaugh, K., (2017). Biofilms: an overview of their significance in plant and soil health. Biofilms in Plant and Soil Health. Wiley, Hoboken, pp. 1–26.
dc.relationAkyol, T., Niwa, R., Hirakawa, H., Maruyama, H., Sato, T., Suzuki, T., Fukunaga, A., Sato, T., Yoshida, S., Tawaraya, K., Saito, M., Ezawa, T., Sato, S. (2019). Impact of Introduction of Arbuscular Mycorrhizal Fungi on the Root Microbial Community in Agricultural Fields. Microbes Environ. Mar 30;34(1):23-32. doi: 10.1264/jsme2.ME18109.
dc.relationBalzergue, C., Puech-Pagés, V., Bécard, G., Rochange, S. (2010). The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. J. Exp. Bot. 62, 1049–1060. doi: 10.1093/jxb/erq335
dc.relationBanerjee, S., Palit, R., Sengupta, C., Standing, D. (2010). Stress induced phosphate solubilization by Arthrobacter sp. and Bacillus sp. Isolated from tomato rhizosphere. Australian Journal of crop science 4(6):378-383.
dc.relationBarahona, E., Navazo, A., Coronado, F., Aguirre, D., Martínez, F., Espinosa, M., Martín, M., Rivilla, R. (2010). Efficient rhizosphere colonization by Pseudomonas fluorescens f113 mutants unable to form biofilms on abiotic surfaces. Environ Microbiol. Dec;12(12):3185-95. doi: 10.1111/j.1462-2920.2010.02291.
dc.relationBertsch, F. (2003). Absorción de nutrimentos por los cultivos. Asociación Costarricense de la Ciencia del Suelo. San José, Costa Rica. 307p.
dc.relationBastidas, L., Uribe D. (2010). Protocolo de motilidad “Swimming y Swarming”. Laboratorio de Microbiología Agrícola. IBUN. Universidad Nacional de Colombia.
dc.relationBerardo, A., Reussi, N., Diovisalvi, N. (2010). Pautas para el muestreo de peciolos en papa. Laboratorio de suelos Fertilab. Mar de Plata.
dc.relationBindraban, P., Dimkpa, C., Pandey R. (2020). Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biology and Fertility of Soils 56:299–317
dc.relationBianciotto, V., Andreotti, S., Balestrini, R., Bonfante, P., Perotto, S. (2001). Mucoid Mutants of the Biocontrol Strain Pseudomonas fluorescens CHA0 Show Increased Ability in Biofilm Formation on Mycorrhizal and Nonmycorrhizal Carrot Roots. The American Phytopathological Society. Vol. 14, No. 2, 2001, pp. 255–260
dc.relationBolan, N., Robson, A., and Barrow, N. (1984). Increasing phosphorus supply can increase the infection of plant roots by vesicular- arbuscular mycorrhizal fungi. Soil Biol. Biochem. 16, 419–420
dc.relationBrowne, P., Rice, O., Miller, S., Burke, J., Dowling, D., Morrissey, J. (2009). Superior inorganic phosphate solubilization is linked to phylogeny within the Pseudomonas fluorescens complex. Applied Soil Ecology. 2009; 43:131–8.
dc.relationBücking, H., Shacha, Y. (2005). Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. New Phytologist 165: 899–912. doi: 10.1111/j.1469-8137.2004.01274.x
dc.relationCordell, D., Drangert, J., White, S. (2009). The story of phosphorus: global food security and food for thought. Glob Environ Chang 19:292– 305
dc.relationDANE – Departamento Administrativo Nacional de Estadística– (2022). Boletín mensual N°115 Insumos y factores de la producción agropecuaria (SIPSA_1), 15 de febrero de 2022 [documento en línea]. Disponible en: https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/Bol_Insumos_ene_2022.pdf
dc.relationCano, M. (2011). Interacción de microorganismos benéficos en plantas: Micorrizas, Trichoderma spp. y Pseudomonas spp. Una revisión. Revista U.D.C.A Actualidad & Divulgación Científica, 14(2), 15-31.
dc.relationCavagnaro, T., Bender, F., Asghari, H., Heijden, M. (2015). The role of arbuscular mycorrhizas in reducing soil nutrient loss. Elsevier Ltd. 1360-1385. http://dx.doi.org/10.1016/j.tplants.2015.03.004.
dc.relationCeballos, I., Michael, R., Fernandez, C., Peña, R., Rodriguez, A., Sanders, I. (2013). The in vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava. Plos One, 2013, v. 8, n. 8, 2013, e70633.
dc.relationCeballos, I., Mateus, I., Peña, R., Peña-Quemba, D., Robbins, C., Ordoñez, Y, Rocikiewicz, P., Rojas, E., Thuita, M., Mlay, D., Masso, C., Vanlawe, B., Ridríguez, A., Sanders, I. (2019). Using variation in arbuscular mycorrhizal fungi to drive the productivity of the food security crop cassava. bioRxiv. [Preprint]. doi: 10.1101/830547
dc.relationCentro de investigación La Selva. (2009). Evaluación de tres variedades comerciales de papa criolla en sus características agroindustriales bajo el efecto del N-K en tres municipios del departamento de Antioquia. Escuela campesina de agricultores. Rionegro, Antioquia.
dc.relationChaturvedi A., Cruz, J., Robbins, C., Loha, A., Menin, L., Gasilova, N., Masclaux, F., Lee, S., Sanders I. (2021). The methylome of the model arbuscular mycorryzal fungus, Rhizophagus irregularis, shares characteristics with early diverging fungi and Dikarya. (2021) 4:901
dc.relationChung, H., Li, X., Kalinga, D., Lim, S., Yada, R., Liu, Q. (2014). Physicochemical properties of dry matter and isolated starch from potatoes grown in different locations in Canada. Food Res. Int. 57, 89–94.
dc.relationCordell, D., Rosemarin, A., Schroder, J., Smit, A., (2011). Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. Chemosphere 84, 747–758.
dc.relationCovacevich, F., Echeverria, H. (2010). Indicadores para seleccionar inóculos de hongos micorrícicos arbusculares eficientes en suelos moderadamente ácidos. CI. Suelo Argentina 28(1): 9-22, 2010.
dc.relationCruz, A., Ishii, T. (2012). Arbuscular mycorrhizal fungal spores host bacteria that affect nutrient biodynamics and biocontrol of soil-borne plant pathogens. Biol. Open 1, 52–57. doi: 10.1242/bio.2011014
dc.relationDanhorn, T. y Fuqua C. (2007). Biofilm formation by plant-associated bacteria. Annu. Rev. Microbiol. 1: 401-22
dc.relationElser, J., Bennett, E., (2011). Phosphorus cycle: a broken biogeochemical cycle. Nature 478, 29–31.
dc.relationEmmett, B., Lévesque, V., Harrison, M. (2021). Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi. The ISME Journal 15:2276–2288 https://doi.org/10.1038/s41396-021-00920-2
dc.relationEtesami, H., Jeong, B., Glick B. (2021) Contribution of Arbuscular Mycorrhizal Fungi, Phosphate–Solubilizing Bacteria, and Silicon to P Uptake by Plant. Front. Plant Sci. 12:699618. doi: 10.3389/fpls.2021.699618
dc.relationFAO. (2008). International year of the potato. Why Potato? https://www.fao.org/potato-2008/en/aboutiyp/index.html. 29.01.2022
dc.relationFAO, IFAD, UNICEF, WFP, WHO. (2021). The State of Food Security and Nutrition in the World. Transforming food systems for food security, improved nutrition and affordable healthy diets for all. Rome, FAO. https://doi.org/10.4060/cb4474en
dc.relationFAO. 2019. World fertilizer trends and outlook to 2022. Rome.
dc.relationFAOSTAT. (2020). Food and agriculture data. http://www.fao.org/faostat/en/#data/QCinfo
dc.relationFiske, C., Subbarow, Y. (1925). The Colorimetric determination of phosphorus. Biochemical Laboratory, Harvard Medical School, Bost. Tomado de http://www.jbc.org/
dc.relationFortin, J.A, Bécard, G., Declerck, S., Dalpé, Y., St-Arnaud, M., Coughlan, A.P., Piché, Y. (2002). "Arbuscular mycorrhiza on root-organ cultures." Can. J. Bot. 80: 1-20.
dc.relationFrey-Klett, P., Garbaye, J., Tarkka, M. (2007). The mycorrhiza helper bacteria revisited. New Phytologist (2007) 176: 22–36
dc.relationFuquen, A., Siaucho, J. (2009). Evaluación del efecto Pseudomonas fluorescens y micorrizas arbusculares sobre el rendimiento en papa criolla (Solanum phureja) con fertilización fosfórica en Sibate (Cundinamarca). Tesis de grado, facultad de Agronomía, Universidad Nacional de Colombia.
dc.relationGamalero, E., Trotta A., Massa, N., Copetta, A., Martinotti, M., Berta, G. (2004). Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14: 185–192.
dc.relationGebhardt, C. (2013). Bridging the gap between genome analysis and precision breeding in Potato. Trends in Genetics 29(4), 248-256.
dc.relationGhorchiani, M., Etesami, H., (2018). Improvement of growth and yield of maize under water stress by co-inoculating an arbuscular mycorrhizal fungus and a plant growth promoting rhizobacterium together with phosphate fertilizers. Agri. Eco and Envi. Vol 258, 59–70. https://doi.org/10.1016/j.agee.2018.02.016
dc.relationGómez, M. (2013). Requerimientos nutricionales y manejo de la fertilización en el cultivo de papa. Curso de actualización en nutrición manejo integrado del cultivo de la papa. C.I Tibaitatá Corpoica.
dc.relationGómez, M. (2018). Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense. Tesis de doctorado, Universidad Nacional de Colombia.
dc.relationGómez, M., Castro, H. (2013). Fertilidad de suelos y fertilizantes, Capítulo IV. Ciencia del Suelo principios básicos.
dc.relationGherna, R. (1994). "Methods for general and molecular bacteriology". In Gerhardt, Murray, Wood and Krieg (ed.). American society for microbiology. pp. 278-292.
dc.relationHamon, M., Lazazzera B. (2001). The sporulation transcription fcator SpoOA is requiered for biofilm development in Bacillus subtillis. Molecular Microbiology 42: 1119-1209.
dc.relationHettiarachchi, R., Dharmakeerthi, R., Seneviratne, G., Jayakody, A., De Silva, K., Gunathilake, T., Thewarapperuma, A., (2016). Determination of desirable properties of bacteria, fungi and their biofilm associated with rubber rhizosphere. Trop. Agric. Res. 27, 399. https://doi.org/10.4038/tar.v27i4.8216.
dc.relationHerrera, MT. (2004). El papel del biofilm en el proceso infeccioso y la resistencia. NOVA. 2:71- 80.
dc.relationHigo, M., Azuma, M., Kamiyoshihara, Y., Kanda, A., Tatewaki, Y., Isobe, K. (2020). Impact of phosphorus fertilization on tomato growth and arbuscular mycorrhizal fungal communities. Microorganisms 8:178. doi: 10.3390/microorganisms8020178
dc.relationHinsa, S., O’Toole G., (2006). Biofilm formation by Pseudomonas fluorescens WCS365: a role for LapD. Microbiology, 152, 1375–1383
dc.relationHussain, M., Qayum, A., Xiuxiu, Z., Liu, L., Hussain, K., Yue, P., Marwa, Y., Koko, Y., Hussain, A., Li, X. (2021). Potato protein: An emerging source of high quality and allergy free protein, and its possible future based products, Food Research International, Volume 148, 2021, 110583, ISSN 0963-9969, https://doi.org/10.1016/j.foodres.2021.110583.
dc.relationInculet, C., Mihalache, G., Sellitto, M., Hlihor, R., Stoleru, V. (2019). The Effects of a Microorganisms-Based Commercial Product on the Morphological, Biochemical and Yield of Tomato Plants under Two Different Water Regimes. Microorganisms, 7, 706; doi:10.3390/microorganisms7120706
dc.relationIFASTAT, 2021. http://ifadata.fertilizer.org/ucSearch.aspx. (Consultado en junio 07 de 2022).
dc.relationIffis, B., St-Arnaud, M., Hijri, M. (2016). Petroleum hydrocarbon contamination, plant identity and arbuscular mycorrhizal fungal (AMF) community determine assemblages of the AMF spore-associated microbes. Environ. Microbiol. 18, 2689–2704. doi: 10.1111/1462-2920.13438
dc.relationJara, J., Alarcón, F., Monnappa, A., Santos, J., Bianco, V., Nie, P., Ciamarra, M., Canales, Á., Dinis, L., López, I., Valeriani, C., Orgaz, B. (2021). Self-Adaptation of Pseudomonas fluorescens Biofilms to Hydrodynamic Stress. Front. Microbiol. 11:588884. doi: 10.3389/fmicb.2020.588884
dc.relationJayasinghearachchi, H., Seneviratne, G. (2006). Fungal solubilization of rock phosphate is enhanced by forming fungal- rhizobia biofilm. Soil Biol. Biochem. 38, 405-408.
dc.relationJohansson, J., Paul, L., Finlay R. (2004). Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbial Ecology, 48(1):1–13.
dc.relationJohri, A., Oelmüller, R., Dua, M., Yadav, V., Kumar, M., Tuteja, N., Varma, A., Bonfante, P., Persson, B. Stroud, R. (2015). Fungal association and utilization of phosphate by plants: success, limitations, and future prospects. Front. Microbiol. 6:984. doi:10.3389/fmicb.2015.00984
dc.relationKauwenbergh, J. (2010). World phosphorus rock reserves and resources. International Fertilizer Development Center, Muscle Shoals
dc.relationKeymer, A., Pimprikar, P., Wewer, V., Huber, C., Brands, M., Bucerius, S., Delaux, P., Klingl, V., Röpenack-Lahaye, E., Wang, T., Eisenreich, W., Dörmann, P., Parniske, M., Gutjahr, C. (2017). Lipid transfer from plants to arbuscular mycorrhiza fungi eLife 6:e29107. https://doi.org/10.7554/eLife.29107
dc.relationKing, A. (2011). Nutrient Losses in Agriculture: the Role of Biochar and Fungal. The Journal of Undergraduate Research, 11, 16-22.
dc.relationKumar, C., Prakash, S., Prashantha, G., Kumar, M., Lohith, S., Chikkaramappa, T. (2013). Dry matter production and yield of potato as influenced by different sources and time of fertilizer application and soil chemical properties under rainfed conditions. Res. J. Agric. Sci. 4, 55-159.
dc.relationLara, S. (2007). Determinación del potencial agronómico de aislamientos nativos de Pseudomonas fluorescens en términos de su capacidad solubilizadora de fosfatos y antagonista contra Rhizoctia solani. Instituto de Biotecnologia. Bogota., Universidad Nacional de Colombia.
dc.relationLecomte, J., Arnaud, M. (2011). Isolation and identification of soil bacteria growing at the expense of arbuscular mycorrhizal fungi. FEMS Microbiol Lett. Apr;317(1):43-51. doi: 10.1111/j.1574-6968.2011.02209.x.
dc.relationLeonel, M., Carmo, E., Fernandez, A., Franco, C., Soratto, R. (2016). Physicochemical properties of starches isolated from potato cultivars grown in soils with different phosphorus availability. J. Sci. Food Agric. 96, 1900–1905.
dc.relationY., P., Lu, X., Gatto M. (2021). The Status and Challenges of Sustainable Intensification of Rice-Potato Systems in Southern China. American Journal of Potato Research, 98:361–373.
dc.relationMarulanda, A. (2006). Estudio de los mecanismos implicados en la resistencia de las plantas a estrés osmótico inducidos por microorganismos autóctos promotores del crecimiento vegetal (Hongos micorrícicos arbusculares y bacterias). Tesis doctoral microbiología. Universidad de Granada.
dc.relationMcCarter, L., Morabe, M., (2019). Swimming and Swarming Motility. Encyclopedia of Microbiology, 4e. Elsevier Inc. doi:10.1016/B978-0-12-809633-8.90742-8.
dc.relationMcGill, C., Kurilich, A., Davignon, J. (2013). The role of potatoes and potato components in cardiometabolic health: A review. Annal of Medicines, 1–7.
dc.relationMiranda, J., Harris, P. (1994). The effect of soil phosphorus on the external mycelium growth of arbuscular mycorrhizal fungi during the early stages of mycorrhiza formation. Plant. Soil. 166, 271–280. doi: 10.1007/BF00008340
dc.relationMogollon, J., Beusen, A., Grinsven, H., Westhoek, H., Bouwman, A. (2018). Future agricultural phosphorus demand according to the shared socioeconomic pathways. Glob Environ Chang, 50:149–163.
dc.relationMosse, B. (1973). Plant growth responses to vesicular-arbuscular mycorrhiza IV. In soil given additional phosphate. New Phytol. 72, 127–136. doi: 10.1111/j.1469-8137.1973.tb02017.x
dc.relationMurphy, J., Riley, J. (1962). A modified single solution method for determination of phosphate in natural water. Anal. Chim.Acta 27(31-36).
dc.relationNazir, R., Warmink, J., Boersma, H., Elsas, J. (2009). Mechanisms that promote bacterial fitness in fungalaffected soil microhabitats. FEMS Microbial Ecology, 71:161–8.
dc.relationNovinscak, A., Filion, M. (2018). Enhancing total lipid and stearidonic acid yields in Buglossoides arvensis through PGPR inoculation. J. Appl. Microbiol. 125, 203–215.
dc.relationNuccio, E., Hodge, A., Pett, J., Herman, D., Weber, P., Fireste, M. (2013). An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Enviromental Microbiology.
dc.relationÑústez, C., Santos, M., Navia, S., Cotes, J. (2006). Evaluación de la fertilización fosfórica foliar y edáfica sobre el rendimiento de la variedad de papa ‘Diacol Capiro’ (Solanum tuberosum L.). Agronomía Colombiana, 24(1): 111-121, 2006.
dc.relationOrdoñez, M. (2009). Interacción sinérgica entre hongos formadores de micorrizas arbusculares- Pseudomonas fluorescens y su relación en la nutrición vegetal de fósforo. Tesis de maestría en microbiología. Instituto de Biotecnología. Universidad Nacional de Colombia.
dc.relationOrdoñez, Y., Fernández, B., Lara, L., Rodríguez, A., Uribe, D., Sanders, I. (2016). Bacteria with phosphate solubilizing capacity alter mycorrhizal fungal growth both inside and outside the root and in the presence of native microbial communities. PLOS ONE doi: 10.1371/journal.pone.0154438
dc.relationO'Toole, G., Kolter, R. (1998). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol. May;28(3):449-61. doi: 10.1046/j.1365-2958.1998.00797. x.
dc.relationO'Toole, G., Kaplan, HB., Kolter, R. (2000). Biofilm formation as microbial development. Annu Rev Microbiol. 2000; 54:49-79. doi: 10.1146/annurev.micro.54.1.49. PMID: 11018124.
dc.relationOwen, D., Williams, A., Griffith, G., Withers, P. (2015). Use of commercial bio-inoculants to increase agricultural production through improved phosphorus acquisition. Applied Soil Ecology, 86:41–54.
dc.relationPandit, A., Adholeya, A., Cahill, D., Brau, L., Kochar, M. (2020), Microbial biofilms in nature: unlocking their potential for agricultural applications. J Appl Microbiol, 129: 199-211. https://doi.org/10.1111/jam.14609
dc.relationPeña, C., Cardona G. (2010). Dinámica de los suelos amazónicos: Procesos de degradación y alternativas para su recuperación. Leticia. Instituto Amazónico de Investigaciones Científicas - Sinchi.
dc.relationPérez, J., Luna, L., Burbano, O. (2018). Acumulación de biomasa en yuca (Manihot esculenta C.) ante la respuesta a la aplicación de fertilizantes NPK y biofertilizantes en condiciones de invernadero en dos tipos de suelo. Revista Colombiana de Ciencias Hortícolas. Vol. 12 - No. 2 - pp. 456-463, 2018
dc.relationPérez, W., Villareal, H. (2019). Cadena de la papa. Indicadores e instrumentos. Ministerio de Agricultura y Desarrollo Rural. https://sioc.minagricultura.gov.co/
dc.relationQuinde, B. (2022). Colombia mira a los fosfatos como un mineral de interés estratégico. 2021.https://camiper.com/tiempominero. Consulta el 5 de febrero de 2022
dc.relationRaklami, A., Bechtaoui, N., Tahiri, A., Anli, M., Meddich, A., Oufdou, K. (2019). Use of Rhizobacteria and Mycorrhizae Consortium in the Open Field as a Strategy for Improving Crop Nutrition, Productivity and Soil Fertility. Front. Microbiol. 10:1106. doi: 10.3389/fmicb.2019.01106
dc.relationSaini, I., Kaushik, P., Huqail, A., Khan, F., Siddiqui, M. (2021). Effect of the diverse combinations of useful microbes and chemical fertilizers on important traits of potato. Saudi Journal of Biological Sciences, Volume 28, Issue 5, 2021, Pages 2641-2648, ISSN 1319-562X, https://doi.org/10.1016/j.sjbs.2021.02.070.
dc.relationSalvioli di Fossalunga, A., Novero, M. (2019). To trade in the field: the molecular determinants of arbuscular mycorrhiza nutrient exchange. Chem. Biol. Technol. Agric. 6:12. doi: 10.1186/s40538-019-0150-7
dc.relationShowkat, S., Murtaza, I., Laila, O., Ali, A. (2012). Biological Control of Fusarium oxysporum and Aspergillus sp. by Pseudomonas fluorescens Isolated From Wheat Rhizosphere Soil of Kashmir. J Pharm Biol Sci, 1(4):24-32.
dc.relationSharma, S., Compant, S., Ballhausen, M., Ruppel, S., Franken, P. (2020). The interaction between Rhizoglomus irregulare and hyphae attached phosphate solubilizing bacteria increases plant biomass of Solanum lycopersicum. Microbiological Research 240 126556.
dc.relationSingh, M., Singh, D., Gupta, A., Pandey, K., Singh, P., Kumar A. (2019). Chapter Three - Plant Growth Promoting Rhizobacteria: Application in Biofertilizers and Biocontrol of Phytopathogen. PGPR Amelioration in Sustainable Agriculture, Woodhead Publishing, 2019, Pages 41-66, ISBN 9780128158791, https://doi.org/10.1016/B978-0-12-815879-1.00003-3.
dc.relationTisserant, B., Gianinazzi, V., Gianinazzi, S., Gollotte, A. (1993). In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections. Mycological Research 97: 245-250.
dc.relationToljander, J., Artursson, V., Paul, L., Jansson, J., Finlay, R. (2006). Attachment of diferent soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiol Lett. 254 34–40.
dc.relationTrouvelot, A., Kough, J., Gianinazzi, V. (1986). Mesure du taux de mycorhization VA d’un syste`me radiculaire. Recherche de methodes d’estimation ayant une signification fonctionnelle. Physiological and genetical aspects of mycorrhizae. Paris: INRA, 217–221.
dc.relationUribe, D., Sanchez, J., Vanegas, J. (2010). Role of microbial biofertilizers in the development of a sustainable agriculture in the tropics. Soil biology and agriculture in the tropics. Berlin Heidelberg: Springer-Verlag, p. 235–50.
dc.relationUzcudun, I. (2004). Biofilms bacterianos. Instituto de Agrobiotecnología y Recursos Naturales y Departamento de Producción Agraria. 37:14
dc.relationViollet, A., Pivato, B., Mougel, C., Cleyet, J., Gubry, C., Lemanceau, P., Mazurier, S. (2017) Pseudomonas fluorescens C7R12 type III secretion system impacts mycorrhization of Medicago truncatula and associated microbial communities. Mycorrhiza. Jan;27(1):23-33. doi: 10.1007/s00572-016-0730-3.
dc.relationWang, F., Shi, N., Jiang, R., Zhang, F., Feng, G. (2016). In situ stable isotope probing of phosphate-solubilizing bacteria in the hyphosphere. J. Exp. Botany 67, 1689–1701. doi: 10.1093/jxb/erv561
dc.relationYing, M., Zhang, J., Lu, P., Liang, J., Peng, S. (2009). Evaluation of Biological Characteristics of Bacteria Contributing to Biofilm Formation. Pedosphere. Vol. 9, No. 5, 554-561. doi.org/10.1016/S1002-0160(09)60149-1
dc.relationZhang, L., Xu, M., Liu, Y., Zhang, F., Hodge, A., Feng, G. (2016). Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytologist. doi: 10.1111/nph.13838
dc.relationZhang, L., Zhou, J., George, T., Limpens, E., Feng, G. (2022). Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra. Trends in Plant Science, April 2022, Vol. 27, No. 4.
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleBacterias solubilizadoras de fosfato que forman biopelículas sobre hifas extrarradicales de hongos formadores de micorrizas y su relación en la nutrición vegetal del fósforo
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución