dc.contributorRocha González, Jair Eduardo
dc.creatorFragua Niño, Flor Ángela
dc.date.accessioned2023-05-18T16:06:59Z
dc.date.accessioned2023-06-06T23:35:15Z
dc.date.available2023-05-18T16:06:59Z
dc.date.available2023-06-06T23:35:15Z
dc.date.created2023-05-18T16:06:59Z
dc.date.issued2023-05-17
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/83820
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6651382
dc.description.abstractGestionar la capacidad es un proceso que hace parte de la planeación estratégica de una organización para definir sus metas a largo, mediano o corto plazo. Un uso adecuado de la capacidad disponible permite a las empresas aumentar su eficiencia y productividad. Para las empresas de servicios no es una tarea fácil estimar su capacidad debido la variedad de recursos que deben contemplar y gestionar, las restricciones a satisfacer y la incertidumbre en la demanda de servicios. Por tanto, el presente trabajo se enfoca en un laboratorio de calidad de aguas, que en la actualidad no cuantifica su capacidad disponible, por lo que desconoce si se está haciendo una adecuada asignación de los recursos y la cantidad de ensayos que podría atender en un horizonte de planeación. Para el desarrollo del modelo, se realizó una caracterización de sus capacidades, se ejecuta el modelo en escenarios y se contrastan los resultados mediante indicadores de ocupación. Los resultados de los escenarios propuestos develan que el laboratorio tiene un alto porcentaje de capacidad ociosa, para lo cual a través de un análisis DOFA se proponen estrategias enfocadas a fortalecer aspectos que conlleven a que el laboratorio tenga una mayor demanda de servicios y por ende el uso de su capacidad aumente (Texto tomado de la fuente)
dc.description.abstractManaging capacity is a process that is part of an organization's strategic planning to define its goals in the long, medium, or short term. Proper use of available capacity allows companies to increase their efficiency and productivity. However, it is challenging for service companies to estimate their capacity due to the variety of resources they must contemplate and manage, the restrictions to satisfy, and the uncertainty in demand for services. Therefore, the present work focuses on a water quality laboratory, which currently needs to quantify its available capacity, so it is unknown if an adequate allocation of resources is being made and the potential in terms of the number of tests. That could be addressed in a planning horizon. For the development of the model, a characterization of their capacities was carried out. The resulting model is executed in different scenarios, and the results are contrasted via occupancy indicators. The results of the proposed scenarios reveal that the laboratory has a high percentage of inoperative capacity. Through SWOT analysis, strategies are proposed focused on strengthening aspects that lead to the laboratory having a greater demand for services, and therefore the use of its capacity increases.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Industrial
dc.publisherFacultad de Ingeniería
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAarabi, M., & Hasanian, S. (2014). Capacity planning and control: a review. Int. Journal of Scientific & Engineering Research., 5(8), 975–984. Retrieved from http://www.ijser.org
dc.relationAdenso‐Díaz, B., González‐Torre, P., & García, V. (2002). A capacity management model in service industries. International Journal of Service Industry Management, 13(3), 286–302. https://doi.org/10.1108/09564230210431983
dc.relationAlmasarweh, M., Alsarairah, A., & Masa’deh, R. (2018). A Statistical Study to Determine the Production Capacity of Jordanian Pharmaceutical Companies based on the Number of Working Hours Using the Assignment Problem. Modern Applied Science, 12(11). https://doi.org/10.5539/mas.v12n11p301
dc.relationArmijo, M. (2011). Planificación Estratégica e indicadores de desempeño en el sector público. Cepal-Naciones Unidas, 105. Retrieved from http://www.cepal.org/ilpes/publicaciones/xml/8/44008/SM_69_MA.pdf
dc.relationAshayeri, J., & Selen, W. (2005). An application of a unified capacity planning system. International Journal of Operations & Production Management, 25(9), 917–937. https://doi.org/10.1108/01443570510613965
dc.relationAtamtürk, A., & Hochbaum, D. S. (2001). Capacity acquisition, subcontracting, and lot sizing. Management Science, 47(8), 1081–1100. https://doi.org/10.1287/mnsc.47.8.1081.10232
dc.relationBai, J., Fügener, A., Schoenfelder, J., & Brunner, J. O. (2018). Operations research in intensive care unit management: a literature review. Health Care Management Science, 21(1). https://doi.org/10.1007/s10729-016-9375-1
dc.relationBittencourt, O., Verter, V., & Yalovsky, M. (2018). Hospital capacity management based on the queueing theory. International Journal of Productivity and Performance Management, 67(2), 224–238. https://doi.org/10.1108/IJPPM-12-2015-0193
dc.relationCarro Paz, R., & Gónzalez Gómez, D. (2019). Administración Operaciones, Capacidad y distribución física. Argentina.
dc.relationCollier, D. A. (1980). A comparison of MRP lot sizing methods considering capacity change costs. Journal of Operations Management, 1(1), 23–29. https://doi.org/10.1016/0272-6963(80)90008-X
dc.relationElkhuizen, S. G., Bor, G., Smeenk, M., Klazinga, N. S., & Bakker, P. J. M. (2007). Capacity management of nursing staff as a vehicle for organizational improvement. BMC Health Services Research, 7. https://doi.org/10.1186/1472-6963-7-196
dc.relationFragua Niño, F. Á., & Gamboa Quesada, J. A. (2017). Diseño de un Sistema de Gestión para un laboratorio de Análisis de Aguas de una Universidad (Universidad Sergio Arboleda). Retrieved from https://repository.usergioarboleda.edu.co/handle/11232/1150?show=full
dc.relationFredery, S. H., & Lieberman, G. J. (2010). Introducción a la investigación de operaciones (9th ed.). McGRAW-HILL
dc.relationGass, S. I. (1983). Decision-Aiding Models: Validation, Assessment, and Related Issues for Policy Analysi. Operations Research, 31:603-631.
dc.relationGuoxuan, M., & Demeulemeester, E. (2013). A Multilevel Integrative Approach to Hospital Case Mix and Capacity Planning. Computers and Operations Research, 40(9), 2198–2207. https://doi.org/10.2139/ssrn.1996483
dc.relationGupta, A. (2006). Simulation Modeling and Analysis (4th ed.). New York: McGraw-Hill
dc.relationGür, Ş., & Eren, T. (2018). Application of Operational Research Techniques in Operating Room Scheduling Problems: Literature Overview. Journal of Healthcare Engineering, Vol. 2018. https://doi.org/10.1155/2018/5341394
dc.relationHillier, F. y L. (2002). Investigación de Operaciones (7th ed.; Interamericana editores, Ed.). México: McGrawHil.
dc.relationJacquillat, A., & Odoni, A. R. (2015). An Integrated Scheduling and Operations Approach to Airport Congestion Mitigation. Operations Research, 63(6), 1390–1410. https://doi.org/10.1287/opre.2015.1428
dc.relationKalenatic, D., López-Bello, C. A., & González-Rodríguez, L. J. (2006). Modelo de planeación de capacidades utilizando programación fraccional lineal en un contexto de múltiples criterios de decisión. In Ingeniería, ISSN-e 0121-750X, Vol. 11, No. 2, 2006, págs. 48-60 (Vol. 11). Universidad Distrital Francisco Jose de Caldas
dc.relationKalenatic, D., López Bello, C. A., & González Rodríguez, L. J. (2005). Modelo de medición, análisis, planeación y programación de capacidades en un contexto de múltiples criterios de decisión. In Ingeniería, ISSN-e 0121-750X, Vol. 10, No. 2, 2005, págs. 57-66 (Vol. 10). Universidad Distrital Francisco Jose de Caldas
dc.relationKalenatic, D., López Bello, C. A., & González Rodríguez, L. J. (2009). Modelo de ampliación de la capacidad productiva Dusko. In Ingeniería, ISSN-e 0121-750X, Vol. 14, No. 2, 2009, págs. 67-77 (Vol. 14). Universidad Distrital Francisco Jose de Caldas.
dc.relationKaruppan, C. M., & Dunlap, N. E. (2016). Operations Management in Healthcare : Strategy and Practice OPERATIONS MANAGEMENT IN HEALTHCARE : Strategy & Practice Missouri State University Michael R . Waldrum Vidant Health Nancy E . Dunlap National Governors Association Center for Best Practices Sch. (November 2018). https://doi.org/10.1891/9780826126535
dc.relationKhan, M. R., & Callahan, B. B. (1993). Planning laboratory staffing with a queueing model. European Journal of Operational Research, 67(3), 321–331. https://doi.org/10.1016/0377-2217(93)90288-X
dc.relationKolisch, R., & Sickinger, S. (2008). Providing radiology health care services to stochastic demand of different customer classes. OR Spectrum, 30(2), 375–395. https://doi.org/10.1007/s00291-007-0116-1
dc.relationLantz, B., & Rosén, P. (2016). Measuring effective capacity in an emergency department. Journal of Health Organization and Management, 30(1), 73–84. https://doi.org/10.1108/JHOM-05-2014-0074
dc.relationLovelock, C. (1992). Seeking synergy in service operations: Seven things marketers need to know about service operations. European Management Journal, 10 No.1(0263–2373)
dc.relationNeumaier, A., Shcherbina, O., Huyer, W., & Vinkó, T. (2005). A comparison of complete global optimization solvers. Mathematical Programming, 103(2), pag.335-356.
dc.relationNg, I. C. L., Wirtz, J., & Lee, K. S. (1999). The strategic role of unused service capacity. International Journal of Service Industry Management, 10(2), 211–238. https://doi.org/10.1108/09564239910264352
dc.relationNoyan Ogulata, S., Oya Cetik, M., Koyuncu, E., & Koyuncu, M. (2009). A Simulation Approach for Scheduling Patients in the Department of Radiation Oncology. Jurnal of Medical Systems, 33:233. https://doi.org/10.1007/s10916-008-9184-2
dc.relationPardede, A. M. H., Zarlis, M., Mawengkang, H., & Tulus, T. (2019). Limited resources optimization of health care services with a linear integer programming approach. Journal of Theoretical and Applied Information Technology, 97 (12), 3513–3525.
dc.relationPatrick, J., & Puterman, M. L. (2008). Reducing Wait Times through Operations Research: Optimizing the Use of Surge Capacity. Healthcare Policy = Politiques de Sante, 3(3), 75–88.
dc.relationResenwein, J. ., & Duder, M. (2001). Towards “zero abandonments” in call center performance. European Journal of Operational Research, 135(1), 50–56. https://doi.org/10.1016/S0377-2217(00)00289-7
dc.relationRyals, L. J., & Knox, S. (2005). Measuring risk-adjusted customer lifetime value and its impact on relationship marketing strategies and shareholder value. European Journal of Marketing, 39(5–6), 456–472. https://doi.org/10.1108/03090560510590665
dc.relationSariyer, G. (2018). Sizing capacity levels in emergency medical services dispatch centers: Using the newsvendor approach. American Journal of Emergency Medicine, 36(5), 804–815. https://doi.org/10.1016/j.ajem.2017.10.027
dc.relationSitepu, S., Mawengkang, H., & Husein, I. (2018). Optimization Model for Capacity Management and Bed Scheduling for Hospital. IOP Conference Series: Materials Science and Engineering, 300(1). https://doi.org/10.1088/1757-899X/300/1/012016
dc.relationSitepu, S., Mawengkang, H., & Irvan. (2017). Modeling an integrated hospital management planning problem using integer optimization approach. Journal of Physics: Conference Series, 890(1). https://doi.org/10.1088/1742-6596/890/1/012101
dc.relationSmith-Daniels, V. L., Schweikhart, S. B., & Smith-Daniels, D. E. (1988). Capacity Management in Health Care Services: Review and Future Research Directions. Decision Sciences, 19(4), 889–919. https://doi.org/10.1111/j.1540-5915.1988.tb00310.x
dc.relationTerwiesch, C., KC, D., & Kahn, J. M. (2011). Working with capacity limitations: operations management in critical care. Critical Care, 15(4), 308. https://doi.org/10.1186/cc10217
dc.relationVieira, B., Hans, E. W., Van Vliet-Vroegindeweij, C., Van De Kamer, J., & Van Harten, W. (2016). Operations research for resource planning and -use in radiotherapy: A literature review. BMC Medical Informatics and Decision Making, Vol. 16. https://doi.org/10.1186/s12911-016-0390-4
dc.relationVissers, J., & Beech, R. (2005). Health operations management : patient flow logistics in health care. Routledge.
dc.relationTamayo y Tamayo, M. (1999). Aprender A Investigar. In ICFES (Ed.), La investgación. Bogotá
dc.relationWilliams, M. V., Burnet, N. G., Sherwin, E., Kestelman, R., Geater, A. R., Thomas, S. J., & Wilson, C. B. (2004). A Radiotherapy Technique to Improve Dose Homogeneity Around Bone Prostheses. Sarcoma, 8(1), 37–42. https://doi.org/10.1080/13577140410001679248
dc.relationZineldin, M. (2006). The royalty of loyalty: CRM, quality and retention. Journal of Consumer Marketing, 23(7), 430–437. https://doi.org/10.1108/07363760610712975
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleModelo matemático para la gestión de capacidad instalada en un laboratorio de análisis de aguas
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución