dc.contributor | Hurtado Heredia, Rafael Germán | |
dc.contributor | Jesús Gómez-Gardeñes | |
dc.contributor | Zulma Cucunubá | |
dc.contributor | Econofisica y Sociofisica | |
dc.creator | Rojas Venegas, José Alejandro | |
dc.date.accessioned | 2023-01-17T16:09:13Z | |
dc.date.accessioned | 2023-06-06T23:34:33Z | |
dc.date.available | 2023-01-17T16:09:13Z | |
dc.date.available | 2023-06-06T23:34:33Z | |
dc.date.created | 2023-01-17T16:09:13Z | |
dc.date.issued | 2022 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/82980 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6651378 | |
dc.description.abstract | Epidemic models are a precious tool for public health and epidemiology as they
can simulate the outcome of outbreaks based on assumptions and data. In particular,
Stochastic epidemic models are an exciting tool that is based on the jump
process theory; these models can be simulated with a field-like description called
the “Doi-Peliti formalism”. This thesis aims to describe epidemic models in this
formalism and exploit the structure and properties of the formalism and the models.
Here I present a variety of results based on an operator representation of
the Markovian Master Equation that is useful to simulate small systems, I also
present a result that allows calculating the probability of no-outbreak even if the
basic reproductive number is greater than one. At the end of the thesis, I present
some results based on a τ -leap sampling algorithm for a metapopulation consisting
of two subpopulations where migration plays a fundamental role, adding
more stable states and creating interesting differential dynamics, especially in the
case of slow migrations. (Texto tomado de la fuente) | |
dc.description.abstract | Los modelos epidémicos son una herramienta muy valiosa para la salud pública
y la epidemiología dado que son capaces de simular el resultado de un brote
basándose en asunciones y datos. En particular, los modelos epidémicos estocásticos
son una herramienta interesante que está basada en la teoría de procesos
de salto, estos modelos pueden ser simulados con una descripción similar a la
teoría de campos llamada “Formalismo de Doi-Peliti”. El objetivo de esta tesis
es describir modelos epidémicos en dicho formalismo utilizando propiedades del
formalismo y de los modelos. Acá presento una variedad de resultados basado
en una representación de operadores de la ecuación maestra Markoviana que son
útiles para simular sistemas pequeños, también presento un resultado que permite
calcular la probabilidad de que no exista un brote aún cuando el número reproductivo
básico es mayor a uno. Al final de esta tesis presento algunos resultados
basados en un algoritmo de muestreo llamado τ leap, este procedimiento lo aplico
a metapoblaciones que consisten de dos subpoblaciones en las que la migración
juega un rol fundamental, añadiendo más estados estables al sistema y creando
una dinámica diferencial, especialmente en el caso de migraciones lentas. | |
dc.language | eng | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Física | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Aadrita, N. (2019). Stochastic Models of Emerging or Re-emerging Infectious
Diseases: Probability of Outbreak, Epidemic Duration and Final Size. PhD
thesis, Texas Tech University. | |
dc.relation | Al-Mohy, A. H. and Higham, N. J. (2010). A new scaling and squaring algorithm
for the matrix exponential. SIAM Journal on Matrix Analysis and Applications,
31(3):970–989. | |
dc.relation | Al-Mohy, A. H. and Higham, N. J. (2010). A new scaling and squaring algorithm
for the matrix exponential. SIAM Journal on Matrix Analysis and Applications,
31(3):970–989. | |
dc.relation | Allen, L. J. (2017). A primer on stochastic epidemic models: Formulation, numerical
simulation, and analysis. Infectious Disease Modelling, 2(2):128–142. | |
dc.relation | Arai, T. (2015). Path integral representation for stochastic jump processes with
boundaries. | |
dc.relation | Biswas, M. H. A., , Paiva, L. T., and de Pinho, M. (2014). A SEIR model for
control of infectious diseases with constraints. Mathematical Biosciences and
Engineering, 11(4):761–784. | |
dc.relation | Brauer, F., van den Driessche, P., and Wu, J., editors (2008). Compartmental
Models in Epidemiology, pages 19–79. Springer Berlin Heidelberg, Berlin,
Heidelberg. | |
dc.relation | Byrne, A. W., McEvoy, D., Collins, A. B., Hunt, K., Casey, M., Barber, A., Butler,
F., Griffin, J., Lane, E. A., McAloon, C., Brien, K. O., Wall, P., Walsh, K. A.,
and More, S. J. (2020). Inferred duration of infectious period of SARS-CoV-2:
rapid scoping review and analysis of available evidence for asymptomatic and
symptomatic COVID-19 cases. BMJ Open, 10(8):e039856. | |
dc.relation | Caicedo-Ochoa, Y., Rebell´on-S´anchez, D. E., Pe˜naloza-Rall´on, M., Cort´es-Motta,
H. F., and M´endez-Fandi˜no, Y. R. (2020). Effective reproductive number estimation
for initial stage of COVID-19 pandemic in latin american countries.
International Journal of Infectious Diseases, 95:316–318. | |
dc.relation | Cardy, J. (2006). Reaction-diffusion processes. Oxford, 1 edition. | |
dc.relation | CDC (2021). Sars-cov-2 variant classifications and definitions. | |
dc.relation | Colizza, V. and Vespignani, A. (2008). Epidemic modeling in metapopulation
systems with heterogeneous coupling pattern: Theory and simulations. Journal
of Theoretical Biology, 251(3):450–467. | |
dc.relation | Cooper, I., Mondal, A., and Antonopoulos, C. G. (2020). A SIR model assumption
for the spread of COVID-19 in different communities. Chaos, Solitons &
Fractals, 139:110057. | |
dc.relation | Dadlani, A., Afolabi, R. O., Jung, H., Sohraby, K., and Kim, K. (2020). Deterministic
models in epidemiology: From modeling to implementation | |
dc.relation | De, P., Singh, A. E., Wong, T., and Kaida, A. (2007). Predictors of gonorrhea reinfection
in a cohort of sexually transmitted disease patients in alberta, canada,
1991–2003. Sexually Transmitted Diseases, 34(1):30–36. | |
dc.relation | Dicker, R. C., Coronado, F., Koo, D., and Parrish, R. G. (2012). Principles
of Epidemiology in Public Health Practice: An introduction to applied epidemiology
and biostatistics. U.S. Departmentt of Health and Human Services,
Centers for Disease Control and Prevention (CDC), Office of Workforce and
Career Development, third edition. | |
dc.relation | Dodd, P. J. and Ferguson, N. M. (2009). A many-body field theory approach to
stochastic models in population biology. PLoS ONE, 4(9):e6855. | |
dc.relation | Doi, M. (1976). Second quantization representation for classical many-particle
system. Journal of Physics A: Mathematical and General, 9(9):1465–1477. | |
dc.relation | El-Hay, T., Friedman, N., Koller, D., and Kupferman, R. (2012). Continuous
time markov networks. | |
dc.relation | Erten, E., Lizier, J., Piraveenan, M., and Prokopenko, M. (2017). Criticality and
information dynamics in epidemiological models. Entropy, 19(5):194. | |
dc.relation | Estrada, E. and Hatano, N. (2008). Communicability in complex networks. Physical
Review E, 77(3). | |
dc.relation | Ferraz de Arruda, G., Petri, G., Martin Rodriguez, P., and Moreno, Y. (2021).
Multistability, intermittency and hybrid transitions in social contagion models
on hypergraphs. arXiv e-prints, page arXiv:2112.04273. | |
dc.relation | Gardiner, C. W. (2004). Handbook of stochastic methods for physics, chemistry
and the natural sciences, volume 13 of Springer Series in Synergetics. Springer-
Verlag, Berlin, third edition. | |
dc.relation | Ghosh, I., Tiwari, P. K., Samanta, S., Elmojtaba, I. M., Al-Salti, N., and Chattopadhyay,
J. (2018). A simple SI-type model for HIV/AIDS with media and
self-imposed psychological fear. Mathematical Biosciences, 306:160–169. | |
dc.relation | Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions.
The Journal of Physical Chemistry, 81(25):2340–2361 | |
dc.relation | Gillespie, D. T. (2007). Stochastic simulation of chemical kinetics. Annual Review
of Physical Chemistry, 58(1):35–55. | |
dc.relation | Haag, G. (2017). Modelling with the Master Equation. Springer International
Publishing. | |
dc.relation | Hammer, W. (1906). The milroy lectures on epidemic disease in england—the
evidence of variability and of persistency of type. The Lancet, 167(4305):569–
574. Originally published as Volume 1, Issue 4305. | |
dc.relation | Hethcote, H. W. (2000). The mathematics of infectious diseases. SIAM Review,
42(4):599–653. | |
dc.relation | Hunter, E., Namee, B. M., and Kelleher, J. D. (2017). A taxonomy for agentbased
models in human infectious disease epidemiology. Journal of Artificial
Societies and Social Simulation, 20(3). | |
dc.relation | Institute, N. C. (2022). Nci dictionary of genetics terms. | |
dc.relation | Keeling, M. and Ross, J. (2007). On methods for studying stochastic disease
dynamics. Journal of The Royal Society Interface, 5(19):171–181. | |
dc.relation | Keeling, M. J. and Eames, K. T. (2005). Networks and epidemic models. Journal
of The Royal Society Interface, 2(4):295–307. | |
dc.relation | Kermack, W. O. and McKendrick, A. G. (1927). A contribution to the mathematical
theory of epidemics. Proceedings of the Royal Society of London. Series A,
Containing Papers of a Mathematical and Physical Character, 115(772):700–
721. | |
dc.relation | Manrique-Abril, F. G., Agudelo-Calderon, C. A., Gonzalez-Chorda, V. M., Gutierrez
Lesmes, O., Tellez Pi˜neres, C. F., and Herrera-Amaya, G. (2020). Modelo
SIR de la pandemia de COVID-19 en Colombia. Revista de Salud Publica, 22. | |
dc.relation | Masuda, N. and Rocha, L. E. C. (2018). A gillespie algorithm for non-markovian
stochastic processes. SIAM Review, 60(1):95–115. | |
dc.relation | Mehdaoui, M. (2021). A review of commonly used compartmental models in
epidemiology. | |
dc.relation | Moein, S., Nickaeen, N., Roointan, A., Borhani, N., Heidary, Z., Javanmard, S. H.,
Ghaisari, J., and Gheisari, Y. (2021). Inefficiency of SIR models in forecasting
COVID-19 epidemic: a case study of isfahan. Scientific Reports, 11(1). | |
dc.relation | Moler, C. and Loan, C. V. (2003). Nineteen dubious ways to compute the exponential
of a matrix, twenty-five years later. SIAM Review, 45(1):3–49. | |
dc.relation | Mondaini, L. (2015). Second quantization approach to stochastic epidemic models. | |
dc.relation | Noyola-Martinez, J. C. (2008). Investigation of the tau-leap method for stochastic
simulation. PhD thesis, Rice University. | |
dc.relation | Pastor-Satorras, R., Castellano, C., Mieghem, P. V., and Vespignani, A. (2015).
Epidemic processes in complex networks. Reviews of Modern Physics,
87(3):925–979. | |
dc.relation | Pastor-Satorras, R. and Sol´e, R. V. (2001). Field theory for a reaction-diffusion
model of quasispecies dynamics. Physical Review E, 64(5). | |
dc.relation | Peliti, L. (1985). Path integral approach to birth-death processes on a lattice. J.
Phys. France, 46(9):1469–1483 | |
dc.relation | Rojas-Venegas, J. A., Hurtado, R., and Gomez-Garde˜nes, J. (2022). The consequences
of locality and initial conditions in the operator approach to epidemic
models. In process. | |
dc.relation | Ross, R. (1916). An application of the theory of probabilities to the study of a
priori pathometry.—part i. Proceedings of the Royal Society of London. Series
A, Containing Papers of a Mathematical and Physical Character, 92(638):204–
230. | |
dc.relation | Schiøler, H., Knudsen, T., Brøndum, R. F., Stoustrup, J., and Bøgsted, M. (2021).
Mathematical modelling of SARS-CoV-2 variant outbreaks reveals their probability
of extinction. Scientific Reports, 11(1). | |
dc.relation | Soriano-Pa˜nos, D., Lotero, L., Arenas, A., and G´omez-Garde˜nes, J. (2018). Spreading
processes in multiplex metapopulations containing different mobility networks.
Physical Review X, 8(3). | |
dc.relation | Thanh, V. H. and Priami, C. (2015). Simulation of biochemical reactions with
time-dependent rates by the rejection-based algorithm. The Journal of Chemical
Physics, 143(5):054104. | |
dc.relation | Treibert, S., , Brunner, H., Ehrhardt, M., , and and (2019). Compartment models
for vaccine effectiveness and non-specific effects for tuberculosis. Mathematical
Biosciences and Engineering, 16(6):7250–7298. | |
dc.relation | van Wijland, F., Oerding, K., and Hilhorst, H. (1998). Wilson renormalization of
a reaction–diffusion process. Physica A: Statistical Mechanics and its Applications,
251(1-2):179–201. | |
dc.relation | Vargas-De-Le´on, C. (2011). On the global stability of SIS, SIR and SIRS epidemic
models with standard incidence. Chaos, Solitons & Fractals, 44(12):1106–1110. | |
dc.relation | Vastola, J. J. (2019). Solving the chemical master equation for monomolecular
reaction systems analytically: a doi-peliti path integral view. | |
dc.relation | Wasserman, S. and Faust, K. (1994). Social Network Analysis. Cambridge University
Press. | |
dc.relation | Weidlich, W. and Haag, G. (1982). Concepts and models of a quantitative sociology.
Springer Series in Synergetics. Springer, Berlin, Germany. | |
dc.relation | Whittle, P. (1955). The outcome of a stochastic epidemic- a note on bailey’s
paper. Biometrika, 42(1-2):116–122. | |
dc.relation | Willem, L., Verelst, F., Bilcke, J., Hens, N., and Beutels, P. (2017). Lessons
from a decade of individual-based models for infectious disease transmission: a
systematic review (2006-2015). BMC Infectious Diseases, 17(1). | |
dc.rights | Atribución-CompartirIgual 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-sa/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Operator approach to epidemic systems in networks | |
dc.type | Trabajo de grado - Maestría | |