dc.contributorCastañeda Sánchez, Darío Antonio
dc.contributorBranch Bedoya, John Willian
dc.contributorGidia: Grupo de Investigación y Desarrollo en Inteligencia Artificial
dc.contributorCalderón Caro, Evelin [0000-0002-9754-0905]
dc.creatorCalderón Caro, Evelin
dc.date.accessioned2023-03-13T13:34:28Z
dc.date.accessioned2023-06-06T23:34:28Z
dc.date.available2023-03-13T13:34:28Z
dc.date.available2023-06-06T23:34:28Z
dc.date.created2023-03-13T13:34:28Z
dc.date.issued2022
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/83615
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6651376
dc.description.abstractEn Colombia, muchos cultivos están ubicados en los altiplanos de las regiones andinas, en altitudes superiores a 2.500 m s.n.m, donde se concentra la mayor susceptibilidad a la ocurrencia de eventos de heladas. El objetivo de este estudio fue proponer un modelo de predicción temprana de heladas basado en la relación entre estos eventos y variables climáticas, mediante la implementación de algoritmos de aprendizaje de máquinas. Las variables climáticas se obtuvieron a partir de trece estaciones meteorológicas distribuidas en nueve municipios del departamento de Cundinamarca. Las variables registradas fueron la temperatura, humedad relativa, punto de rocío, radiación fotosintéticamente activa y precipitación, estas constituyeron las variables explicativas de los eventos de heladas. Las métricas utilizadas para la evaluación predictiva del rendimiento de los cinco métodos de aprendizaje de máquinas examinados fueron precisión, tasa de verdaderos positivos, tasa de verdaderos negativos, exactitud y puntuación F1. Se identificó que las horas previas a la ocurrencia de un evento de helada se caracterizan por presentar baja humedad, bajo punto de rocío y alta radiación. Cuatro de los cinco modelos entrenados se desempeñaron satisfactoriamente, con métricas de evaluación superiores al 91 %. La validación cruzada y el análisis estadístico demostraron que el modelo de potenciación del gradiente para la detección de heladas presentó la mayor precisión. Adicionalmente, se evaluaron dos modelos para la predicción de la temperatura mínima y se encontraron métricas de error (error medio absoluto y error cuadrático medio) inferiores a 0,55 °C para una ventana de tiempo de una hora. (Texto tomado de la fuente)
dc.description.abstractIn Colombia, many crops are located in the highlands of the Andean region, at altitudes above 2,500 m a.s.l., where the greatest susceptibility to the occurrence of frost events is concentrated. The objective of this study was to propose an early frost prediction model based on the relationship between these events and climatic variables, through the implementation of machine learning algorithms. The climatic variables were obtained from thirteen meteorological stations distributed in nine municipalities of the department of Cundinamarca. The variables recorded were temperature, relative humidity, dew point, photosynthetically active radiation, and precipitation, these constituted the explanatory variables of frost events. The metrics used for the predictive evaluation of the performance of the five machine learning methods examined were precision, true positive rate, true negative rate, accuracy, and F1 score. It was identified that the hours prior to the occurrence of a frost event were characterized by low humidity, low dew point and high radiation. Four of the five trained models performed satisfactorily, with evaluation metrics greater than 91 %. Cross-validation and statistical analysis showed that the gradient boosting model for frost detection had the highest accuracy. Additionally, two models for the prediction of the minimum temperature were evaluated and error metrics (mean absolute error and mean square error) of less than 0.55 °C were found for one hour time window.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Minas - Maestría en Ingeniería - Analítica
dc.publisherFacultad de Minas
dc.publisherMedellín, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationRedCol
dc.relationLaReferencia
dc.relationAguilar, M., & Torres, S. B. (2010). Protocolo de uso y aprovechamiento de la uva de anís en matorrales andinos del Altiplano Cundiboyacense. In A. E. y G. Editores (Ed.), Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. http://repository.humboldt.org.co/handle/20.500.11761/31447
dc.relationAlapaty, K., Herwehe, J. A., Otte, T. L., Nolte, C. G., Bullock, O. R., Mallard, M. S., Kain, J. S., & Dudhia, J. (2012). Introducing subgrid-scale cloud feedbacks to radiation for regional meteorological and climate modeling. Geophysical Research Letters, 39(24), 1–5. https://doi.org/10.1029/2012GL054031
dc.relationAlmansour, N. A., Syed, H. F., Khayat, N. R., Altheeb, R. K., Juri, R. E., Alhiyafi, J., Alrashed, S., & Olatunji, S. O. (2019). Neural network and support vector machine for the prediction of chronic kidney disease: A comparative study. Computers in Biology and Medicine, 109, 101–111. https://doi.org/10.1016/j.compbiomed.2019.04.017
dc.relationArribillaga, D., Bravo, R., Campos, C., Fuentes, M., Gatica, J., Luchabeche, P., Quintana, J., Reyes, M., Salacar, C., Salvo del Pedregal, J., & Vidal, M. (2020). Heladas. Factores, tendencias y efectos en frutales y vides. In R. Bravo, J. Quintana, & M. Reyes (Eds.), Instituto de Investigaciones Agropecuarias: Vol. Boletín IN (N° 417). https://biblioteca.inia.cl/bitstream/handle/123456789/6847/Boletín INIA N° 417?sequence=1&isAllowed=y
dc.relationBecerra, L. L. (2021). San Valentín, el desquite de los floricultores en pandemia. Portafolio. https://www.portafolio.co/economia/san-valentin-el-desquite-de-los-floricultores-en-pandemia-con-las-exportaciones-de-flores-548989
dc.relationBonilla, J. E., Ramirez, J., & Ramirez, O. (2006). Metodología para el diseño de un modelo univariado de Red Neuronal Para El Pronóstico De La Temperatura Mínima En La Zona De Mosquera (Cundinamarca, Colombia). Meteorología Colombiana., 10, 111–120.
dc.relationBrito, A., Araújo, H. A., & Zebende, G. F. (2019). Detrended Multiple Cross-Correlation Coefficient applied to solar radiation, air temperature and relative humidity. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-019-56114-6
dc.relationBugata, P., & Drotar, P. (2020). On some aspects of minimum redundancy maximum relevance feature selection. Science China Information Sciences, 63(1), 1–15. https://doi.org/10.1007/s11432-019-2633-y
dc.relationCadenas, J. M., Garrido, M. C., Martínez, R., & Guillén, M. A. (2020). Making decisions for frost prediction in agricultural crops in a soft computing framework. Computers and Electronics in Agriculture, 175(May), 105587. https://doi.org/10.1016/j.compag.2020.105587
dc.relationCastañeda, A., & Castaño, V. M. (2017). Smart frost control in greenhouses by neural networks models. Computers and Electronics in Agriculture, 137, 102–114. https://doi.org/10.1016/j.compag.2017.03.024
dc.relationCastañeda, A., & Castaño, V. M. (2020). Internet of things for smart farming and frost intelligent control in greenhouses. Computers and Electronics in Agriculture, 176(June), 105614. https://doi.org/10.1016/j.compag.2020.105614
dc.relationCastillo, F. E., & Castellvi, F. (2001). Agrometeorología (Mundi-Prensa (ed.); 2a ed.). https://docplayer.es/78435550-Agrometeorologia-2a-edicion-corregida-coordinadores-francisco-elias-castillo-instituto-nacional-de-investigaciones-agrarias.html
dc.relationChang, D. C., Sohn, H. B., Cho, J. H., Im, J. S., Jin, Y. I., Do, G. R., Kim, S. J., Cho, H. M., & Lee, Y. B. (2014). Freezing and Frost Damage of Potato Plants: a Case Study on Growth Recovery, Yield Response, and Quality Changes. Potato Research, 57(2), 99–110. https://doi.org/10.1007/s11540-014-9253-5
dc.relationCharbuty, B., & Abdulazeez, A. (2021). Classification Based on Decision Tree Algorithm for Machine Learning. Journal of Applied Science and Technology Trends, 2(01), 20–28. https://doi.org/10.38094/jastt20165
dc.relationChavarro, D., Vélez, M., Montenegro, I., Hernández, A., & Olaya, A. (2018). Objetivos de Desarrollo Sostenible en Colombia y el aporte de la ciencia, la tecnologia y la innovación. “Patrimonio”: Economía Cultural Y Educación Para La Paz (Mec-Edupaz), 2(14), 100–117.
dc.relationChipindu, L., Mupangwa, W., Mtsilizah, J., Nyagumbo, I., & Zaman-Allah, M. (2020). Maize Kernel Abortion Recognition and Classification Using Binary Classification Machine Learning Algorithms and Deep Convolutional Neural Networks. Ai, 1(3), 361–375. https://doi.org/10.3390/ai1030024
dc.relationCho, S., Kim, Y. J., Lee, M., Woo, J. H., & Lee, H. J. (2021). Correction to: Cut-off points between pain intensities of the postoperative pain using receiver operating characteristic (ROC) curves (BMC Anesthesiology, (2021), 21, 1, (29). https://doi.org/10.1186/s12871-021-01410-w
dc.relationChristensen, J. H., Krishna Kumar, K., Aldrian, E., An, S.-I., Cavalcanti, I. F. A., de Castro, M., Dong, W., Goswami, P., Hall, A., Kanyanga, J. K., Kitoh, A., Kossin, J., Lau, N.-C., Renwick, J., Stephenson, D. B., Xie, S.-P., & Zhou, T. (2013). Climate Phenomena and their Relevance for Future Regional Climate Change. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, 1217–1308. http://www.climatechange2013.org/images/report/WG1AR5_FOD_Ch14_All_Final.pdf
dc.relationClarkson, D. T., Earnshaw, M. J., White, P. J., & Cooper, H. D. (1988). Temperature dependent factors influencing nutrient uptake: an analysis of responses at different levels of organization. In Symposia of the Society for Experimental Biology, 42, 281–309.
dc.relationColinet, H., Lee, S. F., & Hoffmann, A. (2010). Functional characterization of the Frost gene in Drosophila melanogaster: Importance for recovery from chill coma. PLoS ONE, 5(6), 1–7. https://doi.org/10.1371/journal.pone.0010925
dc.relationDanandeh Mehr, A. (2021). Drought classification using gradient boosting decision tree. Acta Geophysica, 69(3), 909–918. https://doi.org/10.1007/s11600-021-00584-8
dc.relationdel Angel, J. A., & Sarmiento, A. (2011). Utilización De La Escala Beaufort En La Determinación Del Potencial Eólico. Revista Científica de Ingeniería Energética, 25(1), 13–17. https://rie.cujae.edu.cu/index.php/RIE/article/download/171/169
dc.relationDepartamento Administrativo Nacional de Estadística DANE. (2021). Boletín técnico Exportaciones (EXPO). DANE. https://www.dane.gov.co/index.php/estadisticas-por-tema/comercio-internacional/exportaciones/exportaciones-historicos
dc.relationDeVries, Z., Locke, E., Hoda, M., Moravek, D., Phan, K., Stratton, A., Kingwell, S., Wai, E. K., & Phan, P. (2021). Using a national surgical database to predict complications following posterior lumbar surgery and comparing the area under the curve and F1-score for the assessment of prognostic capability. Spine Journal, 21(7), 1135–1142. https://doi.org/10.1016/j.spinee.2021.02.007
dc.relationDiedrichs, A. L., Bromberg, F., Dujovne, D., Brun-Laguna, K., & Watteyne, T. (2018). Prediction of Frost Events Using Machine Learning and IoT Sensing Devices. IEEE Internet of Things Journal, 5(6), 4589–4597. https://doi.org/10.1109/JIOT.2018.2867333
dc.relationDimitriadis, S. I., Liparas, D., & Tsolaki, M. N. (2018). Random forest feature selection, fusion and ensemble strategy: Combining multiple morphological MRI measures to discriminate among healhy elderly, MCI, cMCI and alzheimer’s disease patients: From the alzheimer’s disease neuroimaging initiative (ADNI) data. Journal of Neuroscience Methods, 302, 14–23. https://doi.org/10.1016/j.jneumeth.2017.12.010
dc.relationDing, L., Noborio, K., & Shibuya, K. (2019). Frost forecast using machine learning - From association to causality. Procedia Computer Science, 159, 1001–1010. https://doi.org/10.1016/j.procs.2019.09.267
dc.relationDing, L., Noborio, K., & Shibuya, K. (2020). Modelling and learning cause-effect - application in frost forecast. Procedia Computer Science, 176, 2264–2273. https://doi.org/10.1016/j.procs.2020.09.285
dc.relationDing, L., Tamura, Y., Yoshida, S., Owada, K., Toyoda, T., Morishita, Y., Noborio, K., & Shibuya, K. (2021). Ensemble causal modelling for frost forecast in vineyard. Procedia Computer Science, 192, 3194–3203. https://doi.org/10.1016/j.procs.2021.09.092
dc.relationDinh, T. V., Nguyen, H., Tran, X. L., & Hoang, N. D. (2021). Predicting Rainfall-Induced Soil Erosion Based on a Hybridization of Adaptive Differential Evolution and Support Vector Machine Classification. Mathematical Problems in Engineering, 2021. https://doi.org/10.1155/2021/6647829
dc.relationDujovne, D., Watteyne, T., Mercado, G., & Diedrichs, A Taffernaberry, J C Perez Peña, J. E. (2020). Wireless Wine: Estimación de rendimiento y ubicación de sensores para la predicción de heladas en los viñedos. Universidad Nacional de La Patagonia Austral.
dc.relationEccel, E., Ghielmi, L., Granitto, P., Barbiero, R., Grazzini, F., & Cesari, D. (2007). Prediction of minimum temperatures in an alpine region by linear and non-linear post-processing of meteorological models. Nonlinear Processes in Geophysics, 14(3), 211–222. https://doi.org/10.5194/npg-14-211-2007
dc.relationEl Espectador. (2021). Pérdidas de más de 10.000 hectáreas de cultivos por época de helada y sequía en Cundinamarca. https://www.elespectador.com/bogota/perdidas-mas-de-10000-hectareas-de-cultivos-por-epoca-de-heladas-y-s¿quia-en-cundinamarca-article/
dc.relationFuentes, M., Campos, C., & García-Loyola, S. (2018). Application of artificial neural networks to frost detection in central chile using the next day minimum air temperature forecast. Chilean Journal of Agricultural Research, 78(3), 327–338. https://doi.org/10.4067/S0718-58392018000300327
dc.relationFundación CK-12. (2021). Conceptos de Ciencias de la Tierra: La circulación en la atmósfera. California. https://flexbooks.ck12.org/cbook/ck-12-conceptos-de-ciencias-de-la-tierra-grados-6-8-en-espanol/section/7.14/primary/lesson/la-circulación-en-la-atmósfera/
dc.relationGaliba, G., Vágújfalvi, A., Li, C., Soltész, A., & Dubcovsky, J. (2009). Regulatory genes involved in the determination of frost tolerance in temperate cereals. Plant Science, 176(1), 12–19. https://doi.org/10.1016/j.plantsci.2008.09.016
dc.relationGarreaud, R. D. (2009). The Andes climate and weather. Advances in Geosciences, 22, 3–11. https://doi.org/10.5194/adgeo-22-3-2009
dc.relationGhielmi, L., & Eccel, E. (2006). Descriptive models and artificial neural networks for spring frost prediction in an agricultural mountain area. Computers and Electronics in Agriculture, 54(2), 101–114. https://doi.org/10.1016/j.compag.2006.09.001
dc.relationGómez, D. A. (2014). Caracterización, pronóstico y alternativas de manejo de las heladas en el sistema de producción lechero del Valle de Ubaté y Chiquinquirá (Colombia). Universidad Nacional de Colombia.
dc.relationGómez, D., Araujo, G., Martínez, F. E., Rodríguez, A. O., Estupiñan, J. M., & Deantonio, L. Y. (2021). Análisis de eventos climáticos extremos asociados a excesos de lluvia y heladas meteorológicas en el Altiplano Cundiboyacense de Colombia. Revista de Climatología, 21, 112–126. https://rclimatol.eu/2021/09/18/analisis-de-eventos-climaticos-extremos-asociados-a-excesos-de-lluvia-y-heladas-meteorologicas-en-el-altiplano-cundiboyacense-de-colombia/
dc.relationGonzález, O. C., & Torres, C. F. (2012). Actualización nota técnica heladas. Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). http://www.ideam.gov.co/documents/21021/21147/Documento+FINAL+actua lizacion+nota+tecnica+heladas.pdf/e10a0183-62e6-410a-8e96-7e0739f6f06b
dc.relationGu, L., Hanson, P. J., Post, W. Mac, Kaiser, D. P., Yang, B., Nemani, R., Pallardy, S. G., & Meyers, T. (2008). The 2007 eastern US spring freeze: Increased cold damage in a warming world? BioScience, 58(3), 253–262. https://doi.org/10.1641/B580311
dc.relationGuhl, E. (2013). La región hídrica de bogotá - Capítulo Marco conceptual. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 37(144), 327–341.
dc.relationGuillen, M. A., Cadenas, J. M., Garrido, M. C., Ayuso, B., & Martinez, R. (2018). A Preliminary Study to Solve Crop Frost Prediction Using an Intelligent Data Analysis Process. Intelligent Environments 2018, 23, 97–106. https://doi.org/10.3233/978-1-61499-874-7-97
dc.relationGuillén, M. A., Martínes, R., Bueno, A., Ayuso, B., Moren, J. L., & Cecilia, J. M. (2019). An LSTM Deep Learning Scheme for Prediction of Low Temperatures in Agriculture. 130–138. https://doi.org/10.3233/AISE190032
dc.relationGuillén, M. A., Martínez, R., Llanes, A., Bueno, A., & Cecilia, J. M. (2020). A deep learning model to predict lower temperatures in agriculture. Journal of Ambient Intelligence and Smart Environments, 12(1), 21–34. https://doi.org/10.3233/AIS-200546
dc.relationHashempour, A., Ghasemnezhad, M., Ghazvini, R. F., & Sohani, M. M. (2014). The Physiological and Biochemical Responses to Freezing Stress of Olive Plants Treated with Salicylic Acid 1. Russian Journal of Plant Physiology, 61(4), 443–450. https://doi.org/10.1134/S1021443714040098
dc.relationHashi, E. K., & Md. Shahid Uz Zaman. (2020). Developing a Hyperparameter Tuning Based Machine Learning Approach of Heart Disease Prediction. Journal of Applied Science & Process Engineering, 7(2), 631–647. https://doi.org/10.33736/jaspe.2639.2020
dc.relationHecke, T. Van. (2012). Power study of anova versus Kruskal-Wallis test. Journal of Statistics and Management Systems, 15(2–3), 241–247. https://doi.org/10.1080/09720510.2012.10701623
dc.relationHo, Y., & Wookey, S. (2020). The Real-World-Weight Cross-Entropy Loss Function: Modeling the Costs of Mislabeling. IEEE Access, 8, 4806–4813. https://doi.org/10.1109/ACCESS.2019.2962617
dc.relationHu, Y. G., Asante, E. A., Lu, Y. Z., Mahmood, A., Buttar, N. A., & Yuan, S. Q. (2018). Review of air disturbance technology for plant frost protection. International Journal of Agricultural and Biological Engineering, 11(3), 21–28. https://doi.org/10.25165/j.ijabe.20181103.3172
dc.relationHu, Y. G., Zhao, C., Liu, P. F., Asante, E. A., & Li, P. P. (2016). Sprinkler irrigation system for tea frost protection and the application effect. International Journal of Agricultural and Biological Engineering, 9(5), 17–23. https://doi.org/10.3965/j.ijabe.20160905.1315
dc.relationHurtado, G. (1996). Estadísticas de la Helada Meteorológica en Colombia (IDEAM (ed.); METEO/007-).
dc.relationInstituto Colombiano Agropecuario. (2021). El ICA, soporte para la exportación de flores y ornamentales al mundo para San Valentín. ICA. https://www.ica.gov.co/noticias/ica-san-valentin-flores-colombia-llegan-100-paises
dc.relationInternational Trade Center. (2020). List of importers for the selected product: 0603 Flowers and buds, cut for bouquets or decorations. https://www.trademap.org/Country_SelProduct_TS.aspx?nvpm=1%7C%7C%7C%7C%7C0603%7C%7C%7C4%7C1%7C1%7C1%7C2%7C1%7C2%7C1%7C1%7C1
dc.relationJain, A., Mcclendon, R. W., & Hoogenboom, G. (2006). Freeze prediction for specific locations using artificial neural networks. 49(6), 1955–1962.
dc.relationJoshi, N. C., Yadav, D., Ratner, K., Kamara, I., Aviv-Sharon, E., Irihimovitch, V., & Charuvi, D. (2020). Sodium hydrosulfide priming improves the response of photosynthesis to overnight frost and day high light in avocado (Persea americana Mill, cv. ‘Hass’). Physiologia Plantarum, 168(2), 394–405. https://doi.org/10.1111/ppl.13023
dc.relationJuna, A., Umer, M., Sadiq, S., Karamti, H., Eshmawi, A. A., Mohamed, A., & Ashraf, I. (2022). Water Quality Prediction Using KNN Imputer and Multilayer Perceptron. Water, 14, 2592, 1–19. https://doi.org/10.3390/w14172592
dc.relationJuurakko, C. L., diCenzo, G. C., & Walker, V. K. (2021). Cold acclimation and prospects for cold-resilient crops. Plant Stress, 2(August), 100028. https://doi.org/10.1016/j.stress.2021.100028
dc.relationKitchenham, B., & Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering. Technical Report, Ver. 2.3 EBSE Technical Report. EBSE.
dc.relationKochhar, S. L., & Gujral, S. K. (2020). Plant Physiology. In Cambridge University Press (2nd ed., Issue April).
dc.relationKukal, M. S., & Irmak, S. (2018). U. S. Agro-Climate in 20th Century: Growing Degree Days , First and Last Frost , Growing Season Length , and Impacts on Crop Yields. Scientific Reports, January, 1–14. https://doi.org/10.1038/s41598-018-25212-2
dc.relationLatif, R. M. A., Belhaouari, S. B., Saeed, S., Imran, L. B., Sadiq, M., & Farha, M. (2020). Integration of Google Play Content and Frost Prediction Using CNN: Scalable IoT Framework for Big Data. IEEE Access, 8, 6890–6900. https://doi.org/10.1109/ACCESS.2019.2963590
dc.relationLee, H., Chun, J. A., Han, H. H., & Kim, S. (2016). Prediction of Frost Occurrences Using Statistical Modeling Approaches. Advances in Meteorology, 2016. https://doi.org/10.1155/2016/2075186
dc.relationLhomme, J.-P., & Vacher, J.-J. (2003). La Mitigación de heladas en los camellones del altiplano andino. Bulletin de l’Institut Français d’études Andines, 32(32 (2)), 377–399. https://doi.org/10.4000/bifea.6556
dc.relationLi, X., Ahammed, J. G., Li, Z., Zhang, L., Wei, J., Yan, P., Zhang, L.-P., & Han, W.-Y. (2018). Scientia Horticulturae Freezing stress deteriorates tea quality of new fl ush by inducing photosynthetic inhibition and oxidative stress in mature leaves. Scientia Horticulturae, 230(December 2017), 155–160. https://doi.org/10.1016/j.scienta.2017.12.001
dc.relationLindkvist, L., Gustavsson, T., & Bogren, J. (2000). A frost assessment method for mountainous areas. Agricultural and Forest Meteorology, 102(1), 51–67. https://doi.org/10.1016/S0168-1923(99)00087-8
dc.relationLinnenluecke, M. K., Marrone, M., & Singh, A. K. (2020). Conducting systematic literature reviews and bibliometric analyses. Australian Journal of Management, 45(2), 175–194. https://doi.org/10.1177/0312896219877678
dc.relationLiu, J., & Sherif, S. M. (2019). Combating Spring Frost With Ethylene. Frontiers in Plant Science, 10(October), 1–6. https://doi.org/10.3389/fpls.2019.01408
dc.relationLuengas, E., Guhl, A., Castro, J. C., González, L. N., & Restrepo, S. (2021). Modeling the correlation between potato disease spread and climate variables to guide fungicide applications in Cundinamarca, Colombia. Naturaleza y Sociedad. Desafíos Medioambientales, 1, 7–42. https://revistas.uniandes.edu.co/doi/full/10.53010
dc.relationLukatkin, A., Brazaityte, A., Bobinas, C., & Duchovskis, P. (2012). Chilling injury in chilling-sensitive plants: a review. Agriculture, 99(2), 111–124. https://doi.org/https://doi.org/10.1016/j.postharvbio.2005.04.012
dc.relationMajeed, M., Bhatti, K. H., & Amjad, M. S. (2021). Impact of climatic variations on the flowering phenology of plant species in Jhelum district, Punjab, Pakistan. Applied Ecology and Environmental Research, 19(August), 3343–3376. https://doi.org/10.15666/aeer/1905
dc.relationMaqsood, I., Khan, M. R., & Abraham, A. (2004). An ensemble of neural networks for weather forecasting. Neural Computing and Applications, 13(2), 112–122. https://doi.org/10.1007/s00521-004-0413-4
dc.relationMaraveas, C., & Bartzanas, T. (2021). Application of Internet of Things (IoT) for Optimized Greenhouse Environments. AgriEngineering, 3(4), 954–970. https://doi.org/10.3390/agriengineering3040060
dc.relationMarmolejo, D., & Ruiz, J. E. (2018). Tolerance of native potatoes (Solanum spp.) to ice creams in the context of climate change. Scientia Agropecuaria, 9(3), 393–400. https://doi.org/10.17268/sci.agropecu.2018.03.10
dc.relationMayorga, M., Fischer, G., Melgarejo, L. M., & Parra-Coronado, A. (2020). Growth, development and quality of Passiflora tripartita var. Mollissima fruits under two environmental tropical conditions. Journal of Applied Botany and Food Quality, 93, 66–75. https://doi.org/10.5073/JABFQ.2020.093.009
dc.relationMcelwee, P., Castro, P., Marisa, A., Walter, A., & Filho, L. (2019). Climate Change-Resilient Agriculture and Agroforestry. Springer International Publishing. https://doi.org/10.1007/978-3-319-75004-0
dc.relationMercado, F. R., García Fernández, W., & Acebey, J. A. H. (2016). Sistema de inteligencia artificial para la predicción temprana de heladas meteorológicas Artificial intelligence system for early prediction of weather frost. Acta Nova, 7 (December), 1683–0768.
dc.relationMeza, C. C., & Gutierréz, S. A. (2020). Evaluación de modelos de clasificación para la predicción de heladas en el sector agricultor de Mosquera Cundinamarca, Colombia [Universidad de La Salle]. https://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1778&context=ing_automatizacion
dc.relationMinisterio de Agricultura y Desarrollo Rural. (2019). Evaluaciones Agropecuarias Municipales EVA. Red de Información y Comunicación Del Sector Agropecuario Colombiano [Agronet]. https://www.datos.gov.co/Agricultura-y-Desarrollo-Rural/Evaluaciones-Agropecuarias-Municipales-EVA/2pnw-mmge
dc.relationMinisterio de Agricultura y Medio Ambiente. (2020). “Debemos mantener la guardia con medidas preventivas frente a bajas temperaturas y fenómeno de La Niña”: ministro Rodolfo Zea. https://www.minagricultura.gov.co/noticias/Paginas/“Debemos-mantener-la-guardia-con-medidas-preventivas-frente-a-bajas-temperaturas-y-fenómeno-de-La-Niña”-ministro-Rodolfo-Ze.aspx
dc.relationMoumen, Z., Elhassnaoui, I., & Daid, F. (2021). Statistical descriptive analysis of three climate variables; Precipitation, temperature and relative humidity . Study cases (Innaouene watershed; Morocco). 03004, 1–7.
dc.relationNagasuga, K., Murai-Hatano, M., & Kuwagata, T. (2011). Effects of low root temperature on dry matter production and root water uptake in rice plants. Plant Production Science, 14(1), 22–29. https://doi.org/10.1626/pps.14.22
dc.relationOlszewski, F., Jeranyama, P., Kennedy, C. D., & DeMoranville, C. J. (2017). Automated cycled sprinkler irrigation for spring frost protection of cranberries. Agricultural Water Management, 189, 19–26. https://doi.org/10.1016/j.agwat.2017.04.014
dc.relationOvando, G., Bocco, M., & Sayago, S. (2005). Redes Neuronales Para Modelar Predicción De Heladas. Agricultura Técnica, 65(1). https://doi.org/10.4067/s0365-28072005000100007
dc.relationOzgur, A. (2004). Supervised and unsupervised machine learning techniques for text document categorization [Bogazi¸ci University]. In CWL Publishing Enterprises, Inc., Madison (Vol. 2004). http://onlinelibrary.wiley.com/doi/10.1002/cbdv.200490137/abstract
dc.relationPatel, H., Singh Rajput, D., Thippa Reddy, G., Iwendi, C., Kashif Bashir, A., & Jo, O. (2020). A review on classification of imbalanced data for wireless sensor networks. International Journal of Distributed Sensor Networks, 16(4). https://doi.org/10.1177/1550147720916404
dc.relationPearce, R. S. (2001). Plant Freezing and Damage. Annals of Botany, 87(4), 417–424. https://doi.org/10.1006/anbo.2000.1352
dc.relationPedregosa, F., Varoquaux, G., Gramfort, Alexandre Michel, Vincent Thirion, Bertrand Grisel, Olivier Blondel, Mathieu Prettenhofer, Peter Weiss, R., & Dubourg, Vincent Vanderplas, Jake Passos, Alexandre Cournapeau, David Brucher, Matthieu Perrot, Matthieu Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research JMLR 12. https://scikit-learn.org/stable/modules/neural_networks_supervised.html#neural-networks-supervised
dc.relationPino, M. & Chen, T. (2016). Efectos de las heladas en el cultivo de papa, y desafíos del mejoramiento genético. Boletín Inia. Vol. Nº 331. Pág. 130-141.
dc.relationPrabha, T., & Hoogenboom, G. (2008). Evaluation of the Weather Research and Forecasting model for two frost events. Computers and Electronics in Agriculture, 64(2), 234–247. https://doi.org/10.1016/j.compag.2008.05.019
dc.relationProcolombia. (2019). ¿Cómo funciona el sector floricultor en Colombia? https://www.colombiatrade.com.co/noticias/como-funciona-el-sector-floricultor-en-colombia
dc.relationRamasamy, L. K., Kadry, S., & Lim, S. (2021). Selection of optimal hyper-parameter values of support vector machine for sentiment analysis tasks using nature-inspired optimization methods. Bulletin of Electrical Engineering and Informatics, 10(1), 290–298. https://doi.org/10.11591/eei.v10i1.2098
dc.relationRibeiro, A. C., De Melo-Abreu, J. P., & Snyder, R. L. (2006). Apple orchard frost protection with wind machine operation. Agricultural and Forest Meteorology, 141(2–4), 71–81. https://doi.org/10.1016/j.agrformet.2006.08.019
dc.relationRodríguez, K. (2020). Así enfrentan las heladas los municipios más afectados de Cundinamarca. El Espectador. https://www.elespectador.com/bogota/asi-enfrentan-las-heladas-los-municipios-mas-afectados-de-cundinamarca-article-899460/
dc.relationRout, B. M. (2020). Advances in Freez- ing Stress Resis- tance in Vegetable Crops. Biotica Research Today, 2(5 Spl.), 261–263. https://bioticainternational.com/ojs/index.php/biorestoday/article/view/150
dc.relationSallis, P., Jarur, M., & Trujillo, M. (2008). Frost Prediction Characteristics and Classification Frost Prediction Characteristics and Classification. November. https://doi.org/10.1007/978-3-642-02490-0
dc.relationSchratz, P., Muenchow, J., Iturritxa, E., Richter, J., & Brenning, A. (2019). Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data. Ecological Modelling, 406(June), 109–120. https://doi.org/10.1016/j.ecolmodel.2019.06.002
dc.relationShabala, S. (2017). Plant stress physiology. In CABI (2ND ed., Vol. 3). https://books.google.com.co/books
dc.relationShahhosseini, M., Hu, G., & Pham, H. (2022). Optimizing ensemble weights and hyperparameters of machine learning models for regression problems. Machine Learning with Applications, 7(December 2021), 100251. https://doi.org/10.1016/j.mlwa.2022.100251
dc.relationShamsnia, S. A., Shahidi, N., Liaghat, A., Sarraf, A., & Vahdat, S. F. (2011). Modeling of weather parameters using stochastic methods (ARIMA model)(case study: Abadeh Region, Iran). International Conference on Environment and Industrial Innovation. IPCBEE, 12, 282–285. http://www.ipcbee.com/vol12/55-C30028.pdf
dc.relationSimnitt, S., Borisova, T., Chavez, D., & Olmstead, M. (2017). Frost protection for Georgia peach varieties: Current practices and information needs. HortTechnology, 27(3), 344–353. https://doi.org/10.21273/HORTTECH03590-16
dc.relationSmith, B. A., Hoogenboom, G., & McClendon, R. W. (2009). Artificial neural networks for automated year-round temperature prediction. Computers and Electronics in Agriculture, 68(1), 52–61. https://doi.org/10.1016/j.compag.2009.04.003
dc.relationSmith, B. A., Mcclendon, R. W., & Hoogenboom, G. (2006). Improving Air Temperature Prediction with Artificial Neural Networks. International Journal of Computer and Information Engineering, 1(10), 3159. http://waset.org/publications/10353/improving-air-temperature-prediction-with-artificial-neural-networks
dc.relationSnyder, R. L. (2000). Principles of Frost Protection. University of California, 1((Long version – Quick Answer FP005)). https://d1wqtxts1xzle7.cloudfront.net
dc.relationSnyder, R. L., & de Melo-abreu, J. P. (2010). Protección contra las heladas: fundamentos, práctica y economía. In Organización de las Naciones Unidas para la Agricultura y la Alimentación (Ed.), Organización de las Naciones Unidas para la Agricultura y la Alimentación FAO (Volumen 1). https://www.fao.org/3/y7223s/y7223s.pdf
dc.relationStephens, G. L. (2005). Cloud feedbacks in the climate system: A critical review. Journal of Climate, 18(2), 237–273. https://doi.org/10.1175/JCLI-3243.1
dc.relationStriegler, K., Allen, A., Bergmeier, E., & Caple, H. (2007). Understanding and Preventing Freeze Damage in Vineyards. Institute for Continental Climate Viticulture and Enology, University of Missouri-Columbia, 108. https://site.extension.uga.edu/viticulture/files/2018/03/Missouri-Freeze-Conference-Proceedings.pdf#page=39
dc.relationSuperintendencia de Sociedades. (2017). Desempeño del sector floricultor en Bogotá, Colombia. https://www.supersociedades.gov.co/SiteCollectionDocuments/2017/EEEstudio sector Flores-2017 09 28.pdf
dc.relationTaiz, L., & Zeiger, E. (2002). Plant physiology (S. Associantes (ed.); Third).
dc.relationTrilles, S., Juan, P., Chaudhuri, S., & Fortea, A. B. V. (2021). Data on CO2, temperature and air humidity records in Spanish classrooms during the reopening of schools in the COVID-19 pandemic. Data in Brief, 39, 107489. https://doi.org/10.1016/j.dib.2021.107489
dc.relationVerdes, P. F., Granitto, P. M., Navone, H. D., & Ceccatto, H. A. (2000). Frost prediction with machine learning techniques. In I. de F. R. (CONICET-UNR) (Ed.), VI Congreso Argentino de Ciencias de la Computación. (p. 11). http://sedici.unlp.edu.ar/bitstream/handle/10915/23444/SI-026.pdf?sequence=1
dc.relationWen, X., Lu, S., & Jin, J. (2012). Integrating remote sensing data with WRF for improved simulations of oasis effects on local weather processes over an Arid Region in Northwestern China. Journal of Hydrometeorology, 13(2), 573–587. https://doi.org/10.1175/JHM-D-10-05001.1
dc.relationWolfe, D. W. (1991). Low temperature effects on early vegetative growth, leaf gas exchange and water potential of chilling-sensitive and chilling-tolerant crop species. Annals of Botany, 67(3), 205–212. https://doi.org/10.1093/oxfordjournals.aob.a088124
dc.relationXier, L. (2009). Analysis Of Monthly Temperature of Stockholm. Level Essay in Statistics.
dc.relationYin, G., Sun, H., Xin, X., Qin, G., Liang, Z., & Jing, X. (2009). Mitochondrial damage in the soybean seed axis during imbibition at chilling temperatures. Plant and Cell Physiology, 50(7), 1305–1318. https://doi.org/10.1093/pcp/pcp074
dc.relationYu, H., Chen, Y., Hassan, S. G., & Li, D. (2016). Prediction of the temperature in a Chinese solar greenhouse based on LSSVM optimized by improved PSO. Computers and Electronics in Agriculture, 122, 94–102. https://doi.org/10.1016/j.compag.2016.01.019
dc.relationZaharia, M., Chen, A., Davidson, A., Ghodsi, A., Hong, S. A., Konwinski, A., Murching, S., Nykodym, T., Ogilvie, P., Parkhe, M., Xie, F., & Zumar, C. (2018). Accelerating the Machine Learning Lifecycle with MLflow. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 39–45.
dc.relationZhang, J. P., & Mani, I. (2003). KNN Approach to Unbalanced Data Distributions: A Case Study Involving Information Extraction. Proceeding of International Conference on Machine Learning (ICML 2003), Washington DC, Workshop o.
dc.relationZhou, I., Lipman, J., Abolhasan, M., & Shariati, N. (2022). Minute-wise frost prediction: An approach of recurrent neural networks. Array, 14(October 2021), 100158. https://doi.org/10.1016/j.array.2022.100158
dc.relationZhu, C., Idemudia, C. U., & Feng, W. (2019). Improved logistic regression model for diabetes prediction by integrating PCA and K-means techniques. Informatics in Medicine Unlocked, 17(March), 100179. https://doi.org/10.1016/j.imu.2019.100179
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titlePredicción temprana de heladas en cultivos de altura, empleando métodos de aprendizaje de máquinas
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución