dc.contributor | Sanchez Torres, German | |
dc.contributor | Branch Bedoya, John Willian | |
dc.contributor | Gidia: Grupo de Investigación y Desarrollo en Inteligencia Artificial | |
dc.creator | Ballesteros Parra, John Robert | |
dc.date.accessioned | 2022-10-28T15:36:56Z | |
dc.date.accessioned | 2023-06-06T23:31:24Z | |
dc.date.available | 2022-10-28T15:36:56Z | |
dc.date.available | 2023-06-06T23:31:24Z | |
dc.date.created | 2022-10-28T15:36:56Z | |
dc.date.issued | 2022-10-12 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/82529 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6651345 | |
dc.description.abstract | This thesis presents a three methods pipeline for extraction of point, line, and polygon vector objects from orthomosaics using a deep generative model as an alternative to the default semantic segmentation approach. The first method consists of two workflows, the vector ground truth is acquired by manual digitalization of certain objects or from Open Street Maps. Raster layers input are spectral and geometrically augmented, both inputs are then tessellated and paired into image-masks that pass through an imbalance checking step. Balanced dataset is then random split into a final dataset. Conditional and unpaired generative models are compared and pix2pix is chosen by its better results on image to mask translation. Results of the chosen model on different datasets and configurations are reported on the mIoU metric. A batch size of 10 and datasets of 1000 image-masks pairs of 512x512 pixels, with overlapping augmentation showed the best quantitative results. Height of objects from the DSM, and VARI index contribute to decrease variance of discriminator and generator losses. Producing synthetic data is the horsepower of generative models, so a double image to mask translation is used to improve resultant masks in terms of continuity and uniform width. Double image to mask translation model is trained with a dataset of equal size masks of 1 meter called primitive masks, that are obtained by a buffer distance parameter. This cleaning procedure showed to improve resultant masks, that are then converted to vector and measured by quantity, length, or area against vector ground truth, using a proposed metric for map creation called “The average geometry similarity (AGS)”. | |
dc.description.abstract | Esta tesis presenta una metodología basada en tres métodos para la extracción de puntos, lineas, y polígonos de objetos vectoriales presentes en ortomosaicos usando un modelo generativo basado en aprendizaje profundo como una alternativa al enfoque de segmentación semántica usado por defecto. El primer método consiste en dos líneas de trabajo, las capas vector de entrenamiento son adquiridas bien sea por digitalización manual de los objetos de interés o directamente desde Open Street Maps (OSM). Las capas raster de entrada son aumentadas spectral y geométricamente, teseladas y emparejadas en pares imagen-mascara que se chequean ante el imbalance. El conjunto de datos balanceado es luego partido al azar para obtener el conjunto final. Los modelos generativos, condicionales y no emparejados son comparados y el mejor es escogido para realizar las traducciones entre imagen y mascara. Los resultados de la comparación y los obtenidos por el mejor modelo sobre diferentes conjuntos de datos, y su configuración son reportados usando la metrica mIoU. Un lote de tamaño diez para un conjunto de 1000 image-mascaras de 512x512 pixeles, con augmentación por solapamiento mostró los mejores resultados cuantitativos. La altura de los objetos obtenida del DSM, y el índice VARI contribuyen a disminuir la varianza del discriminador y del generador. La producción de datos sintéticos es el caballo de batalla de los modelos generativos, así que una doble traducción de imagen a mascara (DCIT) es empleada para mejorar las mascaras resultantes en términos de su continuidad y uniformidad. Un modelo para realizar DCIT es entrenado con un conjunto de datos de igual tamaño de mascara de 1 metro llamado mascaras primitivas, que son obtenidas usando una distancia buffer como parametro. Este procedimiento de limpieza mostró que mejora las mascaras resultantes, que son luego convertidas a vector y medidas en cantidad, distancia, o area vs la realidad vectorial, usando una métrica propuesta para la creación de mapas llamada “Similaridad geomética promedia (AGS)" (Texto tomado de la fuente) | |
dc.language | eng | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Medellín - Minas - Doctorado en Ingeniería - Sistemas | |
dc.publisher | Departamento de la Computación y la Decisión | |
dc.publisher | Facultad de Minas | |
dc.publisher | Medellín, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | Abdollahi, A., Pradhan, B., & Alamri, A. (2021). RoadVecNet: A new approach for simultaneous road
network segmentation and vectorization from aerial and google earth imagery in a complex urban
set-up. GIScience & Remote Sensing, 58(7), 1151–1174.
https://doi.org/10.1080/15481603.2021.1972713 | |
dc.relation | Abdollahi, A., Pradhan, B., & Shukla, N. (2019). Extraction of road features from UAV images using a
novel level set segmentation approach. International Journal of Urban Sciences.
https://doi.org/10.1080/12265934.2019.1596040 | |
dc.relation | Abdollahi, A., Pradhan, B., Shukla, N., Chakraborty, S., & Alamri, A. (2020). Deep Learning
Approaches Applied to Remote Sensing Datasets for Road Extraction: A State-Of-The-Art Review.
Remote Sensing, 12(9), 1444. https://doi.org/10.3390/rs12091444 | |
dc.relation | Aldana Rodriguez, D., Ávila Granados, D. L., & Villalba-Vidales, J. A. (2021). Use of Unmanned Aircraft
Systems for Bridge Inspection: A Review. DYNA, 88(217), 32–41.
https://doi.org/10.15446/dyna.v88n217.91879 | |
dc.relation | Al-Najjar, H. A. H., Kalantar, B., Pradhan, B., Saeidi, V., Halin, A. A., Ueda, N., & Mansor, S. (2019).
Land Cover Classification from fused DSM and UAV Images Using Convolutional Neural Networks.
Remote Sensing, 11(12), 1461. https://doi.org/10.3390/rs11121461 | |
dc.relation | Avola, D., & Pannone, D. (2021). MAGI: Multistream Aerial Segmentation of Ground Images with
Small-Scale Drones. Drones, 5(4), 111. https://doi.org/10.3390/drones5040111 | |
dc.relation | Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A Deep Convolutional Encoder-Decoder
Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 39(12), 2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615 | |
dc.relation | Ballesteros, J. R., Sanchez-Torres, G., & Branch, J. W. (2021). Automatic road extraction in small
urban areas of developing countries using drone imagery and Image Translation. 2021 2nd
Sustainable Cities Latin America Conference (SCLA), 1–6.
https://doi.org/10.1109/SCLA53004.2021.9540111 | |
dc.relation | Ballesteros, J. R., Sanchez-Torres, G., & Branch-Bedoya, J. W. (2022). HAGDAVS: Height-Augmented
Geo-Located Dataset for Detection and Semantic Segmentation of Vehicles in Drone Aerial
Orthomosaics. Data, 7(4), 50. https://doi.org/10.3390/data7040050 | |
dc.relation | Ballesteros, John R., German Sanchez-Torres, and John W. Branch-Bedoya. 2022. "A GIS Pipeline to Produce GeoAI Datasets from Drone Overhead Imagery" ISPRS International Journal of Geo-Information 11, no. 10: 508. https://doi.org/10.3390/ijgi11100508 | |
dc.relation | Batra, A., Singh, S., Pang, G., Basu, S., Jawahar, C. V., & Paluri, M. (2019). Improved Road Connectivity
by Joint Learning of Orientation and Segmentation. 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 10377–10385. https://doi.org/10.1109/CVPR.2019.01063 | |
dc.relation | Bhatnagar, S., Gill, L., & Ghosh, B. (2020). Drone Image Segmentation Using Machine and Deep
Learning for Mapping Raised Bog Vegetation Communities. Remote Sensing, 12(16), 2602.
https://doi.org/10.3390/rs12162602 | |
dc.relation | Bisio, I., Haleem, H., Garibotto, C., Lavagetto, F., & Sciarrone, A. (2021). Performance Evaluation and
Analysis of Drone-based Vehicle Detection Techniques From Deep Learning Perspective. IEEE
Internet of Things Journal, 1–1. https://doi.org/10.1109/JIOT.2021.3128065 | |
dc.relation | Blaga, B.-C.-Z., & Nedevschi, S. (2020). A Critical Evaluation of Aerial Datasets for Semantic
Segmentation. 2020 IEEE 16th International Conference on Intelligent Computer Communication and
Processing (ICCP), 353–360. https://doi.org/10.1109/ICCP51029.2020.9266169 | |
dc.relation | Bolstad, P. (2016). GIS fundamentals: A first text on geographic information systems : 5th ed. Eider
(PressMinnesota). http://repository.ntt.edu.vn/jspui/handle/298300331/2885 | |
dc.relation | Brooks, C. (2017). Drone-Enabled Remote Sensing for Transportation Infrastructure Assessment.
INSPIRE-University Transportation Center Webinars.
https://scholarsmine.mst.edu/inspire_webinars/2 | |
dc.relation | Bulatov, D., Häufel, G., & Pohl, M. (2016). VECTORIZATION OF ROAD DATA EXTRACTED FROM AERIAL
AND UAV IMAGERY. ISPRS - International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, XLI-B3, 567–574. https://doi.org/10.5194/isprsarchives-XLI-B3-567-
2016 | |
dc.relation | Buslaev, A., Iglovikov, V. I., Khvedchenya, E., Parinov, A., Druzhinin, M., & Kalinin, A. A. (2020).
Albumentations: Fast and Flexible Image Augmentations. Information, 11(2), 125.
https://doi.org/10.3390/info11020125 | |
dc.relation | Cheng, B., Collins, M. D., Zhu, Y., Liu, T., Huang, T. S., Adam, H., & Chen, L.-C. (2020). Panoptic DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation. 12475–12485.
https://openaccess.thecvf.com/content_CVPR_2020/html/Cheng_Panoptic DeepLab_A_Simple_Strong_and_Fast_Baseline_for_Bottom-Up_Panoptic_CVPR_2020_paper.html | |
dc.relation | ChiangYao-Yi, LeykStefan, & A, K. (2014). A Survey of Digital Map Processing Techniques. ACM
Computing Surveys (CSUR). https://doi.org/10.1145/2557423 | |
dc.relation | Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., &
Schiele, B. (2016). The Cityscapes Dataset for Semantic Urban Scene Understanding. 3213–3223.
https://openaccess.thecvf.com/content_cvpr_2016/html/Cordts_The_Cityscapes_Dataset_CVPR_
2016_paper.html | |
dc.relation | Crommelinck, S., Bennett, R., Gerke, M., Koeva, M. N., Yang, M. Y., & Vosselman, G. (2017). SLIC
SUPERPIXELS FOR OBJECT DELINEATION FROM UAV DATA. ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, IV-2/W3, 9–16. https://doi.org/10.5194/isprs annals-IV-2-W3-9-2017 | |
dc.relation | Crommelinck, S., Bennett, R., Gerke, M., Nex, F., Yang, M. Y., & Vosselman, G. (2016). Review of
Automatic Feature Extraction from High-Resolution Optical Sensor Data for UAV-Based Cadastral
Mapping. Remote Sensing, 8(8), 689. https://doi.org/10.3390/rs8080689 | |
dc.relation | Deigele, W., Brandmeier, M., & Straub, C. (2020). A Hierarchical Deep-Learning Approach for Rapid
Windthrow Detection on PlanetScope and High-Resolution Aerial Image Data. Remote Sensing,
12(13), 2121. https://doi.org/10.3390/rs12132121 | |
dc.relation | Demir, I., Koperski, K., Lindenbaum, D., Pang, G., Huang, J., Basu, S., Hughes, F., Tuia, D., & Raskar,
R. (2018). DeepGlobe 2018: A Challenge to Parse the Earth Through Satellite Images. 172–181.
https://openaccess.thecvf.com/content_cvpr_2018_workshops/w4/html/Demir_DeepGlobe_201
8_A_CVPR_2018_paper.html | |
dc.relation | DrivenData. Open Cities AI Challenge: Segmenting Buildings for Disaster Resilience. DrivenData.
Retrieved June 22, 2022, from https://www.drivendata.org/competitions/60/building segmentation-disaster-resilience/ | |
dc.relation | Eng, L. S., Ismail, R., Hashim, W., & Baharum, A. (2019). The Use of VARI, GLI, and VIgreen Formulas
in Detecting Vegetation In aerial Images. International Journal of Technology, 10(7), 1385.
https://doi.org/10.14716/ijtech.v10i7.3275 | |
dc.relation | Fan, Q., Brown, L., & Smith, J. (2016). A closer look at Faster R-CNN for vehicle detection. 2016 IEEE
Intelligent Vehicles Symposium (IV), 124–129. https://doi.org/10.1109/IVS.2016.7535375 | |
dc.relation | Filin, O., Zapara, A., & Panchenko, S. (2018). Road Detection with EOSResUNet and Post Vectorizing
Algorithm. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), 201–2014. https://doi.org/10.1109/CVPRW.2018.00036 | |
dc.relation | Gao, X., Sun, X., Zhang, Y., Yan, M., Xu, G., Sun, H., Jiao, J., & Fu, K. (2018). An End-to-End Neural
Network for Road Extraction From Remote Sensing Imagery by Multiple Feature Pyramid Network.
IEEE Access, 6, 39401–39414. https://doi.org/10.1109/ACCESS.2018.2856088 | |
dc.relation | Gerke, M., Rottensteiner, F., Wegner, J., & Sohn, G. (2014). ISPRS Semantic Labeling Contest.
https://doi.org/10.13140/2.1.3570.9445 | |
dc.relation | Girard, N., & Tarabalka, Y. (2018). End-to-End Learning of Polygons for Remote Sensing Image
Classification. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium,
2083–2086. https://doi.org/10.1109/IGARSS.2018.8518116 | |
dc.relation | Gitelson, A. A., Stark, R., Grits, U., Rundquist, D., Kaufman, Y., & Derry, D. (2002). Vegetation and
soil lines in visible spectral space: A concept and technique for remote estimation of vegetation
fraction. International Journal of Remote Sensing, 23(13), 2537–2562.
https://doi.org/10.1080/01431160110107806 | |
dc.relation | Gong, Z., Xu, L., Tian, Z., Bao, J., & Ming, D. (2020). Road network extraction and vectorization of
remote sensing images based on deep learning. 2020 IEEE 5th Information Technology and
Mechatronics Engineering Conference (ITOEC), 303–307.
https://doi.org/10.1109/ITOEC49072.2020.9141903 | |
dc.relation | Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., &
Bengio, Y. (2014). Generative Adversarial Nets. Advances in Neural Information Processing Systems,
27. https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-
Abstract.html | |
dc.relation | Hartmann, S., Weinmann, M., Wessel, R., & Klein, R. (2017, May 30). StreetGAN: Towards Road
Network Synthesis with Generative Adversarial Networks. | |
dc.relation | sola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2017). Image-to-Image Translation with Conditional
Adversarial Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
5967–5976. https://doi.org/10.1109/CVPR.2017.632 | |
dc.relation | Kameyama, S., & Sugiura, K. (2021). Effects of Differences in Structure from Motion Software on
Image Processing of Unmanned Aerial Vehicle Photography and Estimation of Crown Area and Tree
Height in Forests. Remote Sensing, 13(4), 626. https://doi.org/10.3390/rs13040626 | |
dc.relation | Kearney, S. P., Coops, N. C., Sethi, S., & Stenhouse, G. B. (2020). Maintaining accurate, current, rural
road network data: An extraction and updating routine using RapidEye, participatory GIS and deep
learning. International Journal of Applied Earth Observation and Geoinformation, 87, 102031.
https://doi.org/10.1016/j.jag.2019.102031 | |
dc.relation | Li, Z., Xin, Q., Sun, Y., & Cao, M. (2021). A Deep Learning-Based Framework for Automated Extraction
of Building Footprint Polygons from Very High-Resolution Aerial Imagery. Remote Sensing, 13(18),
3630. https://doi.org/10.3390/rs13183630 | |
dc.relation | Long, Y., Xia, G.-S., Li, S., Yang, W., Yang, M. Y., Zhu, X. X., Zhang, L., & Li, D. (2021). On Creating
Benchmark Dataset for Aerial Image Interpretation: Reviews, Guidances, and Million-AID. IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 4205–4230.
https://doi.org/10.1109/JSTARS.2021.3070368 | |
dc.relation | López-Tapia, S., Ruiz, P., Smith, M., Matthews, J., Zercher, B., Sydorenko, L., Varia, N., Jin, Y., Wang,
M., Dunn, J. B., & Katsaggelos, A. K. (2021). Machine learning with high-resolution aerial imagery
and data fusion to improve and automate the detection of wetlands. International Journal of Applied
Earth Observation and Geoinformation, 105, 102581. https://doi.org/10.1016/j.jag.2021.102581 | |
dc.relation | Maggiori, E., Tarabalka, Y., Charpiat, G., & Alliez, P. (2017). Can semantic labeling methods
generalize to any city? The inria aerial image labeling benchmark. 2017 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), 3226–3229.
https://doi.org/10.1109/IGARSS.2017.8127684 | |
dc.relation | Marmanis, D., Wegner, J. D., Galliani, S., Schindler, K., Datcu, M., & Stilla, U. (n.d.). SEMANTIC
SEGMENTATION OF AERIAL IMAGES WITH AN ENSEMBLE OF CNNS. 8. | |
dc.relation | Mnih, V., & Hinton, G. E. (2010). Learning to Detect Roads in High-Resolution Aerial Images. In K.
Daniilidis, P. Maragos, & N. Paragios (Eds.), Computer Vision – ECCV 2010 (pp. 210–223). Springer.
https://doi.org/10.1007/978-3-642-15567-3_16 | |
dc.relation | Murtiyoso, A., Veriandi, M., Suwardhi, D., Soeksmantono, B., & Harto, A. B. (2020). Automatic
Workflow for Roof Extraction and Generation of 3D CityGML Models from Low-Cost UAV Image Derived Point Clouds. ISPRS International Journal of Geo-Information, 9(12), 743.
https://doi.org/10.3390/ijgi9120743 | |
dc.relation | Ng, V., & Hofmann, D. (2018). Scalable Feature Extraction with Aerial and Satellite Imagery. 145–
151. https://doi.org/10.25080/Majora-4af1f417-015 | |
dc.relation | Osco, L. P., Marcato Junior, J., Marques Ramos, A. P., de Castro Jorge, L. A., Fatholahi, S. N., de
Andrade Silva, J., Matsubara, E. T., Pistori, H., Gonçalves, W. N., & Li, J. (2021). A review on deep
learning in UAV remote sensing. International Journal of Applied Earth Observation and
Geoinformation, 102, 102456. https://doi.org/10.1016/j.jag.2021.102456 | |
dc.relation | Pan, X., Yang, F., Gao, L., Chen, Z., Zhang, B., Fan, H., & Ren, J. (2019). Building Extraction from High Resolution Aerial Imagery Using a Generative Adversarial Network with Spatial and Channel
Attention Mechanisms. Remote Sensing, 11(8), 917. https://doi.org/10.3390/rs11080917 | |
dc.relation | Pashaei, M., Kamangir, H., Starek, M. J., & Tissot, P. (2020). Review and Evaluation of Deep Learning
Architectures for Efficient Land Cover Mapping with UAS Hyper-Spatial Imagery: A Case Study Over
a Wetland. Remote Sensing, 12(6), 959. https://doi.org/10.3390/rs12060959 | |
dc.relation | Pinto, L., Bianchini, F., Nova, V., & Passoni, D. (2020). LOW-COST UAS PHOTOGRAMMETRY FOR
ROAD INFRASTRUCTURES’ INSPECTION. The International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, XLIII-B2-2020, 1145–1150. https://doi.org/10.5194/isprs archives-XLIII-B2-2020-1145-202 | |
dc.relation | Pote, R. (2021, August). Polygonal delineation of greenhouses using a deep learning strategy
[Info:eu-repo/semantics/masterThesis]. University of Twente. http://essay.utwente.nl/89006/ | |
dc.relation | Radford, A., Metz, L., & Chintala, S. (2016). Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks (arXiv:1511.06434). arXiv.
https://doi.org/10.48550/arXiv.1511.06434 | |
dc.relation | Ren, J., & Xu, L. (2015). On Vectorization of Deep Convolutional Neural Networks for Vision Tasks.
Proceedings of the AAAI Conference on Artificial Intelligence, 29(1), Article 1.
https://ojs.aaai.org/index.php/AAAI/article/view/9488 | |
dc.relation | Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image
Segmentation. In N. Navab, J. Hornegger, W. M. Wells, & A. F. Frangi (Eds.), Medical Image
Computing and Computer-Assisted Intervention – MICCAI 2015 (pp. 234–241). Springer International
Publishing. https://doi.org/10.1007/978-3-319-24574-4_28 | |
dc.relation | Saeedimoghaddam, M., & Stepinski, T. F. (2020). Automatic extraction of road intersection points
from USGS historical map series using deep convolutional neural networks. International Journal of
Geographical Information Science, 34(5), 947–968.
https://doi.org/10.1080/13658816.2019.1696968 | |
dc.relation | Sahu, M., & Ohri, A. (2019a). VECTOR MAP GENERATION FROM AERIAL IMAGERY USING DEEP
LEARNING. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
IV-2/W5, 157–162. https://doi.org/10.5194/isprs-annals-IV-2-W5-157-2019 | |
dc.relation | Sahu, M., & Ohri, A. (2019b). VECTOR MAP GENERATION FROM AERIAL IMAGERY USING DEEP
LEARNING. http://localhost:8080/xmlui/handle/123456789/520 | |
dc.relation | Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X., & Chen, X. (2016).
Improved Techniques for Training GANs. Advances in Neural Information Processing Systems, 29.
https://proceedings.neurips.cc/paper/2016/hash/8a3363abe792db2d8761d6403605aeb7-
Abstract.html | |
dc.relation | Sester, M., Feng, Y., & Thiemann, F. (2018). Building generalization using deep learning. ISPRS -
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
XLII-4 (2018), XLII–4, 565–572. https://doi.org/10.15488/5169 | |
dc.relation | Shermeyer, J., & Etten, A. (2019). The Effects of Super-Resolution on Object Detection Performance
in Satellite Imagery. 1432–1441. https://doi.org/10.1109/CVPRW.2019.00184 | |
dc.relation | Shermeyer, J., & Van Etten, A. (2019). The Effects of Super-Resolution on Object Detection
Performance in Satellite Imagery. 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), 1432–1441. https://doi.org/10.1109/CVPRW.2019.00184 | |
dc.relation | Song, A., & Kim, Y. (2020). Semantic Segmentation of Remote-Sensing Imagery Using Heterogeneous
Big Data: International Society for Photogrammetry and Remote Sensing Potsdam and Cityscape
Datasets. ISPRS International Journal of Geo-Information, 9(10), 601.
https://doi.org/10.3390/ijgi9100601 | |
dc.relation | Sun, W., & Wang, R. (2018). Fully Convolutional Networks for Semantic Segmentation of Very High
Resolution Remotely Sensed Images Combined With DSM. IEEE Geoscience and Remote Sensing
Letters, 15(3), 474–478. https://doi.org/10.1109/LGRS.2018.2795531 | |
dc.relation | Touya, G., Zhang, X., & Lokhat, I. (2019). Is deep learning the new agent for map generalization?
International Journal of Cartography, 5(2–3), 142–157.
https://doi.org/10.1080/23729333.2019.1613071 | |
dc.relation | Van Etten, A. (2019). Satellite Imagery Multiscale Rapid Detection with Windowed Networks. 2019
IEEE Winter Conference on Applications of Computer Vision (WACV), 735–743.
https://doi.org/10.1109/WACV.2019.00083 | |
dc.relation | Van Etten, A., Lindenbaum, D., & Bacastow, T. M. (2019). SpaceNet: A Remote Sensing Dataset and
Challenge Series (arXiv:1807.01232). arXiv. http://arxiv.org/abs/1807.01232 | |
dc.relation | Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2015). Show and Tell: A Neural Image Caption
Generator. 3156–3164. https://www.cv foundation.org/openaccess/content_cvpr_2015/html/Vinyals_Show_and_Tell_2015_CVPR_paper.
html | |
dc.relation | Wang, S., Bai, M., Mattyus, G., Chu, H., Luo, W., Yang, B., Liang, J., Cheverie, J., Fidler, S., & Urtasun,
R. (2017). TorontoCity: Seeing the World with a Million Eyes. 2017 IEEE International Conference on
Computer Vision (ICCV), 3028–3036. https://doi.org/10.1109/ICCV.2017.327 | |
dc.relation | Wang, S., Liu, W., Wu, J., Cao, L., Meng, Q., & Kennedy, P. J. (2016). Training deep neural networks
on imbalanced data sets. 2016 International Joint Conference on Neural Networks (IJCNN), 4368–
4374. https://doi.org/10.1109/IJCNN.2016.7727770 | |
dc.relation | Wang, W., Yang, N., Zhang, Y., Wang, F., Cao, T., & Eklund, P. (2016). A review of road extraction
from remote sensing images. Journal of Traffic and Transportation Engineering (English Edition),
3(3), 271–282. https://doi.org/10.1016/j.jtte.2016.05.005 | |
dc.relation | Weir, N., Lindenbaum, D., Bastidas, A., Etten, A., Kumar, V., Mcpherson, S., Shermeyer, J., & Tang,
H. (2019). SpaceNet MVOI: A Multi-View Overhead Imagery Dataset. 992–1001.
https://doi.org/10.1109/ICCV.2019.0010 | |
dc.relation | Wu, H., Xiao, B., Codella, N., Liu, M., Dai, X., Yuan, L., & Zhang, L. (2021). CvT: Introducing
Convolutions to Vision Transformers. 22–31.
https://openaccess.thecvf.com/content/ICCV2021/html/Wu_CvT_Introducing_Convolutions_to_V
ision_Transformers_ICCV_2021_paper.html | |
dc.relation | Xie, Y., Zhu, J., Cao, Y., Feng, D., Hu, M., Li, W., Zhang, Y., & Fu, L. (2020). Refined Extraction Of
Building Outlines From High-Resolution Remote Sensing Imagery Based on a Multifeature
Convolutional Neural Network and Morphological Filtering. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 13, 1842–1855.
https://doi.org/10.1109/JSTARS.2020.2991391 | |
dc.relation | Xu, Y., Wu, L., Xie, Z., & Chen, Z. (2018). Building Extraction in Very High Resolution Remote Sensing
Imagery Using Deep Learning and Guided Filters. Remote Sensing, 10(1), 144.
https://doi.org/10.3390/rs10010144 | |
dc.relation | Yan, H. (2019). Description Approaches and Automated Generalization Algorithms for Groups of Map
Objects. Springer Singapore. https://doi.org/10.1007/978-981-13-3678-2 | |
dc.relation | Yang, H. L., Yuan, J., Lunga, D., Laverdiere, M., Rose, A., & Bhaduri, B. (2018). Building Extraction at
Scale Using Convolutional Neural Network: Mapping of the United States. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing.
https://doi.org/10.1109/JSTARS.2018.2835377 | |
dc.relation | Yang, W., Gao, X., Zhang, C., Tong, F., Chen, G., & Xiao, Z. (2021). Bridge Extraction Algorithm Based
on Deep Learning and High-Resolution Satellite Image. Scientific Programming, 2021, e9961963.
https://doi.org/10.1155/2021/9961963 | |
dc.relation | Zhang, Q., Qin, R., Huang, X., Fang, Y., & Liu, L. (2015). Classification of Ultra-High Resolution
Orthophotos Combined with DSM Using a Dual Morphological Top Hat Profile. Remote Sensing,
7(12), 16422–16440. https://doi.org/10.3390/rs71215840 | |
dc.relation | Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid Scene Parsing Network. 2881–2890.
https://openaccess.thecvf.com/content_cvpr_2017/html/Zhao_Pyramid_Scene_Parsing_CVPR_20
17_paper.html | |
dc.relation | Zhao, S., Liu, Z., Lin, J., Zhu, J.-Y., & Han, S. (2020). Differentiable Augmentation for Data-Efficient
GAN Training. Advances in Neural Information Processing Systems, 33, 7559–7570.
https://proceedings.neurips.cc/paper/2020/hash/55479c55ebd1efd3ff125f1337100388-
Abstract.html | |
dc.relation | Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired Image-to-Image Translation Using Cycle Consistent Adversarial Networks. 2017 IEEE International Conference on Computer Vision (ICCV),
2242–2251. https://doi.org/10.1109/ICCV.2017.244 | |
dc.rights | Reconocimiento 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Automatic generation of GIS vector Layers from orthomosaics using deep learning | |
dc.type | Trabajo de grado - Doctorado | |