dc.contributorTaborda Osorio, Hernando
dc.contributorGonzález García, Luz Mery
dc.contributorHernández Urrego Isabel Astrid [0000-0002-8018-1897]
dc.creatorHernández Urrego, Isabel Astrid
dc.date.accessioned2023-02-23T20:57:16Z
dc.date.accessioned2023-06-06T23:28:42Z
dc.date.available2023-02-23T20:57:16Z
dc.date.available2023-06-06T23:28:42Z
dc.date.created2023-02-23T20:57:16Z
dc.date.issued2023-01-26
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/83552
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6651316
dc.description.abstractPropuesta metodológica para la caracterización del Razonamiento Inductivo en la Primera Infancia desde el enfoque de la Educación STEM Resumen El razonamiento inductivo (RI) se distingue de otros procesos cognitivos, por dos características: es fundamental en la generación y transformación del conocimiento, y las inferencias, mediante las cuales se hace explicito, pueden ser total, o parcialmente plausibles. Un importante volumen de evidencia empírica, proveniente de modelos de teorías ingenuas, sugiere que los bebés razonan sobre información estadística, para modificar su comportamiento, elegir y predecir en circunstancias de incertidumbre. Incluso, existe acuerdo sobre las características de experiencias y contenidos que facilitan la inferencia de causalidad, en situaciones probabilísticas cotidianas. Sin embargo, los desarrollos metodológicos, han tardado en llegar a los ámbitos de la formación del pensamiento de los niños habitantes de países pobres. Desde una perspectiva integradora, se retomaron principios de los modelos de cognición infantil que han considerado las particularidades y diferencias individuales del RI normativo, para el estudio de sus modalidades. Así, se orientó la propuesta metodológica en la creación de criterios de medición e indicadores de eficacia de las inferencias inductivas. Mediante éstos, es posible la estimación de los atributos: plausibilidad, precisión, coherencia y relevancia de la inferencia temprana. En consecuencia, los estudios que fundamentan esta disertación, sustentan la utilidad científica de un instrumento de medición de la eficacia en el RI de niños con edades entre 4 y 6 años. Los resultados de la indagación, también aportan nueva evidencia sobre la influencia de algunos hábitos familiares de formación del pensamiento, en el desarrollo conceptual y del RI eficaz de los participantes. A partir del logro de los objetivos de investigación, se discute la oportunidad de transferir conocimiento sobre desarrollo cognitivo temprano, hacia la formación de habilidades inferenciales implicadas en la comprensión e indagación científicas, desde Preescolar. Se proyecta, que la estrategia metodológica propuesta para la caracterización del RI en la infancia temprana, tendrá impacto en el cumplimiento de los propósitos de la Educación STEM del siglo XXI. (Texto tomado de lanfuenta)
dc.description.abstractMethodological proposal for the characterization of Inductive Reasoning in Early Childhood from the STEM Education approach Abstract Inductive reasoning (IR) is distinguished from other cognitive processes by two characteristics: it is fundamental in the generation and transformation of knowledge, and the inferences, through which it is made explicit, can be totally or partially plausible. A substantial body of empirical evidence, from naive model theories, suggests that infants reason about statistical information to modify behavior, make choices, and predict under uncertain circumstances. There is even agreement on the characteristics of experiences and contents that facilitate the inference of causality, in everyday probabilistic situations. However, methodological developments have been slow to reach the areas of thought formation of children living in poor countries. From an integrative perspective, principles of child cognition models were taken up, which have considered the particularities and individual differences of the normative IR, for the study of its different modalities. Thus, the methodological proposal was oriented towards the creation of measurement criteria and effectiveness indicators of inductive inferences. Through these, it is possible to estimate the attributes: plausibility, precision, coherence and relevance of early inference. Consequently, the studies that support this dissertation support the scientific usefulness of an instrument for measuring efficacy in the IR of children aged between 4 and 6 years. The results of the investigation also provide new evidence on the influence of some family habits of thought formation, in the conceptual development and the effective IR of the participants. From the achievement of the research objectives, the opportunity to transfer knowledge, on early cognitive development, towards the formation of inferential skills involved in scientific understanding and inquiry, from Preschool, is discussed. It is projected that the methodological strategy proposed for the characterization of IR in early childhood will have an impact on the fulfillment of the purposes of STEM Education in the 21st century.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias Humanas - Doctorado en Psicología
dc.publisherFacultad de Ciencias Humanas
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAguiar, N. R., Stoess, C. J., y Taylor, M. (2012). The development of children’s ability to fill the gaps in their knowledge by consulting experts. Child Development, 83, 1368- 1381. https://doi.org/10.1111/j.1467-8624.2012.01782.x
dc.relationAhl, R. y Keil, F. (2017). Diverse Effects, Complex Causes: Children Use Information About Machines' Functional Diversity to Infer Internal Complexity. Child Development, 88 (3), 828-845. https://doi.org/10.1111/cdev.12613
dc.relationAnderson, R., y Branstetter, S. (2012). Adolescents, parents, and monitoring: A review of constructs with attention to process and theory. Journal of Family Theory y Review, 4, 1-19. https://doi. org/10.1111/j.1756-2589.2011.00112.x
dc.relationAmerican Educational Research Association, American Psychological Association y National Council on Measurement in Education (2014). Standards for Educational and Psychological Testing. Washington, United States: Author.
dc.relationAvila, C. y Barragan, G. (2018). Artículo de Experiencia en el Aula: Educación STEM una ruta hacia la innovación. Revista electrónica TicALS, 4, 146 - 162 www.als.edu.co/revistaticals
dc.relationBarkl, S., Porter, A., y Ginns, P. (2012). Cognitive training for children: Effects on inductive reasoning, deductive reasoning, and mathematics achievement in an Australian school setting. Psychology In The Schools, 49(9), 828-842. https://doi.org/10.1002/pits.21638
dc.relationBaillargeon, R., Scott, R. M., y Bian, L. (2016). Psychological reasoning in infancy. Annual Review of Psychology, 67. doi.org/10.1146/annurev-psych-010213-115033pabli
dc.relationBarbey, A. K., y Sloman, S. A. (2007). Base-rate respect: From ecological rationality to dual processes. Behavioral and Brain Sciences, 30, 3, 241-254. https://doi.org/10.1017/S0140525X07001653
dc.relationBascandziev, I., y Harris, P.L. (2016). The beautiful and the accurate: Are children’s selective trust decisions biased?. Journal of Experimental Child Psychology, Vol. 152, 92-105, doi.org/10.1016/j.jecp.2016.06.017
dc.relationBatanero, C., y Chernoff, E. J. (2018). Teaching and Learning Stochastics: Advances in Probability Education Research. https://doi.org/10.1007/978-3-319-72871-1
dc.relationBatanero, C., Chernoff, E. J., Engel, J., Lee, H. S., y Sánchez, E. (2016). Research on Teaching and Learning Probability. Cham: Springer International Publishing.
dc.relationBogdan Toma, R. y Meneses Villagrá, J. Á. (2019). Preferencia por contenidos científicos de física o de biología en Educación Primaria: un análisis clúster. Revista Eureka Sobre Enseñanza y Divulgación de Las Ciencias, 16(1),1, http://unal.edu.co/10.25267/Rev_Eureka_ensen_divulg_cienc.2019.v16.i1.1104
dc.relationBolt, D. (2007). The Present and Future of IRT-Based Cognitive Diagnostic Models (ICDMs) and Related Methods. Journal Of Educational Measurement, (4). 377.
dc.relationBonawitz, E. B., y Lombrozo, T. (2012). Occam's rattle: Children's use of simplicity and probability to constrain inference. Developmental Psychology, 48, 4, 1156-1164. https://doi.org/10.1037/a0026471
dc.relationBonawitz, E., Ullman, T. D., Bridgers, S., Gopnik, A., y Tenenbaum, J. B. (2019). Sticking to the Evidence? A Behavioral and Computational Case Study of Micro‐Theory Change in the Domain of Magnetism. Cognitive Science, 43(8). https://doi.org/10.1111/cogs.12765
dc.relationBonett, D.G., Wright, T.A. Sample size requirements for estimating pearson, kendall and spearman correlations. Psychometrika 65, 23–28 (2000). https://doi.org/10.1007/BF02294183
dc.relationBonnefon J-F y Billaut E. (2016). Individual Differences in Reasoning beyond Ability and Disposition Cap. 11 En Macchi, Laura, Bagassi, Maria y Viale, Riccardo. Cognitive unconscious and human rationality. Toppan Best-set Premedia Limited. United States of America. Massachusetts Institute of Technology
dc.relationBouwmeester, S., y Sijtsma, K. (2004). Measuring the ability of transitive reasoning, using product and strategy information. Psychometrika, 69(1), 123. https://doi.org/10.1007/BF02295843
dc.relationBorovcnik M., Kapadia R. (2018) Reasoning with Risk: Teaching Probability and Risk as Twin Concepts. En: Batanero C., Chernoff E. (eds) Teaching and Learning Stochastics. ICME-13 Monographs. Springer, Cham.
dc.relationBadger, J. R., y Shapiro, L. R. (2012). Evidence of a transition from perceptual to category induction in 3- to 9-year-old children. Journal of Experimental Child Psychology, 113(1), 131–146. https://doi.org/10.1016/j.jecp.2012.03.004
dc.relationBrandone, A. C. (2017). Changes in Beliefs About Category Homogeneity and Variability Across Childhood. Child Development, 88(3), 846-866. https://doi.org/10.1111/cdev.12616
dc.relationBramley, N., Gerstenberg, T., Tenenbaum, J. y Gureckis, T. (2018). Intuitive experimentation in the physical world. Cognitive. Psychology, 105, 9-38. https://doi.org/10.1016/j.cogpsych.2018.05.001
dc.relationBrenneman, K., y Louro, I. F. (2008). Science Journals in the Preschool Classroom. Early Childhood Education Journal, 36(2), 113–119. https://doi.org/10.1007/s10643-008-0258-z
dc.relationBryant, P. y Nunes, T. (2012). Children’s understanding of probability: A literature review. London, England: Nuffield Foundation.how
dc.relationBulloch, M. J. y Opfer, J. E. (2009). What makes relational reasoning smart? Revisiting the perceptual-to-relational shift in the development of generalization. Developmental Science, 12, 1, 114-122. https://doi.org/10.1111/j.1467-7687.2008.00738.x
dc.relationBumeltshammer, K.S., y Kirkham, N.Z. (2013). Learning to look: probabilistic variation and noise guide infants’ eye movements. Developmental Science, 16, 760–771. https://doi.org/10.1111/desc.12064
dc.relationBurris, V. (1982). The Child’s Conception of Economic Relations; A Study of Cognitive Socialization. Sociological Focus, 15(4), 307–325. https://doi.org/10.1080/00380237.1982.10570424
dc.relationButler, L. P., y Markman, E. M. (2012). Preschoolers Use Intentional and Pedagogical Cues to Guide Inductive Inferences and Exploration. Child Development, 83(4), 1416-1428. https://doi.org/10.1111/j.1467-8624.2012.01775.x
dc.relationCánavos, G. C. (1999). Probabilidad y Estadística: Aplicaciones y Métodos. México: McGraw-Hill.
dc.relationCarey, S. (2009). The Origin of Concepts. Oxford Series in Cognitive Development.
dc.relationClark, E. V. (2004). How language acquisition builds on cognitive development. Trends in Cognitive Sciences, 8(10), 472–478. https://doi.org/10.1016/j.tics.2004.08.012
dc.relationCerchiaro-Ceballos, E., y Puche-Navarro, R. (2018). Funcionamientos inferenciales en niños caminadores: un acercamiento al microdesarrollo en una tarea de resolución de problemas. Revista Colombiana de Psicología, 27, 117-135. https://doi.org/10.15446/rcp.v27n2.66054
dc.relationCsapo, B. (1997). The Development of Inductive Reasoning: Cross-sectional Assessments in an Educational Context. International journal of behavioral development, (4). 609. https://journals.sagepub.com/doi/10.1080/016502597385081
dc.relationCosmides L, Tooby J. (2013). Evolutionary psychology: New perspectives on cognition and motivation. Annu. Rev. Psychol. 64:201-29. DOI: 10.1146/annurev.psych.121208.131628
dc.relationColberg, M., Nester, M. A., y Cormier, S. M. (1982). Inductive reasoning in psychometrics: A philosophical corrective. Intelligence, 6139-164. https://doi.org/10.1016/0160-2896(82)90011-3
dc.relationColberg, M., Nester, M., y Trattner, M. (1985). Convergence of the Inductive and Deductive Models in the Measurement of Reasoning Abilities. Journal Of Applied Psychology, 70(4), 681-694. https://doi.org/10.1037/0021-9010.70.4.681
dc.relationCorral, Y. (2009). Validez y confiabilidad de los instrumentos de investigación para la recolección de datos. Revista Ciencias de la Educación, 19(33), 228-247.https://bit.ly/1T1z0ct
dc.relationCulbertson M. (2016). Bayesian Networks in Educational Assessment: The State of the Field. Applied Psychological Measurement, 40(1) 3–21 https://doi.org/ 10.1177/0146621615590401
dc.relationCummins D. (2004). The Evolution of Reasoning. En Leighton, J.P. y Sternberg R. J. (Ed.).(2004). The nature of reasoning. Cambridge University Press.
dc.relationDamon, W. (1990). Social Relations and Childrens Thinking Skills. Contributions to Human Development. En Kuhn D (ed). Developmental Perspectives on Teaching and Learning Thinking Skills, pp 95–107. https://doi.org/10.1159/000418983
dc.relationDarling, N., y Steinberg, L. (1993). Parenting style as context: An integrative model. Psychological Bulletin, 113(3), 487–496. https://doi.org/10.1037/0033-2909.113.3.487
dc.relationDasgupta, I., Schulz, N., Goodman, D. y Gershman, S. (2018). Remembrance of inferences past: Amortization in human hypothesis generation, Cognition, 178, 67-81. https://doi.org/10.1016/j.cognition.2018.04.017
dc.relationDe Koning, E., Sijtsma, K., y Hamers, J. M. (2003). Construction and Validation of a Test for Inductive Reasoning. European Journal Of Psychological Assessment, (1). 24. https://doi.org/10.1027//1015-5759.19.1.24
dc.relationDe Koning, E., Sijtsma, K., y Hamers, J. M. (2003). Construction and Validation of a Test for Inductive Reasoning. European Journal Of Psychological Assessment, (1). 24. https://doi.org/10.1027//1015-5759.19.1.24
dc.relationDenison, S. y Xu, F. (2012). Probabilistic Inference in Human Infants. En T. Kushnir, y F. Xu (Eds.), Advances in child development and behavior: Rational constructivism in cognitive development. Academic Press, Elsevier. doi.org/10.1016/B978-0-12-397919-3.00002-2
dc.relationDean Jr., D., y Kuhn, D. (2007). Direct instruction vs. discovery: The long view. Science Education, 91(3), 384–397. https://doi.org/10.1002/sce.20194
dc.relationDienes, Z., y Perner, J. (1999) A theory of implicit and explicit knowledge. Behavioural and Brain Sciences, 22,735-755. DOI: 10.1017/s0140525x99002186
dc.relationDenison, S., y Xu, F. (2014). The origins of probabilistic inference in human infants. Cognition, 130, 335–347. https://doi.org/ 10.1016/j.cognition.2013.12.001
dc.relationDuque Aristizábal, C. P., Aristizábal, C. P. D., Márquez, Á. V. V., y Gutiérrez, A. P. H. (2010). Comprensión inferencial de textos narrativos en primeros lectores: una revisión de la literatura. Ocnos: Revista De Estudios Sobre Lectura, (6), 35. https://doi.org/10.18239/OCNOS_2010.06.03
dc.relationEbersbach, M., y Resing, W. M. (2008). Implicit and Explicit Knowledge of Linear and Exponential Growth in 5- and 9-Year-Olds. Journal Of Cognition y Development, 9(3), 286-309. https://doi.org/10.1080/15248370802247962
dc.relationEinav, S. y Robinson E. J. (2010). Children’s sensitivity to error magnitude when evaluating informants. Cognitive Development 25, 218–232, https://doi.org/10.1016/j.cogdev.2010.04.002
dc.relationEichler, A., y Vogel, M. (2012). Basic modelling of uncertainty: Young students’ mental models. ZDM Mathematics Education, 44(7), 841–854. https://doi.org/10.1007/s11858-012-0451-9
dc.relationElosua Oliden, P. y Zumbo, B.D. (2008). Coeficientes de fiabilidad para escalas de respuesta categórica ordenada. Psicothema, 20(4), 896-901 http://www.redalyc.org/articulo.oa?id=72720458
dc.relationEpstein, N., y Fischer, M. R. (2017). Academic career intentions in the life sciences: Can research self-efficacy beliefs explain low numbers of aspiring physician and female scientists?. PLOS ONE, 12(9), e0184543. https://doi.org/10.1371/journal.pone.0184543
dc.relationErickson, J. E., Keil, F. C., y Lockhart, K. L. (2010). Sensing the Coherence of Biology in Contrast to Psychology: Young Children’s Use of Causal Relations to Distinguish Two Foundational Domains. Child Development, 81(1), 390-409. https://doi.org/10.1111/j.1467-8624.2009.01402.x
dc.relationEvans, J. St. B. T. (2020). Hypothetical thinking: Dual processes in reasoning and judgment. Psychology Press and Routledge Classic Editions.
dc.relationEvans, J. St. B. T., y Over, D. E. (2013). Reasoning to and from belief: Deduction and induction are still distinct. Thinking & Reasoning, 19 (3), 267-283. https://cogentoa.tandfonline.com/doi/full/10.1080/13546783.2012.745450
dc.relationFerrar, S. J., Stack, D. M., Dickson, D. J., Serbin, L. A., Ledingham, J., y Schwartzman, A. E. (2019). Maternal Socialization Responses to Preschoolers’ Success and Struggle: Links to Contextual Factors and Academic and Cognitive Outcomes. Journal of Research in Childhood Education, 1–19. https://doi.org/10.1080/02568543.2019.1607787
dc.relationFiorini, M., y Keane, M. P. (2014). How the Allocation of Children’s Time Affects Cognitive and Noncognitive Development. Journal of Labor Economics, 32(4), 787–836. https://doi.org/10.1086/677232
dc.relationFisher, A. V., Godwin, K. E., Matlen, B. J. y Unger, L. (2015). Development of category-based induction and semantic knowledge. Child Development, 86(1), 48-62. https://doi.org/10.1111/cdev.12277
dc.relationFischer, F., Kollar, I., Ufer, S., Sodian, B., Hussmann, H., Pekrun, R., ... Eberle, J. (2014). Scientific reasoning and argumentation: Advancing an interdisciplinary research agenda in education. Frontline Learning Research, 5, 28–45. http://dx.doi.org/10.14786/flr.v2i3.96
dc.relationFischbein, E. (1975). The intuitive sources of probabilistic thinking in children. Dordrecht; Reidel Publishing Company.
dc.relationFizke, E., Butterfill, S., Van de Loo, L., Reindl, E., y Rakoczy, H. (2017). Are there signature limits in early theory of mind?. Journal Of Experimental Child Psychology, 209. https://doi.org/10.1016/j.jecp.2017.05.005
dc.relationFoster-Hanson E, Moty K, Cardarelli A, Ocampo JD, y Rhodes M. (2020). Developmental Changes in Strategies for Gathering Evidence About Biological Kinds. Cogn Sci. 2020 May; 44 (5). https://doi.org/ 10.1111/cogs.12837.
dc.relationFrost, R., Armstrong, B. C., y Christiansen, M. H. (2019). Statistical learning research: A critical review and possible new directions. Psychological Bulletin, 145(12), 1128–1153. doi.org/10.1037/bul0000210
dc.relationGandhi H. (2018). Understanding Children’s Meanings of Randomness in Relation to Random Generators. En: Batanero, C., y Chernoff, E. J. (Eds.). (2018). Teaching and Learning Stochastics: Advances in Probability Education Research. doi.org/10.1007/978-3-319-72871-1
dc.relationGelman, S. A. (1988). The development of induction within natural kind and artifact categories. Cognitive Psychology, 20, 65–96. https://doi.org/10.1016/0010-0285(88)90025-4
dc.relationGelman, S. A. (2003). The essential child: Origins of essentialism in everyday life. New York, NY: Oxford University Press.
dc.relationGelman, R., y Brenneman, K. (2012). Moving young “scientists-in-waiting” onto science learning pathways: Focus on observation. In J. Shrager y S. Carver (Eds.), The journey from child to scientist: Integrating cognitive development and the education sciences. 155–169. American Psychological Association. https://doi.org/10.1037/13617-008
dc.relationGelman, S. A., y Davidson, N. S. (2013). Conceptual influences on category-based induction. Cognitive Psychology, (3), 327. https://doi.org/10.1016/j.cogpsych.2013.02.001
dc.relationGelman, S. A., Leslie, S.-J., Was, A. M., y Koch, C. M. (2015). Children’s interpretations of general quantifiers, specific quantifiers and generics. Language, Cognition, and Neuroscience, 30, 448–461. https://doi.org/10.1080/23273798.2014.931591
dc.relationGennari , S., Sloman S., Malt , B. , y Fitch, W. ( 2002 ). Motion events in language and cognition. Cognition, 83 ( 1 ), 49 – 79. DOI:10.1016/S0010-0277(01)00166-4
dc.relationGigerenzer, G. (2015). Calculated risks: How to know when numbers deceive you. New York: Simon y Schuster Audio
dc.relationGil Chaves, L., y Flórez Romero, R. (2013). Desarrollo de habilidades de pensamiento inferencial y comprensión de lectura en niños de tres a seis años. Panorama, 5(9). https://doi.org/10.15765/pnrm.v5i9.39
dc.relationGirotto, V., y Gonzalez, M. (2007). How to elicit sound probabilistic reasoning: Beyond word problems. Behavioral and Brain Sciences, 30, 3, 268. doi 10.1017_S0140525X07001768
dc.relationGómez, R. L. (2017). Do infants retain the statistics of a statistical learning experience? Insights from a developmental cognitive neuroscience perspective. Phil. Trans. R. Soc. B, 372 (1711). doi.org/10.1098/rstb.2016.0054.
dc.relationGopnik, A. (2011). The Theory of Theory 2.0: Probabilistic Models and Cognitive Development. Child Development Perspectives. 5, 3, 161-163, HTTPS://DOI.ORG/ 10.1111/j.1750-8606.2011.00179.xs
dc.relationGopnik, A. (2012). Scientific Thinking in Young Children: Theoretical Advances, Empirical Research, and Policy Implications. Science, Sep. 28;337(6102): 1623-7. https://doi.org/10.1126/science.1223416
dc.relationGopnik, A., y Tenenbaum, J. B. (2007). Bayesian networks, Bayesian learning and cognitive development. Developmental Science, 10(3), 281–287. https://doi.org/10.1111/j.1467-7687.2007.00584.x
dc.relationGopnik, A., Sobel, D.M., Schulz L.E., Glymour C. (2001). Causal Learning Mechanisms in Very Young Children: Two-, Three-, and Four-Year-Olds Infer Causal Relations From Patterns of Variation and Covariation Developmental Psychology . 37, (5), 620-629. https://doi.org/ 10.1037//0012-1649.37.5.620
dc.relationGopnik, A., Glymour, C., Sobel, D. M., Schulz, L. E., Kushnir, T., y Danks, D. (2004). A Theory of Causal Learning in Children: Causal Maps and Bayes Nets. Psychological Review, 111(1), 3–32. https://doi.org/10.1037/0033-295x.111.1.3
dc.relationGoswami, U. (ed.). (2003). Wiley-Blackwell handbook of childhood cognitive development. New York: Wiley
dc.relationGoswami, U. (Ed.). (2010). Wiley-Blackwell handbook of childhood cognitive development. (2nd ed,). Wiley.
dc.relationGranovskiy, B. (2018). Science, Technology, Engineering, and Mathematics (STEM) Education: An Overview. Code R45223; Congressional Research Service, USA. www. crs.gov
dc.relationGreiff, S., Wüstenberg, S., Csapó, B., Demetriou, A., Hautamäki, J., Graesser, A.C. y Martin, R. (2014). Domain-general problem solving skills and education in the 21st century, Educational Research Review https://doi.org/ http://dx.doi.org/10.1016/j.edurev.2014.10.002
dc.relationGriffiths, T. L., Tenenbaum, J. B., y Kemp, C. (2012). Bayesian inference. The Oxford handbook of thinking and reasoning, 22-35.
dc.relationGriffin, P., McGaw, B., y Care, E. (Eds.) (2012). Assessment and teaching of 21st century skills. Dordrecht: Springer.
dc.relationGrigorenko E., Sternberg R.J., y Strauss, S. (2006). Practical intelligence and elementary-school teacher Thinking Skills and Creativity Volume 1 issue 1 doi 10.1016_j.tsc.2005.03.001
dc.relationGweon, H., Tenenbaum, J. B., y Schulz, L. E. (2010). Infants consider both the sample and the sampling process in inductive generalization. Proceedings of the National Academy of Sciences, 107(20), 9066–9071. www.pnas.org/content/pnas/107/20/9066.full.pdf
dc.relationHasson U. (2017). The neurobiology of uncertainty: implications for statistical learning. Phil. Trans. R. Soc. B, 372 (1711). https://doi.org/doi 10.1098_rstb.2016.0048
dc.relationHayes, B. K., McKinnon, R., y Sweller, N. (2008). The development of category-based induction: Reexamining conclusions from the induction then recognition (ITR) paradigm. Developmental Psychology, 44(5), 1430–1441. https://doi.org/10.1037/0012-1649.44.5.1430
dc.relationHayes, B. K., Stephens, R. G., Ngo, J., y Dunn, J. C. (2018). The Dimensionality of Reasoning: Inductive and Deductive Inference can be Explained by a Single Process. Journal Of Experimental Psychology. Learning, Memory, And Cognition, https://doi.org/10.1037/xlm0000527
dc.relationHeller, J., Stefanutti, L., Anselmi, P., y Robusto, E. (2015). On the Link between Cognitive Diagnostic Models and Knowledge Space Theory. Psychometrika, (4), 995. https://doi.org/10.1007/s11336-015-9457-x
dc.relationHeit, E. (2000). Properties of inductive reasoning. Psychonomic Bulletin y Review, 7, 569– 592. https://doi.org/10.3758/bf03212996
dc.relationHernández I. (2010). Factores psicosociales asociados al alto nivel de logro académico de dos Estudiantes sensibles al medio. Tesis presentada para optar al Título de Magíster. Repositorio institucional de la Universidad Pedagógica Nacional. Colombia.
dc.relationHernández I. y Pacheco P. (2013). Experiencias de innovación didáctica en la enseñanza de la Estadística. En: Inclusión social con responsabilidad, reformas educativas y profesionalización del Docente- Tomo III de la colección “Investigación Educativa y Políticas Públicas”. Universidad de Nayarit- México. ISBN 978-607-7868-70-5. 2014.
dc.relationHerro, D., y Quigley, C. (2016). Exploring teachers’ perceptions of STEAM teaching through professional development: implications for teacher educators. Professional Development in Education, 43(3), 416–438. https://doi.org/10.1080/19415257.2016.1205507
dc.relationHolland, J., Holyoak, K., Nisbett, R. y Thagard, P. (1989). Induction Processes of Inference, Learning, and Discovery. Michigan; The MIT Press.
dc.relationHowe, C. Nunes, T. y Bryant, P. (2011). Rational Number and Proportional Reasoning. International Journal of Science and Mathematics Education, 9, 2, 391-417. doi 10.1007_s10763-010-9249-9pil
dc.relationIfenthaler, D., y Seel, N. M. (2011). A longitudinal perspective on inductive reasoning tasks. Illuminating the probability of change. Learning and Instruction, 21(4), 538–549. https://doi.org/10.1016/J.LEARNINSTRUC.2010.08.004
dc.relationJacobs, J. E., y Narloch, R. H. (2001). Children’s use of sample size and variability to make social inferences. Journal of Applied Developmental Psychology, 22(3), 311–331. https://doi.org/10.1016/s0193-3973(01)00086-7
dc.relationJara-Ettinger, J., Gweon, H., Tenenbaum, J. B., y Schulz, L. E. (2015). Children's understanding of the costs and rewards underlying rational action. Cognition, 14. https://doi.org/10.1016/j.cognition.2015.03.00
dc.relationJohnson-Laird, P. N. (1980). Mental models in cognitive science. Cognitive Science, 4, 71-115. https://www.sciencedirect.com/science/article/pii/S0364021381800055
dc.relationJohnson, S. G. B., y Ahn, W. (2017). Causal mechanisms. En M. R. Waldmann (Ed.), Oxford handbook of causal reasoning, p 127-146. Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199399550.013.12
dc.relationKahneman, D., Slovic, P. y Tversky, A. (eds.) (1982). Judgment under Uncertainty, Heuristics and Biases. Cambridge University Press.
dc.relationKlauer, K. J., Willmes, K., y Phye, G. D. (2002). Inducing Inductive Reasoning: Does It Transfer to Fluid Intelligence?. Contemporary Educational Psychology, (1). 1. https://doi.org/10.1006/ceps.2001.1079
dc.relationKeith, T. Z., y Reynolds, M. R. (2010). Cattell–Horn–Carroll abilities and cognitive tests: What we've learned from 20 years of research. Psychology In The Schools, 47(7), 635-650. DOI:10.1002/pits.20496
dc.relationKelly, A., Lesh, A. y Baek J. (eds) (2010). Handbook of Design Research Methods in Education_ Innovations in Science, Technology, Engineering, and Mathematics Learning and Teaching. Mahwah, New York
dc.relationKemp, C., y Jern, A. (2014). A taxonomy of inductive problems. Psychonomic Bulletin y Review, 21(1), 23-46. https://doi.org/10.3758/s13423-013-0467-3
dc.relationKim, S., Kalish, C., Harris, P. (2012). Speaker reliability guides children's inductive inferences about novel properties, Cognitive Development, 27, (2), 114-125, https://doi.org/10.1016/j.cogdev.2011.10.004.
dc.relationKinnear, V., y Clark, J. (2014). Probabilistic reasoning and prediction with young children. In J. Anderson, M. Cavanagh, y A. Prescott (Eds.), Curriculum in focus: Research guided practice (pp. 335–342). MERGA.
dc.relationKoenig, M. A., Cole, C. A., Meyer, M., Ridge, K. E., Kushnir, T., y Gelman, S. A. (2015). Reasoning about knowledge: Children’s evaluations of generality and verifiability. Cognitive Psychology, 83, 22–39. https://doi.org/10.1016/j.cogpsych.2015.08.007
dc.relationKöksal-Tuncer, Ö., y Sodian, B. (2018). The development of scientific reasoning: Hypothesis testing and argumentation from evidence in young children. Cognitive Development, 48, 135–145. doi-org.ezproxy.unal.edu.co/10.1016/j.cogdev.2018.06.011lei
dc.relationKoslowski B. y Masnick A. (2010). Causal Reasoning and Explanation. En: U. Goswami, (Series Ed.). Wiley-Blackwell handbook of childhood cognitive development, (2nd ed.), pp. 341 – 419. New York : Wiley.xu
dc.relationKühhirt, M. y Klein, M. (2018). Early Maternal Employment and Children's Vocabulary and Inductive Reasoning Ability: A Dynamic Approach. Child Development, 89 (2), 91-106. https://doi.org/ 10.1111/cdev.12796
dc.relationKushnir, T., Wellman, H. M., y Gelman, S. A. (2008). The role of preschoolers’ social understanding in evaluating the informativeness of causal interventions. Cognition, 107(3), 1084–1092. https://doi.org/10.1016/j.cognition.2007.10.004
dc.relationKushnir, T., Wellman, H. M., y Gelman, S. A. (2009). A self-agency bias in preschoolers’ causal inferences. Developmental Psychology, 45(2), 597–603. https://doi.org/10.1037/a0014727
dc.relationKuhn, D. (2005). Education for thinking. Cambridge, MA: Harvard University Press.
dc.relationKuhn, D. (2010). Teaching and learning science as argument. Science Education, 94(5), 810–824. https://doi.org/10.1002/sce.20395
dc.relationKuhn D. (2010). What is Scientific Thinking and How Does it Develop?. En: U. Goswami, (Series Ed.). Wiley-Blackwell handbook of childhood cognitive development, (2nd ed., pg. 341 – 419). New York: Wiley.
dc.relationKuhn, D., y Dean, D. J. (2004). Connecting Scientific Reasoning and Causal Inference. Journal of Cognition and Development, 5, 2, 261-288. https://doi.org/10.1207/s15327647jcd0502_5
dc.relationKuhn, D. y Franklin S. (2006). The Second Decade: What Develops (And How), En: W. Damon (Editor-in-Chief ), D. Kuhn y R. Siegler (Vol. Eds.), Handbook of child psychology: Vol. 2. Cognition, perception, and language (6th ed., pg. 953–993). New York: Wiley.
dc.relationKuhn, D., Iordanou, K., Pease, M. y Wirkala, C. (2008). Beyond control of variables: What needs to develop to achieve skilled scientific thinking?. Cognitive Development, 23, 435–451. doi-org.ezproxy.unal.edu.co/10.1016/j.cogdev.2008.09.006
dc.relationKuhn, D., Ramsey, S., y Arvidsson, T. S. (2015). Developing multivariable thinkers. Cognitive Development, 35, 92-110. doi 10.1016_j.cogdev.2014.11.003
dc.relationKuhn, D., Schauble, L., y Garcia-Mila, M. (1992). Cross-Domain Development of Scientific Reasoning. Cognition and Instruction, 9(4), 285–327. https://doi.org/10.1207/s1532690xci0904_1
dc.relationKushnir, T., Xu, F., y Wellman, H. M. (2010). Young children use statistical sampling to infer the preferences of other people. Psychological Science, 21, 1134–1140.
dc.relationLakin, J. y Gambrell, J. (2012). Distinguishing verbal, quantitative, and figural facets of fluid intelligence in young students, Intelligence, 40, 6, 560-570, doi.org/10.1016/j.intell.2012.07.005
dc.relationLane, J. D., Ronfard, S., Francioli, S. P., y Harris, P. L. (2016). Children’s imagination and belief: Prone to flights of fancy or grounded in reality? Cognition, 152, 127–140. http://dx.doi.org/10.1016/j.cognition.2016.03.022
dc.relationLane, J. y Shafto, P. (2017). Young children’s attributions of causal power to novel invisible entities. Journal of Experimental Child Psychology, 162, 268-281, doi.org/10.1016/j.jecp.2017.05.015.
dc.relationLawson, C. A. (2014). Three-year-olds obey the sample size principle of induction: The influence of evidence presentation and sample size disparity on young children’s generalizations. Journal of Experimental Child Psychology, 123, 147–154. https://doi.org/10.1016/j.jecp.2013.12.004
dc.relationLawson, C. (2017). The Influence of Task Dynamics on Inductive Generalizations: How wSequential and Simultaneous Presentation of Evidence Impacts the Strength and Scope of Property Projections. Journal Of Cognition y Development, 18 (4), 493-513. https://doi.org/10.1080/15248372.2017.1339707
dc.relationLegare, C.H. (2014). The Contributions of Explanation and Exploration to Children's Scientific Reasoning. Child Development Perspectives. Vol. 8, (2) 101-106. HTTPS://DOI.ORG/ 10.1111/cdep.12070
dc.relationLeighton, J.P. y Sternberg R. J. (Ed.).(2004). The nature of reasoning. Cambridge University Press.
dc.relationLeighton, J. P., y Gierl, M. J. (2007). Defining and Evaluating Models of Cognition Used in Educational Measurement to Make Inferences about Examinees' Thinking Processes. Educational Measurement: Issues And Practice, 26(2), 3-16.
dc.relationLegare, C. H., y Lombrozo, T. (2014). Selective effects of explanation on learning during early childhood. Journal of Experimental Child Psychology, 126, 198–212. https://doi.org/10.1016/j.jecp.2014.03.001
dc.relationLo, Y., Sides, A., Rozelle, J. y Osherson, D. (2002). Evidential diversity and premise probability in young children’s inductive judgments. Cognitive Science - A Multidisciplinary Journal, 26, 181-206. www.elsevier.com/locate/cogsci
dc.relationLombrozo, T. (2016). Explanatory Preferences Shape Learning and Inference. Trends in Cognitive Sciences, 20(10), 748–759. https://doi.org/10.1016/j.tics.2016.08.001
dc.relationLow, J. y Perner J. (2012). Implicit and explicit theory of mind: State of the art. British Journal of Developmental Psychology, (2012), 30, 1–13. HTTPS://DOI.ORG/10.1111/j.2044-835X.2011.02074.x
dc.relationLundberg, S. (2020). Educational gender gaps. Southern Economic Journal, Volume: 87 Issues: 2 416—439. HTTPS://DOI.ORG/ 10.1002/soej.12460
dc.relationMarkovits, H., y Barrouillet, P. (2004). Introduction: Why is understanding the development of reasoning important?. En Thinking y Reasoning, 10(2), 113–121. https://doi.org/10.1080/13546780442000006
dc.relationMarcovitch, S. y Lewkowicz, D. J. (2009), Sequence learning in infancy: the independent contributions of conditional probability and pair frequency information. Developmental Science, 12: 1020-1025. https://doi.org/10.1111/j.1467-7687.2009.00838.x
dc.relationMcGuinness Institute, Wellington, New Zealand. (2015). The future of scientific thought, Journal of the Royal Society of New Zealand, 45 (2), 95-100, https://doi.org/ 10.1080/03036758.2015.1013142
dc.relationMcCormack, T., Bramley, N., Frosch, C., Fiona, P. y Lagnado, D. (2016). Children’s use of interventions to learn causal structure. Journal of Experimental Child Psychology, 141, 1–22. dx.doi.org/10.1016/j.jecp.2015.06.017
dc.relationMedin, D. L., Coley, J. D., Storms, G., y Hayes, B. L. (2003). A relevance theory of induction. Psychonomic Bulletin y Review, 10(3), 517–532. https://doi.org/10.3758/bf03196515
dc.relationMercer, N. (2013). The Social Brain, Language, and Goal-Directed Collective Thinking: A Social Conception of Cognition and Its Implications for Understanding How We Think, Teach, and Learn. Educational Psychologist, 48(3), 148–168. https://doi.org/10.1080/00461520.2013.804394
dc.relationMiller, M. R., Giesbrecht, G. F., Müller, U., McInerney, R. J., y Kerns, K. A. (2012). A Latent Variable Approach to Determining the Structure of Executive Function in Preschool Children. Journal Of Cognition y Development, 13(3), 395-423. https://doi.org/10.1080/15248372.2011.585478
dc.relationMinisterio de Educación Nacional. (2009). Desarrollo infantil y competencias en la primera infancia. Colombia. Documento Nº 10, MEN.
dc.relationMinisterio de Educación Nacional. (2011). Valoración del desarrollo en contextos educativos. Documento base, MEN: Colombia.
dc.relationMinisterio de Educación Nacional (2012). Una propuesta de trabajo pedagógico en la educación inicial, documento base para la construcción del lineamiento pedagógico de educación inicial. Documento de trabajo, MEN: Colombia.
dc.relationMohlhenrich, E., Samsonau, S. y Spencer, R. (2018). Integrating Science Through Authentic Research in Secondary Schools. IEEE Integrated STEM Education Conference (ISEC) - Princeton, NJ, USA . doi 10.1109%2FISECon.2018.8340465
dc.relationMoore, B. (2009). Emotional Intelligence for School Administrators: A Priority for School Reform? American Secondary Education, 37(3), 20–28. http://www.jstor.org/stable/41406313
dc.relationMoore, J.D., Dorofy, P., Jabot, M., y Bouaynaya N. (2018). Earth SySTEM: Investigating Earth from Space, IEEE Integrated STEM Education Conference (ISEC) - Princeton, NJ, USA. doi 10.1109%2FISECon.2018.8340492
dc.relationMorewedge, C.K. y Kahneman D. (2010). Associative processes in intuitive judgment. Trends in Cognitive Sciences, Vol. 14 (10), 435-440
dc.relationMoshman, D. (2004). From inference to reasoning: The construction of rationality. Thinking y Reasoning, 10(2), 221–239. https://doi.org/10.1080/13546780442000024
dc.relationMoulines, U. (2011). El desarrollo moderno de la Filosofía de la Ciencia (1890-2000). México: Instituto de Investigaciones Filosóficas UNAM.
dc.relationMuniz, M., Seabra, A. G., y Primi, R. (2012). Validity and Reliability of the Inductive Reasoning Test for Children - IRTC. Psicologia-Reflexao E Critica, 25(2), 275-285.
dc.relationNancekivell, S.H. y Friedman, O. (2017). She Bought the Unicorn From the Pet Store: Six- to Seven-Year-Olds Are Strongly Inclined to Generate Natural Explanations. Dev. Psychol. Vol. 53, No. 6, https://doi.org/1079–1087/dev0000311
dc.relationNational Science Foundation. (2007). Women, Minori- ties, and Persons with Disabilities in Science and Engineering. National Science Foundation, Division of Science Resource Statistics. Arlington: U.S.A.
dc.relationNguyen, S. P. (2012). Inductive Selectivity in Children's Cross-Classified Concepts. Child Development, 83(5), 1748-1761. https://doi.org/10.1111/j.1467-8624.2012.01812.x
dc.relationNguyen, S., Gordbron C., Chevalier, T. y Girgis, H. (2016). Trust and doubt: An examination of children’s decision to believe what they are told about food, Journal of Experimental Child Psychology, 144, 66-83. dx.doi.org/10.1016/j.jecp.2015.10.015
dc.relationNisbett, R. E., Krantz, D. H., Jepson, C., y Kunda, Z. (1983). The use of statistical heuristics in everyday inductive reasoning. Psychological Review, 90(4), 339–363. https://doi.org/10.1037/0033-295x.90.4.339
dc.relationNisbett, R. y Ross, L. (1986). Human Inference: Strategies And Shortcomings Of Social Judgment. New Jersey: Prentice-Hall.
dc.relationNisbett, R. E., Choi, I., Peng, K., y Norenzayan, A. (2001). Culture and Systems of Thought: Holistic Versus Analytic Cognition. Psychological Review, (2), 291-310. https://doi.org/10.1037//0033-295X.108.2.291
dc.relationNisbett, R., Krantz, D., Jepson,C. y Fong G. T. (1982). Improving inductive inference. En Kahneman, D., Paul Slovic, Amos Tversky (eds.) (1982). Judgment under Uncertainty, Heuristics and Biases. Cambridge University Press.
dc.relationNisbett, R. E., Aronson, J., Blair, C., Dickens,W., Flynn, J., Halpern, D., et al. (2012). Intelligence: New findings and theoretical developments. American Psychologist, 67, 2, 130–159 doi 10.1037/a0026699.
dc.relationNoyes, A., y Christie, S. (2016). Children Prefer Diverse Samples for Inductive Reasoning in the Social Domain. Child Development, 87(4), 1090-1098. https://doi.org/10.1111/cdev.12522
dc.relationOECD. (2009). Programme for International Student Assessment. An overview. Paris: OECD.
dc.relationOECD (2012a). Better skills, better jobs, better lives. A strategic approach to skills policies. Paris: OECD.
dc.relationOECD (2013a). PISA 2012 assessment and analytical framework. Paris: OECD Publishing.
dc.relationOECD. (2015) The ABC of Gender Equality in Education: Aptitude, Behaviour, Confidence. PISA: OECD Publishing. https://doi.org/10.1787/9789264229945-en
dc.relationOpfer, J. E., y Bulloch, M. J. (2007). Causal relations drive young children’s induction, naming, and categorization. Cognition, 105, 206–217. https://doi.org/10.1016/j.cognition.2006.08.006
dc.relationOsborne, J. (2013). The 21st century challenge for science education: Assessing scientific reasoning. Thinking Skills and Creativity, 10, 265-279. dx.doi.org/10.1016/j.tsc.2013.07.006
dc.relationPalejwala, M. H., y Fine, J. G. (2015). Gender differences in latent cognitive abilities in children aged 2 to 7. Intelligence, 4896-108. https://doi.org/10.1016/j.intell.2014.11.004
dc.relationPalmquist, C. M., y Jaswal, V. K. (2015). Preschoolers’ inferences about pointers and labelers: The modality matters. Cognitive Development, 35, 178–185. https://doi.org/10.1016/j.cogdev.2015.06.003
dc.relationPavlidou, E. V., y Bogaerts, L. (2019). Implicit Statistical Learning across Modalities and its Relationship with Reading in Childhood. Front Psychol. https://doi.org/10.3389/fpsyg.2019.01834
dc.relationPerner, J. y Dienes, Z. (2002). Implicit Versus Explicit Representation and Intra‐ Versus Inter‐Modular Processing. Computational Intelligence, 18: 55-58. https://doi.org/10.1111/1467-8640.00182
dc.relationPerret, P. (2015). Children’s Inductive Reasoning: Developmental and Educational perspectives. Journal of Cognitive Education and Psychology, 14 (3), 389 - 408. 10.1891/1945-8959.14.3.389
dc.relationPrimi, R., Rocha da Silva, M. C., Rodrigues, P., Muniz, M., y Almeida, L. S. (2013). The use of the bi-factor model to test the uni-dimensionality of a battery of reasoning tests. Psicothema, 25(1), 115-122. https://doi.org/10.7334/psicothema2011.393
dc.relationPavlidou, E., y Bogaerts, L. (2019). Implicit statistical learning across modalities and its relationship with reading in childhood. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2019.01834
dc.relationPerret, P. (2015). Children’s Inductive Reasoning: Developmental and Educational perspectives. Journal of Cognitive Education and Psychology, 14 (3), 389 - 408. https://doi.org/10.1891/1945-8959.14.3.389
dc.relationPetticrew, M. y Roberts, H. (2006). Systematic reviews in the social sciences. A practical guide. Oxford: Blackwell Publishing.
dc.relationPillow, B. (2002). Children's and adults' evaluation of the certainty of deductive inferences, inductive inferences, and guesses. Child Development, 3, 779-792.
dc.relationQuinn P. (2010). Born to Categorize. In U. Goswami, (Series Ed.). Wiley-Blackwell handbook of childhood cognitive development., New York: Wiley (2nd ed, p. 129). doi.org/10.1111/1467-8624.00438
dc.relationRicco, R. B. (2015). The Development of Reasoning. Handbook of Child Psychology and Developmental Science, 1–52. https://doi.org/10.1002/9781118963418.CHILDPSY213
dc.relationRhodes, M., l, S. A., y Brickman, D. (2008). Developmental Changes in the Consideration of Sample Diversity in Inductive Reasoning. Journal Of Cognition y Development, 9(1), 112-143. https://doi.org/10.1080/15248370701836626dien
dc.relationRhodes, M., y Liebenson, P. (2015). Continuity and change in the development of category-based induction: The test case of diversity-based reasoning. Cognitive Psychology, 74. https://doi.org/10.1016/j.cogpsych.2015.07.003
dc.relationRuffman, T., Taumoepeau, M., y Perkins, C. (2012). Statistical learning as a basis for social understanding in children. British Journal of Developmental Psychology, 30, 87–104, https://doi.org/10.1111/j.2044-835X.2011.02045.x
dc.relationSaffran, J. R., y Kirkham, N. Z. (2018). Infant statistical learning. Annual Review of Psychology, 69, 181–208. http://dx.doi.org/10.1146/annurev-psych-122216-011805.
dc.relationSamarapungavan, A., Vosniadou, S., y Brewer, W. F. (1996). Mental models of the earth, sun, and moon: Indian children’s cosmologies. Cognitive Development, 11(4), 491–521. https://doi.org/10.1016/s0885-2014(96)90015-5
dc.relationSamarapungavan, A. Mantzicopoulos P. y Patrick H. (2008). Learning science through inquiry in kindergarten. Science Education. 92, 5, 868-908. doi 10.1002%2Fsce.20275
dc.relationSchulz, L. (2012). The origins of inquiry: inductive inference and exploration in early childhood. Trends in Cognitive Sciences, 16, 7, 382-389. https://doi.org /10.1016/j.tics.2012.06.004
dc.relationSchauble, L. (1996). The development of scientific reasoning in knowledge-rich contexts. Developmental Psychology, 32(1), 102–119. https://doi.org/10.1037/0012-1649.32.1.102
dc.relationSchulz, L., Goodman, N., Tenenbaum, J. y Jenkins, A. (2008). Going beyond the evidence: Abstract laws and preschoolers' responses to anomalous data. Cognition, 109(2), 211-223. https://doi.org/10.1016/j.cognition.2008.07.017
dc.relationSchulz, L. E., y Sommerville, J. (2006). God does not play dice: Causal determinism and preschoolers’ causal inferences. Child Development, 77(2), 427–442. https://pubmed.ncbi.nlm.nih.gov/16611182
dc.relationSchwichow, M., Croker, S., Zimmerman, C., Hoffler, T. y Hartig, H. (2016). Teaching the control-of-variables strategy: A meta-analysis. Developmental Review, 37. doi-org.ezproxy.unal.edu.co/10.1016/j.dr.2015.12.001
dc.relationSetoh, P., Wu, D., Baillargeon, R., y Gelman, R. (2013). Young infants have biological expectations about animals. Proceedings of the National Academy of Sciences, USA, 110 (40), 15937-15942. https://doi.org/ 10.1073/pnas.1314075110
dc.relationShafto, P., Kemp, C., Bonawitz, E. B., Coley, J. D., y Tenenbaum, J. B. (2008). Inductive reasoning about causally transmitted properties. Cognition, 109175-192. https://doi.org/10.1016/j.cognition.2008.07.006
dc.relationStrand-Cary, M., y Klahr, D. (2008). Developing elementary science skills: Instructional effectiveness and path independence. Cognitive Development, 23(4), 488–511. https://doi.org/10.1016/j.cogdev.2008.09.005
dc.relationSiler, S. A., Klahr, D., y Price, N. (2012). Investigating the mechanisms of learning from a constrained preparation for future learning activity. Instructional Science, 41(1), 191–216. https://doi.org/10.1007/s11251-012-9224-7
dc.relationSimon, H. A., y Lea, G. (1974). Problem solving and rule induction: A unified view. In L. W. Gregg (Ed.), Knowledge and cognition (pp. 105-127). Potomac, MD: Erlbaum.
dc.relationSingh, M. (2021). Acquisition of 21st Century Skills Through STEAM Education. Academia Letters. https://doi.org/10.20935/AL712
dc.relationShipley, E. y Shepperson, B. (2006). Test Sample Selection by Preschool Children: Honoring Diversity. Memory and Cognition, 34(7), 1444 -1451, doi.org/10.3758/BF03195909
dc.relationShtulman, A., y Schulz, L. (2008). The relation between essentialist beliefs and evolutionary reasoning. Cognitive Science, 32 (6), 1049–1062. https://doi.org/10.1080/03640210801897864
dc.relationShye, S. (1988). Inductive and Deductive Reasoning: A Structural Reanalysis of Ability Tests. Journal Of Applied Psychology, 73(2), 308-311
dc.relationSlone, L.K., Johnson, S. P. (2018). When learning goes beyond statistics: Infants represent visual sequences in terms of chunks, Cognition, Volume 178, 2018, Pages 92-102, ISSN 0010-0277, https://doi.org/10.1016/j.cognition.2018.05.016.
dc.relationSloman, S. A. (2005) Causal models: how people think about the world and its alternatives. Oxford University Press, Inc. : New York
dc.relationSloutsky, V. M., Wei D., Fisher, A. y Kloos, H. (2015). Conceptual influences on induction: A case for a late onset, Cognitive Psychology, 82, 1-31. dx.doi.org/10.1016/j.cogpsych.2015.08.005
dc.relationSobel, D.M. y Buchanan D.W. (2009). Bridging the gap: Causality-at-a-distance in children’s categorization and inferences about internal properties. Cognitive Development, 24, 274–283 https://doi.org/10.1016/j.cogdev.2009.03.003
dc.relationSobel, D.M., Erbb, C.D., Tassina, T. y Skolnick Weisberg D. (2017). The Development of Diagnostic Inference About Uncertain Causes. Journal of Cognition and Development, Vol. 18, No. 5, 556–576 https://doi.org/10.1080/15248372.2017.1387117
dc.relationSobel, D. M., y Legare, C. (2014). Causal learning in children. WIRE-Cognitive Science, 5, 413–427. https://doi.org/10.1002/wcs.1291
dc.relationSternberg , R. (Ed.) ( 1984 ). Mechanisms of cognitive development. New York: Freeman
dc.relationSternberg, R. (2010). Individual Differences in Cognitive Development. En U. Goswami, (Series Ed.).Wiley-Blackwell handbook of childhood cognitive development. New York: Wiley.
dc.relationSternberg, R., y Gardner, M. (1983). Unities in inductive reasoning. Journal Of Experimental Psychology: General, 112(1), 80-116. https://doi.org/10.1037/0096-3445.112.1.80
dc.relationSternberg, R. y Prezt, J. (Ed.) (2005). Cognition and Intelligence: Identifying the Mechanisms of the Mind. New York: Cambridge University Press.
dc.relationSternberg, R. J., Sternberg, K., y Mio, J. S. (2012). Cognitive psychology. Australia: Wadsworth/Cengage Learning.
dc.relationSü, H. M., Oberauer, K., Wittmann, W. W., Wilhelm, O., y Schulze, R. (2002). Working-memory capacity explains reasoning ability-and a little bit more. Intelligence -Norwood- Mutidisciplinary Journal. (3). 261- 276. https://www.sciencedirect.com/science/article/pii/S0160289601001003
dc.relationSutherland, S. L. y Cimpian, A. (2017). Inductive generalization relies on category representations. Psychonomic Bulletin y Review, 24(2), 632-636. https://doi.org/10.3758/s13423-015-0951-z
dc.relationTenenbaum, J. B., Kemp, C., Griffiths, T. L., y Goodman, N. D. (2011). How to Grow a Mind: Statistics, Structure, and Abstraction. Science, 331(6022), 1279–1285. https://doi.org/10.1126/science.1192788
dc.relationTeglas, E., Vul, E., Girotto, V., Gonzalez, M., Tenenbaum, J. B., y Bonatti, L. L. (2011). Pure reasoning in 12-month-old infants as probabilistic inference. Science, 332, 1054–1058. https://doi.org/10.1126/science.1196404
dc.relationTummeltshammer, K.S., y Kirkham, N.Z. (2013). Learning to look: probabilistic variation and noise guide infants’ eye movements. Developmental Science, 16, 760–771. https://doi.org/10.1111/desc.12064
dc.relationTomasello, M. (2010). Language Development. In U. Goswami, (Series Ed.). Wiley-Blackwell handbook of childhood cognitive development .New York : Wiley
dc.relationTummeltshammer, K., Amso, D., French, R. M., y Kirkham, N. Z. (2016). Across space and time: infants learn from backward and forward visual statistics. Developmental Science, 1–9. doi.org/10.1111/desc.12474.
dc.relationThurstone, L. L. y Thurstone, T. G. (1941). Factorial studies of intelligence. Chicago: University of Chicago Press.
dc.relationTuriel, E. (2012). Moral reasoning, cultural practices, and social inequalities. Innovación Educativa, 12 (59), pp 17-32. www.scielo.org.mx/pdf/ie/v12n59/v12n59a3.pdf
dc.relationUNESCO. (2005). Towards knowledge societies. Paris: United Nations Educational, Scientific, and Cultural Organization.
dc.relationUNESCO (2015). Replantear la educación: Hacia un bien común mundial?. Disponible en: (www.unesco.org/open-access/terms-use-ccbysa-sp)
dc.relationUNESCO. (2017) Cracking the code: Girls’ and women’s education in science, technology, engineering and mathematics (STEM). París: United Nations Educational, Scientific and Cultural Organization. http://unesdoc.unesco.org/images/0025/002534/253479e.pdf
dc.relationVandekerckhove, J. (2014). A cognitive latent variable model for the simultaneous analysis of behavioral and personality data. Journal Of Mathematical Psychology, 6058-71. https://doi.org/10.1016/j.jmp.2014.06.004
dc.relationvan Laar, E., Deursen, A., Van Dijk, J. y Haan, J. (2020). Determinants of 21st-Century Skills and 21st-Century Digital Skills for Workers: A Systematic Literature Review. SAGE Open. 10. 1-14. 10.1177/2158244019900176.
dc.relationVega E. (2018). The Wisdom of our Native American Tribes: Advanced Math, Science and Culture for the Future. IEEE Integrated STEM Conference (ISEC). www.linkedin.com/in/ernesto-vega-janica-50231319
dc.relationVygotsky, L. S. (1988). El desarrollo de los procesos psicológicos superiores. Barcelona, España: Crítica. (Año de publicación del original: 1931)
dc.relationWaismeyer, A., y Meltzoff, A. N. (2017). Learning to make things happen: Infants' observational learning of social and physical causal events. Journal Of Experimental Child Psychology, 58. https://doi.org/10.1016/j.jecp.2017.04.018
dc.relationWaismeyer, A., Meltzoff, A. N., y Gopnik, A. (2015). Causal learning from probabilistic events in 24-month-olds: An action measure. Developmental Science, 18, 175–182. https://doi.org/10.1111/desc.12208
dc.relationWasher, P. (2007). Revisiting Key Skills: A Practical Framework for Higher Education. Quality in Higher Education, 13(1), 57–67. https://doi.org/10.1080/13538320701272755
dc.relationWatson, G., y Glaser, E. M. (1964). Manual for the Watson-Glaser critical thinking appraisal. New York: Harcourt, Brace, Jovanovich
dc.relationWaxman, S. (2010). Early Word-Learning and Conceptual Development: Everything Had a Name, and Each Name Gave Birth to a New Thought. In U. Goswami, (Series Ed.). Wiley-Blackwell handbook of childhood cognitive development . (2nd ed.). New York: Wiley.
dc.relationWaldmann, M. y Hagmayer, Y. (2006). Categories and causality: The neglected direction. Cognitive
dc.relationWellman, H. M. (2014). Making Minds: How Theory of Mind Develops. Oxford University Press : New York
dc.relationWild y Pfannkuch (1999), Statistical Thinking in Empirical Enquiry, International Statistical Review, 67, pp. 223 –265. doi.org/10.1111/j.1751-5823.1999.tb00442.x
dc.relationWilkening, F., y Cacchione, T. (2010). Children's intuitive physics. In U. Goswami (Ed.), The Wiley-Blackwell handbook of childhood cognitive development (pp. 473–496). Wiley-Blackwell.
dc.relationWorld Economic Forum. (2020). Schools of the Future: Defining New Models of Education for the Fourth Industrial Revolution, 2020. WEF_Schools_of_the_Future_Report_2019.pdf (weforum.org)
dc.relationWorld Economic Forum. (2021). Building A Common Language for Skills at Work: A Global Taxonomy. https://www.weforum.org/reports/building-a-common-language-for-skills-at-work-a-global-taxonomy
dc.relationWu R, Gopnik A, Richardson DC, Kirkham NZ. (2011). Infants learn about objects from statistics and people. Dev. Psychol. 47(5):1220–29. https://doi.org/ 10.1037/a0024023
dc.relationXu, F. y Garcia, V. (2008). Intuitive Statistics by 8-Month-Old Infants. Proceedings Of The National Academy Of Sciences Of The United States Of America, 105 (13), 5012-5015. https://doi.org/10.1073/pnas.0704450105
dc.relationXu, F., y Griffiths, T. L. (2011). Probabilistic models of cognitive development: towards a rational constructivist approach to the study of learning and development. Cognition, 120 (3), 299–301 doi.org/10.1016/j.cognition.2011.06.008
dc.relationXu, F. y Kushnir, T. (Eds.). (2012). Rational Constructivism in Cognitive Development. Waltham, MA: Academic Press.
dc.relationZheng, D., Shu G., y Wong, K. W. (2018). Global Engineering. Education Conference (EDUCON) - Santa Cruz de Tenerife, Islas Canarias, España. https://doi.org/10.1109%2FEDUCON.2018.8363268
dc.relationZhu, L., y Gigerenzer, G. (2006). Children can solve Bayesian problems: The role of representation in mental computation. Cognition, 98(3), 287–308. https://doi.org/10.1016/j.cognition.2004.12.003
dc.relationZimmerman, C. (2000). The Development of Scientific Reasoning Skills. Developmental Review, (20), 99-149. https://doi.org/10.1006/drev.1999.0497
dc.relationZimmerman, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental Review, 2, 172-223. https://doi.org/10.1016/j.dr.2006.12.001
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titlePropuesta metodológica para la caracterización del Razonamiento Inductivo en la Primera Infancia desde el enfoque de la Educación STEM
dc.typeTrabajo de grado - Doctorado


Este ítem pertenece a la siguiente institución