dc.contributorde Brito Brandão, Pedro Filipe
dc.contributorCabeza, Iván O.
dc.contributorGrupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente Germina
dc.creatorVela Aparicio, Diana Gisset
dc.date.accessioned2023-05-30T20:29:12Z
dc.date.accessioned2023-06-06T23:28:21Z
dc.date.available2023-05-30T20:29:12Z
dc.date.available2023-06-06T23:28:21Z
dc.date.created2023-05-30T20:29:12Z
dc.date.issued2022-10
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/83919
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6651309
dc.description.abstractLa biofiltración es una biotecnología de alta eficiencia y bajo costo para la remoción de H2S y NH3 emitidos en plantas de tratamiento de aguas residuales (PTAR). Sin embargo, la influencia de condiciones transitorias durante la operación, frecuentes a nivel industrial, sobre la comunidad microbiana presente en el biofiltro no ha sido muy estudiada. Este trabajo evaluó los cambios de la comunidad microbiana de dos biofiltros de compost de pollinaza y bagazo de caña bajo condiciones que simulan las variaciones y rangos de concentraciones de H2S y NH3 encontradas en la PTAR El Salitre. Estos biofiltros se sometieron a cambios en la carga de los gases, mediante la disminución del tiempo de residencia (EBRT) y picos de concentración, y posteriormente, se redujo la humedad del lecho. En las condiciones donde disminuyó la eficiencia de remoción (ER), se analizaron los productos de oxidación de los gases y se determinó la composición de la comunidad microbiana, mediante secuenciación del gen ARNr 16S del metagenoma. Finalmente, se inoculó el lecho de uno de los biofiltros con un cultivo microbiano enriquecido en bacterias nitrificantes y oxidantes de azufre para evaluar su capacidad de recuperación bajo condiciones que simularon las variaciones estacionales y diarias de concentración en la PTAR. A un EBRT de 25 s, alta concentración de gases y 40% de humedad, el biofiltro alcanzó una capacidad de eliminación de 32,2±4,7 g H2S/m3h y 1,3±0,1 g NH3/m3h con una ER de 80% de H2S y 91% de NH3. La acumulación de subproductos (sulfato y amonio) provocó una alta proporción de bacterias heterótrofas halófilas en el lecho. Tras la reducción de la humedad a 20%, se redujo la eficiencia de remoción y la diversidad microbiana. Finalmente, ambos biofiltros, inoculado o no, pudieron recuperar la remoción de gases a más de 90%, bajo cambios diarios en la concentración de los gases y a alta concentración de sulfato y amonio. Este estudio demostró que la comunidad microbiana del biofiltro pudo adaptarse a cambios drásticos en la carga de gases, disminución en la humedad y acumulación de sulfato y amonio en el lecho hasta alcanzar una composición estable. Se concluye que el biofiltro desarrollado puede usarse para la eliminación de H2S y NH3 en diversas actividades industriales y bajo condiciones de operación variables mencionadas (Texto tomado de la fuente)
dc.description.abstractBiofiltration is a high efficiency and low-cost biotechnology for the removal of H2S and NH3 emitted in wastewater treatment plants (WWTP). However, the influence of transient conditions during operation, frequent at the industrial level, on the microbial community involved in gas removal has not been well studied. This work evaluated the changes in the microbial community of two compost biofilters made of chicken manure and sugarcane bagasse to remove H2S and NH3 under conditions that simulate the variations and ranges of concentrations found at the WWTP El Salitre. These biofilters were exposed to changes in gas loading by decreasing the residence time (EBRT) and concentration peaks, and subsequently, the bed moisture was reduced. The oxidation products of the gases were analyzed, and the composition of the microbial community was determined by 16S rRNA metagenome sequencing when the removal efficiency (RE) declined. Finally, the bed of one of the biofilters was inoculated with an enriched culture of nitrifying and sulfur-oxidizing bacteria to evaluate its recovery capacity under conditions that simulated seasonal and daily concentration variations at the WWTP. The biofilter achieved a removal capacity of 32.2±4.7 g H2S/m3h and 1.3±0.1 g NH3/m3h with an ER of 80% H2S and 91% NH3 at an EBRT of 25 s, high concentration of gases and 40% moisture. The accumulation of by-products (sulfate and ammonium) resulted in a high proportion of heterotrophic halophilic bacteria in the bed. After moisture reduction to 20%, removal efficiency and microbial diversity were reduced. Finally, both biofilters, inoculated or not, could recover gas removal under daily changes in gas concentrations and at high sulfate and ammonium concentrations. This study showed that the microbial community of the biofilter could adapt to drastic changes in gas loading, moisture reduction and accumulation of sulfate and ammonium in the bed until it reached a stable composition. The results suggest that the developed biofilter can be used for H2S and NH3 gas removal in several industrial facilities and under the mentioned operating conditions
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Doctorado en Biotecnología
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAcinas, S.G., Marcelino, L.A., Klepac-Ceraj, V., Polz, M.F., 2004. Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J. Bacteriol. 186, 2629–2635. https://doi.org/10.1128/JB.186.9.2629-2635.2004
dc.relationAir Clean System, 2010. ACS IOL 108 Informe de Resultados y Análisis del Monitoreo de Olores en la PTAR El Salitre”. Colombia
dc.relationAizpuru, A., Malhautier, L., Roux, J.C., Fanlo, J.L., 2001. Biofiltration of a mixture of volatile organic emissions. J. Air Waste Manag. Assoc. https://doi.org/10.1080/10473289.2001.10464388
dc.relationAlinezhad, E., Haghighi, M., Rahmani, F., Keshizadeh, H., Abdi, M., Naddafi, K., 2019. Technical and economic investigation of chemical scrubber and biofiltration in removal of H2S and NH3 from wastewater treatment plant. J. Environ. Manage. 241, 32–43. https://doi.org/10.1016/j.jenvman.2019.04.003
dc.relationAllievi, M.J., Silveira, D.D., Cantão, M.E., Filho, P.B., 2018. Bacterial community diversity in a full scale biofilter treating wastewater odor. Water Sci. Technol. 77, 2014–2022. https://doi.org/10.2166/wst.2018.114
dc.relationAlvarez Mancilla, A., Benítez Jiménez, J., Camargo Caicedo, Y., 2011. Biofiltración para la remoción de Sulfuro de Hidrógeno en la Estación de Bombeo Norte de Aguas Residuales. INGE CUC 7, 113–126
dc.relationAnderson, M.J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46. https://doi.org/https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
dc.relationAPHA, 2017. 2540 SOLIDS (2017). Stand. Methods Exam. Water Wastewater. https://doi.org/10.2105/SMWW.2882.03
dc.relationArp, D.J., Stein, L.Y., 2003. Metabolism of Inorganic N Compounds by Ammonia-Oxidizing Bacteria. Crit. Rev. Biochem. Mol. Biol. 38, 471–495. https://doi.org/10.1080/10409230390267446
dc.relationAttard, E., Poly, F., Commeaux, C., Laurent, F., Terada, A., Smets, B.F., Recous, S., Roux, X. Le, 2010. Shifts between Nitrospira- and Nitrobacter-like nitrite oxidizers underlie the response of soil potential nitrite oxidation to changes in tillage practices. Environ. Microbiol. 12, 315–326. https://doi.org/10.1111/j.1462-2920.2009.02070.x
dc.relationBaena, S.J., Hernández, L., 2012. Análisis de la regulación colombiana en materia de olores ofensivos
dc.relationBaker, S.C., Ferguson, S.J., Ludwig, B., Page, M.D., Richter, O.-M.H., van Spanning, R.J.M., 1998. Molecular genetics of the genus Paracoccus: metabolically versatile bacteria with bioenergetic flexibility. Microbiol. Mol. Biol. Rev. 62, 1046–1078. https://doi.org/10.1128/MMBR.62.4.1046-1078.1998
dc.relationBarbusinski, K., Kalemba, K., Kasperczyk, D., Urbaniec, K., Kozik, V., 2017. Biological methods for odor treatment – A review. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2017.03.093
dc.relationBarbusiński, K., Parzentna-Gabor, A., Kasperczyk, D., 2021. Removal of Odors (Mainly H2S and NH3) Using Biological Treatment Methods. Clean Technol. 3, 138–155. https://doi.org/10.3390/cleantechnol3010009
dc.relationBaskaran, V., Patil, P.K., Antony, M.L., Avunje, S., Nagaraju, V.T., Ghate, S.D., Nathamuni, S., Dineshkumar, N., Alavandi, S. V., Vijayan, K.K., 2020. Microbial community profiling of ammonia and nitrite oxidizing bacterial enrichments from brackishwater ecosystems for mitigating nitrogen species. Sci. Rep. 10, 1–11. https://doi.org/10.1038/s41598-020-62183-9
dc.relationBejarano Ortiz, D.I., Thalasso, F., Cuervo López, F. de M., Texier, A.C., 2013. Inhibitory effect of sulfide on the nitrifying respiratory process. J. Chem. Technol. Biotechnol. 88, 1344–1349. https://doi.org/10.1002/jctb.3982
dc.relationBennur, T., Kumar, A.R., Zinjarde, S., Javdekar, V., 2015. Nocardiopsis species: Incidence, ecological roles and adaptations. Microbiol. Res. 174, 33–47. https://doi.org/10.1016/J.MICRES.2015.03.010
dc.relationBeristain-Cardoso, R., Gómez, J., Méndez-Pampín, R., 2010. The behavior of nitrifying sludge in presence of sulfur compounds using a floating biofilm reactor. Bioresour. Technol. 101, 8593–8598. https://doi.org/10.1016/j.biortech.2010.06.084
dc.relationBernal, M.P., Alburquerque, J.A., Moral, R., 2009. Bioresource Technology Composting of animal manures and chemical criteria for compost maturity assessment . A review. Bioresour. Technol. 100, 5444–5453. https://doi.org/10.1016/j.biortech.2008.11.027
dc.relationBernal, M.P., Sommer, S.G., Chadwick, D., Qing, C., Guoxue, L., Michel, F.C., 2017. Current Approaches and Future Trends in Compost Quality Criteria for Agronomic, Environmental, and Human Health Benefits. Adv. Agron. 144, 143–233. https://doi.org/10.1016/BS.AGRON.2017.03.002
dc.relationBesaury, L., Marty, F., Buquet, S., Mesnage, V., Muyzer, G., Quillet, L., 2013. Culture-Dependent and Independent Studies of Microbial Diversity in Highly Copper-Contaminated Chilean Marine Sediments. Microb. Ecol. 65, 311–324. https://doi.org/10.1007/S00248-012-0120-0/TABLES/4
dc.relationBoden, R., 2017. Reclassification of Halothiobacillus hydrothermalis and Halothiobacillus halophilus to Guyparkeria gen. Nov. in the Thioalkalibacteraceae fam. nov., with emended descriptions of the genus Halothiobacillus and family Halothiobacillaceae. Int. J. Syst. Evol. Microbiol. 67, 3919–3928. https://doi.org/10.1099/ijsem.0.002222
dc.relationBollmann, A., French, E., Laanbroek, H.J., 2011. Chapter three - Isolation, Cultivation, and Characterization of Ammonia-Oxidizing Bacteria and Archaea Adapted to Low Ammonium Concentrations, in: Klotz, M.G. (Ed.), Research on Nitrification and Related Processes, Part A, Methods in Enzymology. Academic Press, pp. 55–88. https://doi.org/https://doi.org/10.1016/B978-0-12-381294-0.00003-1
dc.relationBollmann, A., Laanbroek, H.J., 2001. Continuous culture enrichments of ammonia-oxidizing bacteria at low ammonium concentrations. FEMS Microbiol. Ecol. 37, 211–221. https://doi.org/10.1016/S0168-6496(01)00163-5
dc.relationBolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M., Chase, J., Cope, E.K., Da Silva, R., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M., Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibbons, S.M., Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L., Kaehler, B.D., Kang, K. Bin, Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M.G.I., Lee, J., Ley, R., Liu, Y.-X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B.D., McDonald, D., McIver, L.J., Melnik, A. V, Metcalf, J.L., Morgan, S.C., Morton, J.T., Naimey, A.T., Navas-Molina, J.A., Nothias, L.F., Orchanian, S.B., Pearson, T., Peoples, S.L., Petras, D., Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson, M.S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D., Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-Hasan, S., van der Hooft, J.J.J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y., Wang, M., Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Xu, Z.Z., Zaneveld, J.R., Zhang, Y., Zhu, Q., Knight, R., Caporaso, J.G., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9
dc.relationBouzalakos, S., Jefferson, B., Longhurst, P.J., Stuetz, R.M., 2004. Developing methods to evaluate odour control products. Water Sci. Technol. 50, 225–232.
dc.relationBraker, G., Fesefeldt, A., Witzel, K.P., 1998. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl. Environ. Microbiol. 64, 3769–3775. https://doi.org/10.1128/AEM.64.10.3769-3775.1998
dc.relationBueno, P., Tapias, R., López, F., Díaz, M.J., 2008. Optimizing composting parameters for nitrogen conservation in composting. Bioresour. Technol. 99, 5069–5077. https://doi.org/10.1016/j.biortech.2007.08.087
dc.relationCabeza, I. O., López, R., Giraldez, I., Stuetz, R.M., Díaz, M.J., 2013. Biofiltration of α-pinene vapours using municipal solid waste (MSW) - Pruning residues (P) composts as packing materials. Chem. Eng. J. 233, 149–158. https://doi.org/10.1016/j.cej.2013.08.032
dc.relationCabeza, I O, López, R., Ruiz-Montoya, M., Díaz, M.J., 2013. Maximising municipal solid waste - Legume trimming residue mixture degradation in composting by control parameters optimization. J. Environ. Manage. 128, 266–273. https://doi.org/10.1016/j.jenvman.2013.05.030
dc.relationCabrol, L., Malhautier, L., 2011. Integrating microbial ecology in bioprocess understanding: The case of gas biofiltration. Appl. Microbiol. Biotechnol. 90, 837–849. https://doi.org/10.1007/s00253-011-3191-9
dc.relationCabrol, L., Malhautier, L., Poly, F., Lepeuple, A.S., Fanlo, J.L., 2012. Bacterial dynamics in steady-state biofilters: Beyond functional stability. FEMS Microbiol. Ecol. 79, 260–271. https://doi.org/10.1111/j.1574-6941.2011.01213.x
dc.relationCabrol, L., Poly, F., Malhautier, L., Pommier, T., Lerondelle, C., Verstraete, W., Lepeuple, A.S., Fanlo, J.L., Roux, X. Le, 2016. Management of Microbial Communities through Transient Disturbances Enhances the Functional Resilience of Nitrifying Gas-Biofilters to Future Disturbances. Environ. Sci. Technol. 50, 338–348. https://doi.org/10.1021/acs.est.5b02740
dc.relationCai, W., Zhao, M., Kong, J., Riggio, S., Finnigan, T., Stuckey, D., Guo, M., 2021. Linkage of community composition and function over short response time in anaerobic digestion systems with food fermentation wastewater. iScience 24, 102958. https://doi.org/10.1016/j.isci.2021.102958
dc.relationCEN, 2007. CEN - EN 13040 Soil improvers and growing media - Sample preparation for chemical and physical tests, determination of dry matter content, moisture content and laboratory compacted bulk density.
dc.relationChen, L., Hoff, S.J., 2012. A two-stage wood chip-based biofilter system to mitigate odors from a deep-pit swine building. Appl. Eng. Agric. 28, 893–901
dc.relationChen, X., Li, G.D., Li, Q.Y., Hu, C.J., Qiu, S.M., Jiang, Y., Jiang, C.L., Han, L., Huang, X.S., 2015. Enteractinococcus lamae sp. nov. and Enteractinococcus viverrae sp. nov., isolated from animal faeces. Antonie van Leeuwenhoek 2015 1086 108, 1477–1483. https://doi.org/10.1007/S10482-015-0603-3
dc.relationChien, S.H., Gearhart, M.M., Villagarcía, S., 2011. Comparison of ammonium sulfate with other nitrogen and sulfur fertilizers in increasing crop production and minimizing environmental impact: A review. Soil Sci. 176, 327–335. https://doi.org/10.1097/SS.0B013E31821F0816
dc.relationChung, Y.-C., Huang, C., 1998. Biotreatment of ammonia in air by an immobilized Nitrosomonas europaea biofilter. Environ. Prog. 17, 70–76. https://doi.org/10.1002/ep.670170211
dc.relationChung, Y.C., Ho, K.L., Tseng, C.P., 2007. Two-stage biofilter for effective NH3 Removal from Waste Gases Containing High Concentrations of H2S. J. Air Waste Manag. Assoc. 57, 337–347. https://doi.org/10.1080/10473289.2007.10465332
dc.relationChung, Y.C., Huang, C., Tseng, C.P., Rushing Pan, J., 2000. Biotreatment of H2S- and NH3-containing waste gases by co-immobilized cells biofilter. Chemosphere 41, 329–336. https://doi.org/10.1016/S0045-6535(99)00490-7
dc.relationCostello, R.C., Sullivan, D.M., 2014. Determining the pH buffering capacity of compost via titration with dilute sulfuric acid. Waste and Biomass Valorization 5, 505–513. https://doi.org/10.1007/s12649-013-9279-y
dc.relationDahl, C., Friedrich, C., Kletzin, A., 2008. Sulfur Oxidation in Prokaryotes. eLS. https://doi.org/10.1002/9780470015902.A0021155
dc.relationDaims, H., Lücker, S., Wagner, M., 2016. Review A New Perspective on Microbes Formerly Known as Nitrite-Oxidizing Bacteria. Trends Microbiol. 24, 699–712. https://doi.org/10.1016/j.tim.2016.05.004
dc.relationDas, J., Rene, E.R., Dupont, C., Dufourny, A., Blin, J., van Hullebusch, E.D., 2019. Performance of a compost and biochar packed biofilter for gas-phase hydrogen sulfide removal. Bioresour. Technol. 273, 581–591. https://doi.org/10.1016/j.biortech.2018.11.052
dc.relationDas, S.K., Mishra, A.K., Tindall, B.J., Rainey, F.A., Stackebrandt, E., 1996. Oxidation of thiosulfate by a new bacterium, Bosea thiooxidans (strain BI-42) gen. nov., sp. nov.: Analysis of phylogeny based on chemotaxonomy and 16S ribosomal DNA sequencing. Int. J. Syst. Bacteriol. 46, 981–987. https://doi.org/10.1099/00207713-46-4-981
dc.relationDatta, I., Allen, D.G., 2005. Biofilter technology, in: Shareefdeen, Z., Singh, A. (Eds.), Biotechnology for Odor and Air Pollution Control. Springer, Berlin, Heidelberg, pp. 125–145. https://doi.org/10.1007/3-540-27007-8_6
dc.relationde Gannes, V., Eudoxie, G., Hickey, W.J., 2013. Prokaryotic successions and diversity in composts as revealed by 454-pyrosequencing. Bioresour. Technol. 133, 573–580. https://doi.org/10.1016/j.biortech.2013.01.138
dc.relationDelgado Vela, J., Dick, G.J., Love, N.G., 2018. Sulfide inhibition of nitrite oxidation in activated sludge depends on microbial community composition. Water Res. 138, 241–249. https://doi.org/10.1016/j.watres.2018.03.047
dc.relationDelhoménie, M.-C., Heitz, M., 2005. Biofiltration of air: a review. Crit. Rev. Biotechnol. 25, 53–72. https://doi.org/10.1080/07388550590935814
dc.relationDorado, A.D., Lafuente, F.J., Gabriel, D., Gamisans, X., 2010. A comparative study based on physical characteristics of suitable packing materials in biofiltration. Environ. Technol. 31, 193–204. https://doi.org/10.1080/09593330903426687
dc.relationDu, W., Parker, W., 2012. Characterization of Sulfur in Raw and Anaerobically Digested Municipal Wastewater Treatment Sludges. Water Environ. Res. 85, 124–132. https://doi.org/10.2175/106143012x13407275694671
dc.relationDuan, S., Zhang, Y., Zheng, S., 2021. Heterotrophic nitrifying bacteria in wastewater biological nitrogen removal systems: A review. Crit. Rev. Environ. Sci. Technol. 0, 1–37. https://doi.org/10.1080/10643389.2021.1877976
dc.relationEAAB, n.d. Planta de Tratamiento de Aguas Residuales-PTAR Salitre [WWW Document]. URL http://www.acueducto.com.co/wpsv61/wps/portal/!ut/p/c5/04_SB8K8xLLM9MSSzPy8xBz9CP0os3gLw2DfYHMPIwN_cyMXA09HV1cLM2MTJ5MgE6B8pFm8s7ujh4m5j4GBv1GYgYGRn2lwoEFosLGBpzEB3eEg-_DrB8kb4ACOBvp-Hvm5qfoFuREGWSaOigAIs6kp/dl3/d3/L0lDU0lKSWdra0EhIS9JTlJBQUlpQ2dBek15cUEh (accessed 12.10.16).
dc.relationElías, A., Barona, A., Gallastegi, G., Rojo, N., Gurtubay, L., Ibarra-Berastegi, G., 2010. Preliminary acclimation strategies for successful startup in conventional biofilters. J. Air Waste Manag. Assoc. 60, 959–967. https://doi.org/10.3155/1047-3289.60.8.959
dc.relationEPA, U.S.E.P.A., 1996. Method 8260B: Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS), part of Test Methods for Evaluating Solid Waste, Physical/Chemical Methods | US EPA ARCHIVE DOCUMENT | Enhanced Reader [WWW Document].
dc.relationErguder, T.H., Boon, N., Vlaeminck, S.E., Verstraete, W., 2008. Partial nitrification achieved by pulse sulfide doses in a sequential batch reactor. Environ. Sci. Technol. 42, 8715–8720. https://doi.org/10.1021/es801391u
dc.relationEscalas, A., Guadayol, J.M., Cortina, M., Rivera, J., Caixach, J., 2003. Time and space patterns of volatile organic compounds in a sewage treatment plant. Water Res. 37, 3913–3920. https://doi.org/10.1016/S0043-1354(03)00336-1
dc.relationEstrada, J.M., Kraakman, N.J.R.B., Muñoz, R., Lebrero, R., 2011. A comparative analysis of odour treatment technologies in wastewater treatment plants. Environ. Sci. Technol. 45, 1100–1106. https://doi.org/10.1021/es103478j
dc.relationFinkmann, W., Altendorf, K., Stackebrandt, E., Lipski, A., 2000. Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 50, 273–282. https://doi.org/10.1099/00207713-50-1-273
dc.relationForero, D.. F., Peña, C.E., Hernández, M.A., Cabeza, I.O., 2017. Biofiltración De Ácido Acético Usando Como Lecho Filtrante Compost A Partir De Pollinaza- Residuos De Poda- Cascarilla De Arroz. Universidad Santo Tomás.
dc.relationForero, D.F., Acevedo, P., Cabeza, I.O., Peña, C., Hernandez, M., 2018. Biofiltration of acetic acid vapours using filtering bed compost from poultry manure - pruning residues - rice husks. Chem. Eng. Trans. 64, 511–516. https://doi.org/10.3303/CET1864086
dc.relationForquin, M.P., Weimer, B.C., 2014. Brevibacterium. Encycl. Food Microbiol. Second Ed. 324–330. https://doi.org/10.1016/B978-0-12-384730-0.00047-1
dc.relationFranke-Whittle, I.H., Confalonieri, A., Insam, H., Schlegelmilch, M., Körner, I., 2014. Changes in the microbial communities during co-composting of digestates. Waste Manag. 34, 632–641. https://doi.org/10.1016/j.wasman.2013.12.009
dc.relationFriedrich, C.G., Bardischewsky, F., Rother, D., Quentmeier, A., Fischer, J., 2005. Prokaryotic sulfur oxidation. Curr. Opin. Microbiol. 8, 253–259. https://doi.org/https://doi.org/10.1016/j.mib.2005.04.005
dc.relationGabriel, D., Maestre, J.P., Martín, L., Gamisans, X., Lafuente, J., 2007. Characterisation and performance of coconut fibre as packing material in the removal of ammonia in gas-phase biofilters. Biosyst. Eng. 97, 481–490. https://doi.org/10.1016/j.biosystemseng.2007.03.038
dc.relationGeets, J., Boon, N., Verstraete, W., 2006. Strategies of aerobic ammonia-oxidizing bacteria for coping with nutrient and oxygen fluctuations. FEMS Microbiol. Ecol. 58, 1–13. https://doi.org/10.1111/J.1574-6941.2006.00170.X
dc.relationGonzález-Sánchez, A., Revah, S., Deshusses, M.A., 2008. Alkaline Biofiltration of H2S Odors. Environ. Sci. Technol. 42, 7398–7404. https://doi.org/10.1021/es800437f
dc.relationGuimerà, X., Dorado, A.D., Santos, A., Gamisans, X., Gabriel, D., 2015. Conversion of chemical scrubbers to biotrickling filters for VOCs and H2S treatment at low contact times. Appl. Microbiol. Biotechnol. 99, 67–76. https://doi.org/10.1007/s00253-014-5796-2
dc.relationHammerl, V., Kastl, E.-M., Schloter, M., Kublik, S., Schmidt, H., Welzl, G., Jentsch, A., Beierkuhnlein, C., Gschwendtner, S., 2019. Influence of rewetting on microbial communities involved in nitrification and denitrification in a grassland soil after a prolonged drought period. Sci. Rep. 9, 2280. https://doi.org/10.1038/s41598-018-38147-5
dc.relationHaug, R.T., 1993. The Practical Handbook of Compost Engineering The Practical Handbook of Compost Engineering. CRC Press.
dc.relationHayes, J.E., Stevenson, R.J., Stuetz, R.M., 2014. The impact of malodour on communities: A review of assessment techniques. Sci. Total Environ. 500–501, 395–407. https://doi.org/10.1016/J.SCITOTENV.2014.09.003
dc.relationHo, K.L., Chung, Y.C., Tseng, C.P., 2008. Continuous deodorization and bacterial community analysis of a biofilter treating nitrogen-containing gases from swine waste storage pits. Bioresour. Technol. 99, 2757–2765. https://doi.org/10.1016/j.biortech.2007.06.041
dc.relationHort, C., Gracy, S., Platel, V., Moynault, L., 2013. A comparative study of two composts as filter media for the removal of gaseous reduced sulfur compounds (RSCs) by biofiltration: Application at industrial scale. Waste Manag. 33, 18–25. https://doi.org/10.1016/j.wasman.2012.09.009
dc.relationHou, J., Li, M., Xia, T., Hao, Y., Ding, J., 2016. Simultaneous removal of ammonia and hydrogen sulfide gases using biofilter media from the biodehydration stage and curing stage of composting. Environ. Sci. Pollut. Res. 23, 20628–20636. https://doi.org/10.1007/s11356-016-7238-4
dc.relationHuang, S., Yu, D., Chen, G., Wang, Y., Tang, P., Liu, C., Tian, Y., Zhang, M., 2021. Realization of nitrite accumulation in a sulfide-driven autotrophic denitrification process: Simultaneous nitrate and sulfur removal. Chemosphere 278, 130413. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.130413
dc.relationHvitved-Jacobsen, T., 2001. Sewer Processes, Sewer Processes. CRC Press. https://doi.org/10.1201/9781420012668
dc.relationHwang, J.W., Jang, S.J., Lee, E.Y., Choi, C.Y., Park, S., 2007. Evaluation of composts as biofilter packing material for treatment of gaseous p-xylene. Biochem. Eng. J. 35, 142–149. https://doi.org/10.1016/J.BEJ.2007.01.008
dc.relationICONTEC, Instituto Colombiano de Normas Técnicas y Certificaciones, 2011. NTC 5167-Productos para la industria agrícola.Productos orgánicos usados como abonos o fertilizantes y enmiendas o acondicionadores de suelo.
dc.relationIDEAM, 2012. Estado de la Calidad del Aire en Colombia 2007-2010.
dc.relationllumina, 2013. 16S Metagenomic Sequencing Library Preparation. Part #15044223 [WWW Document]. Illumina.com. URL https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf (accessed 8.7.22).
dc.relationImhoff, J.F., Wiese, J., 2014. The Order Kiloniellales, in: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (Eds.), The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 301–306. https://doi.org/10.1007/978-3-642-30197-1_301
dc.relationIranpour, R., Cox, H.H.J., Deshusses, M.A., Schroeder, E.D., 2005. Literature review of air pollution control biofilters and biotrickling filters for odor and volatile organic compound removal. Environ. Prog. 24, 254–267. https://doi.org/10.1002/ep.10077
dc.relationJeong, D.W., Heo, S., Ryu, S., Blom, J., Lee, J.H., 2017. Genomic insights into the virulence and salt tolerance of Staphylococcus equorum. Sci. Rep. 7. https://doi.org/10.1038/S41598-017-05918-5
dc.relationJiang, G., Melder, D., Keller, J., Yuan, Z., 2017. Odor emissions from domestic wastewater: A review. Crit. Rev. Environ. Sci. Technol. 47, 1581–1611. https://doi.org/10.1080/10643389.2017.1386952
dc.relationJiang, X., Luo, Y., Yan, R., Tay, J.H., 2009a. Impact of substrates acclimation strategy on simultaneous biodegradation of hydrogen sulfide and ammonia. Bioresour. Technol. 100, 5707–5713. https://doi.org/10.1016/j.biortech.2009.06.055
dc.relationJiang, X., Tay, J.H., 2010. Microbial community structures in a horizontal biotrickling filter degrading H2S and NH3. Bioresour. Technol. 101, 1635–1641. https://doi.org/10.1016/j.biortech.2009.09.074
dc.relationJiang, X., Yan, R., Hwa, J., 2009b. Simultaneous autotrophic biodegradation of H2S and NH3 in a biotrickling filter. Chemosphere 75, 1350–1355. https://doi.org/10.1016/j.chemosphere.2009.02.028
dc.relationKanehisa Laboratories, 2019. KEGG: Kyoto Encyclopedia of Genes and Genomes [WWW Document]. URL https://www.genome.jp/kegg/pathway.html (accessed 10.10.19).
dc.relationKanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., Tanabe, M., 2016. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462. https://doi.org/10.1093/nar/gkv1070
dc.relationKembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D., Blomberg, S.P., Webb, C.O., 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464. https://doi.org/10.1093/bioinformatics/btq166
dc.relationKennes, C., Rene, E.R., Veiga, M.C., 2009. Bioprocesses for air pollution control. J. Chem. Technol. Biotechnol. 84, 1419–1436. https://doi.org/10.1002/jctb.2216
dc.relationKhan, F.I., Kr. Ghoshal, A., 2000. Removal of Volatile Organic Compounds from polluted air. J. Loss Prev. Process Ind. 13, 527–545. https://doi.org/10.1016/S0950-4230(00)00007-3
dc.relationKim, H.S., Kim, Y.J., Chung, J.S., Xie, Q., 2002. Long-term operation of a biofilter for simultaneous removal of H2S and NH3. J. Air Waste Manage. Assoc. 52, 1389–1398. https://doi.org/10.1080/10473289.2002.10470871
dc.relationKim, I.S., Ivanov, V.N., 2000. Detection of nitrifying bacteria in activated sludge by fluorescent in situ hybridization and fluorescence spectrometry. World J. Microbiol. Biotechnol. 16, 425–430. https://doi.org/10.1023/A:1008949821236
dc.relationKim, K.K., Lee, J.-S., Stevens, D.A., 2013. Microbiology and epidemiology of Halomonas species. Future Microbiol. 8, 1559–1573. https://doi.org/10.2217/fmb.13.108
dc.relationKim, N.J., Hirai, M., Shoda, M., 2000. Comparison of organic and inorganic packing materials in the removal of ammonia gas in biofilters. J. Hazard. Mater. 72, 77–90. https://doi.org/10.1016/S0304-3894(99)00160-0
dc.relationKitamura, R., Ishii, K., Maeda, I., Kozaki, T., Iwabuchi, K., Saito, T., 2016. Evaluation of bacterial communities by bacteriome analysis targeting 16S rRNA genes and quantitative analysis of ammonia monooxygenase gene in different types of compost. J. Biosci. Bioeng. 121, 57–65. https://doi.org/10.1016/j.jbiosc.2015.05.005
dc.relationKleinheinz, G.T., Langolf, B.M., 2016. A long-term study of a lava rock-based biofilter for hydrogen sulfide, ammonia and volatile organic compounds (VOCs) treatment at a wastewater treatment facility. Nat. Environ. Pollut. Technol. 15, 1279–1284.
dc.relationKlindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., Glöckner, F.O., 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1–e1. https://doi.org/10.1093/nar/gks808
dc.relationKloos, K., Mergel, A., Rösch, C., Bothe, H., 2001. Denitrification within the genus Azospirillum and other associative bacteria. Funct. Plant Biol. 28, 991–998. https://doi.org/10.1071/PP01071
dc.relationKogan, V., Torres, E.M., 1997. Ammonia Emissions from Publicly Owned Treatment Works (POTWs), in: Air & Waste Management Association’s 90th-Annual Meeting and Exhibition. Toronto.
dc.relationKouba, V., Proksova, E., Wiesinger, H., Vejmelkova, D., Bartacek, J., 2017. Good servant, bad master: sulfide influence on partial nitritation of sewage. Water Sci. Technol. 76, 3258–3268. https://doi.org/10.2166/wst.2017.490
dc.relationKrishnani, K.K., Kathiravan, V., Natarajan, M., Kailasam, M., Pillai, S.M., 2010. Diversity of Sulfur-Oxidizing Bacteria in Greenwater System of Coastal Aquaculture. Appl. Biochem. Biotechnol. 162, 1225–1237. https://doi.org/10.1007/s12010-009-8886-3
dc.relationKristiansen, A., Lindholst, S., Feilberg, A., Nielsen, P.H., Neufeld, J.D., Nielsen, J.L., 2011. Butyric acid- and dimethyl disulfide-assimilating microorganisms in a biofilter treating air emissions from a livestock facility. Appl. Environ. Microbiol. 77, 8595–8604. https://doi.org/10.1128/AEM.06175-11
dc.relationKuypers, M.M.M., Marchant, H.K., Kartal, B., 2018. MICROBIAL BIOGEOCHEMISTRY The microbial nitrogen-cycling network. Nat. Publ. Gr. 16, 263–276. https://doi.org/10.1038/nrmicro.2018.9
dc.relationLasaridi, K., Katsabanis, G., Kyriacou, A., Maggos, T., Manios, T., Fountoulakis, M., Kalogerakis, N., Karageorgos, P., Stentiford, E.I., 2010. Assessing odour nuisance from wastewater treatment and composting facilities in Greece. Waste Manag. Res. 28, 977–984. https://doi.org/10.1177/0734242X10372660
dc.relationLawson, P.A., 2019. Tissierella, in: Bergey’s Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Ltd, pp. 1–12. https://doi.org/https://doi.org/10.1002/9781118960608.gbm00721.pub2
dc.relationLe Borgne, S., Baquerizo, G., 2019. Microbial ecology of biofiltration units used for the desulfurization of biogas. ChemEngineering 3, 1–26. https://doi.org/10.3390/chemengineering3030072
dc.relationLebrero, R., Bouchy, L., Stuetz, R., Muñoz, R., 2011. Odor Assessment and Management in Wastewater Treatment Plants: A Review. Crit. Rev. Environ. Sci. Technol. 41, 915–950. https://doi.org/10.1080/10643380903300000
dc.relationLee, C.J.D., McMullan, P.E., O’Kane, C.J., Stevenson, A., Santos, I.C., Roy, C., Ghosh, W., Mancinelli, R.L., Mormile, M.R., McMullan, G., Banciu, H.L., Fares, M.A., Benison, K.C., Oren, A., Dyall-Smith, M.L., Hallsworth, J.E., 2018. NaCl-saturated brines are thermodynamically moderate, rather than extreme, microbial habitats. FEMS Microbiol. Rev. 42, 672–693. https://doi.org/10.1093/femsre/fuy026
dc.relationLegendre, P., Anderson, M.J., 1999. Distance-Based Redundancy Analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24. https://doi.org/https://doi.org/10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2
dc.relationLegendre, P., Gallagher, E.D., 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280. https://doi.org/10.1007/s004420100716
dc.relationLewkowska, P., Cieslik, B., Dymerski, T., Konieczka, P., Namiesnik, J., 2016. Characteristics of odors emitted from municipal wastewater treatment plant and methods for their identification and deodorization techniques. Environ. Res. 151, 573–586. https://doi.org/10.1016/j.envres.2016.08.030
dc.relationLi, L., Zhang, J., Lin, J., Liu, J., 2015. Biological technologies for the removal of sulfur containing compounds from waste streams: bioreactors and microbial characteristics. World J. Microbiol. Biotechnol. 31, 1501–1515. https://doi.org/10.1007/s11274-015-1915-1
dc.relationLi, W., Ni, J., Cai, S., Liu, Y., Shen, C., Yang, H., Chen, Y., Tao, J., Yu, Y., Liu, Q., 2019. Variations in microbial community structure and functional gene expression in bio-treatment processes with odorous pollutants. Sci. Reports 2019 91 9, 1–9. https://doi.org/10.1038/s41598-019-54281-0
dc.relationLi, Y., Ma, J., Yong, X., Luo, L., Wong, J.W.C., Zhang, Y., Wu, H., Zhou, J., 2022. Effect of biochar combined with a biotrickling filter on deodorization, nitrogen retention, and microbial community succession during chicken manure composting. Bioresour. Technol. 343, 126137. https://doi.org/10.1016/J.BIORTECH.2021.126137
dc.relationLiu, H., Luo, G.-Q., Hu, H.-Y., Zhang, Q., Yang, J.-K., Yao, H., 2012. Emission characteristics of nitrogen- and sulfur-containing odorous compounds during different sewage sludge chemical conditioning processes. J. Hazard. Mater. 235–236, 298–306. https://doi.org/http://dx.doi.org/10.1016/j.jhazmat.2012.07.060
dc.relationLiu, J., Yang, K., Li, L., Zhang, J., 2017. A full-scale integrated-bioreactor with two zones treating odours from sludge thickening tank and dewatering house: performance and microbial characteristics. Front. Environ. Sci. Eng. 11, 6. https://doi.org/10.1007/s11783-017-0932-8
dc.relationLiu, T., Dong, H., Zhu, Z., Shang, B., Yin, F., Zhang, W., Zhou, T., 2017. Effects of biofilter media depth and moisture content on removal of gases from a swine barn. J. Air Waste Manag. Assoc. 67, 1288–1297. https://doi.org/10.1080/10962247.2017.1321591
dc.relationLópez, R., Cabeza, I.O., Giráldez, I., Díaz, M.J., 2011. Biofiltration of composting gases using different municipal solid waste-pruning residue composts: Monitoring by using an electronic nose. Bioresour. Technol. 102, 7984–7993. https://doi.org/10.1016/j.biortech.2011.05.085
dc.relationLozupone, C., Knight, R., 2005. UniFrac: a New Phylogenetic Method for Comparing Microbial Communities. Appl. Environ. Microbiol. 71, 8228. https://doi.org/10.1128/AEM.71.12.8228-8235.2005
dc.relationLuo, X., Meng, F., 2020. Roles of Organic Matter-Induced Heterotrophic Bacteria in Nitritation Reactors: Ammonium Removal and Bacterial Interactions. ACS Sustain. Chem. Eng. 8, 3976–3985. https://doi.org/10.1021/acssuschemeng.0c00241
dc.relationMADS, 2013. Resolución 1541 de 2013 (12 de noviembre). Colombia.
dc.relationMaeda, K., Hanajima, D., Toyoda, S., Yoshida, N., Morioka, R., Osada, T., 2011. Microbiology of nitrogen cycle in animal manure compost. Microb. Biotechnol. 4, 700–709. https://doi.org/10.1111/j.1751-7915.2010.00236.x
dc.relationMaestre, F.T., Delgado-Baquerizo, M., Jeffries, T.C., Eldridge, D.J., Ochoa, V., Gozalo, B., Quero, J.L., García-Gómez, M., Gallardo, A., Ulrich, W., Bowker, M.A., Arredondo, T., Barraza-Zepeda, C., Bran, D., Florentino, A., Gaitán, J., Gutiérrez, J.R., Huber-Sannwald, E., Jankju, M., Mau, R.L., Miriti, M., Naseri, K., Ospina, A., Stavi, I., Wang, D., Woods, N.N., Yuan, X., Zaady, E., Singh, B.K., 2015. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl. Acad. Sci. 112, 15684–15689. https://doi.org/10.1073/pnas.1516684112
dc.relationMaia, G.D.N., Day V, G.B., Gates, R.S., Taraba, J.L., 2012. Ammonia biofiltration and nitrous oxide generation during the start-up of gas-phase compost biofilters. Atmos. Environ. 46, 659–664. https://doi.org/10.1016/j.atmosenv.2011.10.019
dc.relationMalhautier, L., Gracian, C., Roux, J.C., Fanlo, J.L., Le Cloirec, P., 2003. Biological treatment process of air loaded with an ammonia and hydrogen sulfide mixture. Chemosphere 50, 145–153. https://doi.org/10.1016/S0045-6535(02)00395-8
dc.relationMarrugan, A., 2004. Measuring Biological Diversity. Wiley-Blackwell.
dc.relationMartinez, A.P., 2020. pairwiseAdonis: Pairwise multilevel comparison using adonis.
dc.relationMAVDT- Ministerio del MedioAmbiente, V. y, 2010. Resolución número 610 (24 de marzo de 2010). Colombia. https://doi.org/>>>>Z’1FG
dc.relationMAVDT. Ministerio de Ambiente, V. y D.T., 2006. Resolución 601 de 04 de abril de 2006.
dc.relationMcMurdie, P.J., Holmes, S., 2013. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS One 8, e61217.
dc.relationMinSalud, M. de S. y P.S., OPS, O.P. de la S., 2012. Convenio Cooperación Técnica No 485/10. Lineamiento para la vigilancia sanitaria y ambiental del impacto de los olores ofensivos en la salud y calidad de vida de las comunidades expuestas en áreas urbanas. Colombia.
dc.relationMontebello, A.M., Bezerra, T., Rovira, R., Rago, L., Lafuente, J., Gamisans, X., Campoy, S., Baeza, M., Gabriel, D., 2013. Operational aspects, pH transition and microbial shifts of a H2S desulfurizing biotrickling filter with random packing material. Chemosphere 93, 2675–2682. https://doi.org/10.1016/J.CHEMOSPHERE.2013.08.052
dc.relationMora, Z.A., Chávez, C.H., Fonseca, G., Cabra, J. a, Salgado, C., 2005. Desarrollo de un inóculo microbiano empleando lodos activados para la remoción de ácido sulfhídrico ( H2S ). Rev. Colomb. Biotecnol. VII, 26–34.
dc.relationMorgan-Sagastume, J.M., Noyola, A., 2006. Hydrogen sulfide removal by compost biofiltration: Effect of mixing the filter media on operational factors. Bioresour. Technol. 97, 1546–1553. https://doi.org/10.1016/J.BIORTECH.2005.06.003
dc.relationMulvaney, R.L., 1996. Nitrogen—Inorganic Forms, in: Methods of Soil Analysis Part 3—Chemical Methods, SSSA Book Series SV - 5.3. Soil Science Society of America, American Society of Agronomy, Madison, WI, pp. 1123–1184. https://doi.org/10.2136/sssabookser5.3.c38
dc.relationMuñoz, R., Malhautier, L., Fanlo, J.-L., Quijano, G., 2015. Biological technologies for the treatment of atmospheric pollutants. Int. J. Environ. Anal. Chem. 95, 950–967. https://doi.org/10.1080/03067319.2015.1055471
dc.relationNicolai, R.E., Janni, K.A., 2001. Biofilter media mixture ratio of wood chips and compost treating swine odors. Water Sci. Technol. 44, 261—267. https://doi.org/10.2166/wst.2001.0554
dc.relationNikolaou, A.D., Golfinopoulos, S.K., Kostopoulou, M.N., Kolokythas, G.A., Lekkas, T.D., 2002. Determination of volatile organic compounds in surface waters and treated wastewater in Greece. Water Res. 36, 2883–2890. https://doi.org/10.1016/S0043-1354(01)00497-3
dc.relationNIST National Institute of Standards and Technology, 2022. NIST Standard Reference Database Number 69 [WWW Document]. NIST Chem. Webb. https://doi.org/10.18434/T4D303
dc.relationNokhal, T.H., Schlegel, H.G., 1983. Taxonomic study of Paracoccus denitrificans. Int. J. Syst. Bacteriol. 33, 26–37. https://doi.org/10.1099/00207713-33-1-26/CITE/REFWORKS
dc.relationOksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., 2020. vegan.
dc.relationOliveira, L.C.G., Ramos, P.L., Marem, A., Kondo, M.Y., Rocha, R.C.S., Bertolini, T., Silveira, M.A.V., Cruz, J.B. da, Vasconcellos, S.P. de, Juliano, L., Okamoto, D.N., 2015. Halotolerant bacteria in the São Paulo Zoo composting process and their hydrolases and bioproducts. Brazilian J. Microbiol. 46, 347–354. https://doi.org/10.1590/S1517-838246220130316
dc.relationOmoregie, A.I., Ong, D.E.L., Nissom, P.M., 2019. Assessing ureolytic bacteria with calcifying abilities isolated from limestone caves for biocalcification. Lett. Appl. Microbiol. 68, 173–181. https://doi.org/https://doi.org/10.1111/lam.13103
dc.relationOmri, I., Aouidi, F., Bouallagui, H., Godon, J., Hamdi, M., 2013. Performance study of biofilter developed to treat H2S from wastewater odor. Saudi J. Biol. Sci. 169–176. https://doi.org/10.1016/j.sjbs.2013.01.005
dc.relationOuattara, A.S., Assih, E.A., Thierry, S., Cayol, J.L., Labat, M., Monroy, O., Macarie, H., 2003. Bosea minatitlanensis sp. nov., a strictly aerobic bacterium isolated from an anaerobic digester. Int. J. Syst. Evol. Microbiol. 53, 1247–1251. https://doi.org/10.1099/IJS.0.02540-0/CITE/REFWORKS
dc.relationOvreås, L., Forney, L., Daae, F.L., Torsvik, V., 1997. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol. 63, 3367–3373. https://doi.org/10.1128/aem.63.9.3367-3373.1997
dc.relationPagans, E., Barrena, R., Font, X., Sánchez, A., 2006. Ammonia emissions from the composting of different organic wastes. Dependency on process temperature. Chemosphere 62, 1534–1542. https://doi.org/10.1016/j.chemosphere.2005.06.044
dc.relationPandey, S.K., Kim, K.H., Kwon, E.E., Kim, Y.H., 2016. Hazardous and odorous pollutants released from sewer manholes and stormwater catch basins in urban areas. Environ. Res. 146, 235–244. https://doi.org/10.1016/J.ENVRES.2015.12.033
dc.relationPark, S., Bae, W., 2009. Modeling kinetics of ammonium oxidation and nitrite oxidation under simultaneous inhibition by free ammonia and free nitrous acid. Process Biochem. 44, 631–640. https://doi.org/https://doi.org/10.1016/j.procbio.2009.02.002
dc.relationParkes, R.J., Sass, H., 2009. Deep Sub-Surface. Encycl. Microbiol. 64–79. https://doi.org/10.1016/B978-012373944-5.00275-3
dc.relationParthasarathy, S., Azam, S., Lakshman Sagar, A., Narasimha Rao, V., Gudla, R., Parapatla, H., Yakkala, H., Ghanta Vemuri, S., Siddavattam, D., 2017. Genome-Guided Insights Reveal Organophosphate-Degrading Brevundimonas diminuta as Sphingopyxis wildii and Define Its Versatile Metabolic Capabilities and Environmental Adaptations. Genome Biol. Evol. 9, 77–81. https://doi.org/10.1093/gbe/evw275
dc.relationPerman, E., Schnürer, A., Björn, A., Moestedt, J., 2022. Serial anaerobic digestion improves protein degradation and biogas production from mixed food waste. Biomass and Bioenergy 161, 106478. https://doi.org/10.1016/J.BIOMBIOE.2022.106478
dc.relationPokorna, D., Zabranska, J., 2015. Sulfur-oxidizing Bacteria in Environmental Technology. Biotechnol. Adv. 33, 1246–1259. https://doi.org/10.1016/j.biotechadv.2015.02.007
dc.relationPortilla, E., Sáez, R.T., 2007. Hydrogen sulphide removal by a biofiltration system in the waste-water treatment plant of the city of Bucaramanga in Colombia. J. Biotechnol. 131, S158–S159. https://doi.org/http://dx.doi.org/10.1016/j.jbiotec.2007.07.880
dc.relationPrado, Ó.J., Gabriel, D., Lafuente, J., 2009. Economical assessment of the design, construction and operation of open-bed biofilters for waste gas treatment. J. Environ. Manage. 90, 2515–2523. https://doi.org/10.1016/J.JENVMAN.2009.01.022
dc.relationPrenafeta-Boldú, F.X., Rojo, N., Gallastegui, G., Guivernau, M., Viñas, M., Elías, A., 2014. Role of Thiobacillus thioparus in the biodegradation of carbon disulfide in a biofilter packed with a recycled organic pelletized material. Biodegradation 25, 557–568. https://doi.org/10.1007/s10532-014-9681-6
dc.relationPrinn, R.G., Weiss, R.F., Arduini, J., Arnold, T., Langley Dewitt, H., Fraser, P.J., Ganesan, A.L., Gasore, J., Harth, C.M., Hermansen, O., Kim, J., Krummel, P.B., Li, S., Loh, Z.M., Lunder, C.R., Maione, M., Manning, A.J., Miller, B.R., Mitrevski, B., Mühle, J., O’Doherty, S., Park, S., Reimann, S., Rigby, M., Saito, T., Salameh, P.K., Schmidt, R., Simmonds, P.G., Paul Steele, L., Vollmer, M.K., Wang, R.H., Yao, B., Yokouchi, Y., Young, D., Zhou, L., 2018. History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE). Earth Syst. Sci. Data 10, 985–1018. https://doi.org/10.5194/ESSD-10-985-2018
dc.relationQi, B., Moe, W., Kinney, K., 2005. Treatment of Paint Spray Booth Off-Gases in a Fungal Biofilter. J. Environ. Eng. 131, 180–189. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:2(180)
dc.relationQiu, X., Deshusses, M.A., 2017. Performance of a monolith biotrickling filter treating high concentrations of H2S from mimic biogas and elemental sulfur plugging control using pigging. Chemosphere 186, 790–797. https://doi.org/10.1016/j.chemosphere.2017.08.032
dc.relationQuast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., 2013. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41. https://doi.org/10.1093/nar/gks1219
dc.relationQuintero, R., Hernández del Toro, C., 2017. Sistema Para El Control De Olores En La Central Hidroeléctrica El Paraiso.
dc.relationRabbani, K.A., Charles, W., Kayaalp, A., Cord-ruwisch, R., Ho, G., 2016. Pilot-scale biofilter for the simultaneous removal of hydrogen sulphide and ammonia at a wastewater treatment plant. Biochem. Eng. J. 107, 1–10. https://doi.org/10.1016/j.bej.2015.11.018
dc.relationRalebitso-Senior, T.K., Senior, E., Di Felice, R., Jarvis, K., 2012. Waste gas biofiltration: Advances and limitations of current approaches in microbiology. Environ. Sci. Technol. 46, 8542–8573. https://doi.org/10.1021/es203906c
dc.relationRamette, A., 2007. Multivariate analyses in microbial ecology. FEMS Microbiol. Ecol. 62, 142–160. https://doi.org/10.1111/j.1574-6941.2007.00375.x
dc.relationRavina, M., Panepinto, D., Mejia Estrada, J., De Giorgio, L., Salizzoni, P., Chiara Zanetti, M., Meucci, L., 2019. Characterization of odorous emissions from a civil wastewater treatment plant in Italy. WIT Trans. Ecol. Environ. 236, 159–170. https://doi.org/10.2495/AIR190161
dc.relationRen, B., Zhao, Y., Lyczko, N., Nzihou, A., 2019. Current Status and Outlook of Odor Removal Technologies in Wastewater Treatment Plant. Waste and Biomass Valorization 10, 1443–1458. https://doi.org/10.1007/s12649-018-0384-9
dc.relationRene, E.R., Kennes, C., Veiga, M.C., 2013. Biofilters, in: Kennes, C., Veiga, M.C. (Eds.), Air Pollution Prevention and Control: Bioreactors and Bioenergy. John Wiley & Sons, Ltd., pp. 60–72.
dc.relationRene, E.R., Mohammad, B.T., Veiga, M.C., Kennes, C., 2012. Biodegradation of BTEX in a fungal biofilter: Influence of operational parameters, effect of shock-loads and substrate stratification. Bioresour. Technol. 116, 204–213. https://doi.org/10.1016/j.biortech.2011.12.006
dc.relationRevah, S., Morgan-Sagastume, J., 2005a. Methods of Odor and VOC Control, in: Shareefdeen, Z., Singh, A. (Eds.), Biotechnology for Odor and Air Pollution Control SE - 3. Springer Berlin Heidelberg, pp. 29–63. https://doi.org/10.1007/3-540-27007-8_3
dc.relationRevah, S., Morgan-Sagastume, J.M., 2005b. Methods of odor and VOC control, in: Biotechnology for Odor and Air Pollution Control. pp. 29–63. https://doi.org/10.1007/3-540-27007-8_3
dc.relationReyes, J., Toledo, M., Michán, C., Siles, J.A., Alhama, J., Martín, M.A., 2020. Biofiltration of butyric acid: Monitoring odor abatement and microbial communities. Environ. Res. 190. https://doi.org/10.1016/j.envres.2020.110057
dc.relationRotthauwe, J., Witzel, K., 1997. 1997 The ammonia monooxygenase structural gene amoA as a functional marker Molecular fine-scale analysis of natural ammonia-oxidizing populations.pdf 63, 4704–4712.
dc.relationRueda Saa, G.H., 2001. Capacidad de eliminación de H2S en un biofiltro empacado con mezcla de suelo carbonilla y ceniza volcánica. Universidad del Valle.
dc.relationSánchez-Porro, C., De La Haba, R.R., Ventosa, A., 2014. The genus virgibacillus. The Prokaryotes: Firmicutes and Tenericutes 9783642301209, 455–465. https://doi.org/10.1007/978-3-642-30120-9_353/COVER
dc.relationSapek, A., 2013. Ammonia Emissions from Non-Agricultural Sources. Polish J. Environ. Stud. 22, 63–70.
dc.relationSchoch, C.L., Ciufo, S., Domrachev, M., Hotton, C.L., Kannan, S., Khovanskaya, R., Leipe, D., McVeigh, R., O’Neill, K., Robbertse, B., Sharma, S., Soussov, V., Sullivan, J.P., Sun, L., Turner, S., Karsch-Mizrachi, I., 2020. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database 2020. https://doi.org/10.1093/DATABASE/BAAA062
dc.relationSecretaria del Medio Ambiente. Observatorio de Salud Ambiental, 2016. Quejas atendidas por exposición a olores ofensivos [WWW Document]. URL http: //biblioteca.saludcapital.gov.co/ambiental/index.shtml?s=l&id=327&v=l
dc.relationSecretaría Distrital de Salud. Observatorio de Salud de Bogotá-SaluData, 2021. Quejas atendidas en Bogotá D.C. | SALUDATA [WWW Document]. URL https://saludata.saludcapital.gov.co/osb/index.php/datos-de-salud/salud-ambiental/quejas/ (accessed 10.5.22).
dc.relationSévin, D.C., Stählin, J.N., Pollak, G.R., Kuehne, A., Sauer, U., 2016. Global Metabolic Responses to Salt Stress in Fifteen Species. PLoS One 11, e0148888. https://doi.org/10.1371/JOURNAL.PONE.0148888
dc.relationShareefdeen, Z., 2020. Industrial biofilter case studies, From Biofiltration to Promising Options in Gaseous Fluxes Biotreatment. INC. https://doi.org/10.1016/b978-0-12-819064-7.00009-1
dc.relationSiebielec, S., Siebielec, G., Klimkowicz-Pawlas, A., Gałązka, A., Grządziel, J., Stuczyński, T., 2020. Impact of Water Stress on Microbial Community and Activity in Sandy and Loamy Soils. Agron. . https://doi.org/10.3390/agronomy10091429
dc.relationSingh, A., Ward, O., 2005. Microbiology of bioreactors for waste gas treatment. Biotechnol. Odor Air Pollut. Control 101–121. https://doi.org/10.1007/3-540-27007-8_5/COVER
dc.relationSivret, E.C., Le-Minh, N., Wang, B., Wang, X., Stuetz, R.M., 2017. Dynamics of Volatile Sulfur Compounds and Volatile Organic Compounds in Sewer Headspace Air. J. Environ. Eng. 143, 04016080. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001154
dc.relationSivret, E.C., Wang, B., Parcsi, G., Stuetz, R.M., 2016. Prioritisation of odorants emitted from sewers using odour activity values. Water Res. 88, 308–321. https://doi.org/10.1016/j.watres.2015.10.020
dc.relationSmet, E., Van Langenhove, H., 1998. Abatement of volatile organic sulfur compounds in odorous emissions from the bio-industry. Biodegradation 9, 273–284. https://doi.org/10.1023/a:1008281609966
dc.relationSorokin, D.Y., Kuenen, J.G., 2005. Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes. FEMS Microbiol. Rev. 29. https://doi.org/10.1016/j.femsre.2004.10.005
dc.relationSpieck, E., Bock, E., 2015. The Lithoautotrophic Nitrite-Oxidizing Bacteria, in: Bergey’s Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Ltd, pp. 1–10. https://doi.org/https://doi.org/10.1002/9781118960608.bm00014
dc.relationSpieck, E., Lipski, A., 2011. Chapter five - Cultivation, Growth Physiology, and Chemotaxonomy of Nitrite-Oxidizing Bacteria, in: Klotz, M.G. (Ed.), Research on Nitrification and Related Processes, Part A, Methods in Enzymology. Academic Press, pp. 109–130. https://doi.org/https://doi.org/10.1016/B978-0-12-381294-0.00005-5
dc.relationSpieck, E., Wegen, S., Keuter, S., 2021. Relevance of Candidatus Nitrotoga for nitrite oxidation in technical nitrogen removal systems. Appl. Microbiol. Biotechnol. 105, 7123–7139. https://doi.org/10.1007/s00253-021-11487-5
dc.relationSteele, J.A., Ozis, F., Fuhrman, J.A., Devinny, J.S., 2005. Structure of microbial communities in ethanol biofilters. Chem. Eng. J. 113, 135–143. https://doi.org/10.1016/j.cej.2005.04.011
dc.relationSzukics, U., Abell, G.C.J., Hödl, V., Mitter, B., Sessitsch, A., Hackl, E., Zechmeister-Boltenstern, S., 2010. Nitrifiers and denitrifiers respond rapidly to changed moisture and increasing temperature in a pristine forest soil. FEMS Microbiol. Ecol. 72, 395–406. https://doi.org/10.1111/j.1574-6941.2010.00853.x
dc.relationTalaiekhozani, A., Bagheri, M., Goli, A., Talaei Khoozani, M.R., 2016. An overview of principles of odor production, emission, and control methods in wastewater collection and treatment systems. J. Environ. Manage. 170, 186–206. https://doi.org/10.1016/j.jenvman.2016.01.021
dc.relationTang, S.-K., Wang, Y., Lee, J.-C., Lou, K., Park, D.-J., Kim, C.-J., Li, W.-J., 2010. Georgenia halophila sp. nov., a halophilic actinobacterium isolated from a salt lake. Int. J. Syst. Evol. Microbiol. 60, 1317–1421. https://doi.org/10.1099/ijs.0.014993-0
dc.relationThanakiatkrai, P., Welch, L., 2012. Using the Taguchi method for rapid quantitative PCR optimization with SYBR Green I 161–165. https://doi.org/10.1007/s00414-011-0558-5
dc.relationTian, W., Chen, X., Zhou, P., Fu, X., Zhao, H., 2020. Removal of H2S by vermicompost biofilter and analysis on bacterial community. Open Chem. 18, 720–731. https://doi.org/10.1515/chem-2020-0131
dc.relationTourna, M., Maclean, P., Condron, L., O’Callaghan, M., Wakelin, S.A., 2014. Links between sulphur oxidation and sulphur-oxidising bacteria abundance and diversity in soil microcosms based on soxB functional gene analysis. FEMS Microbiol. Ecol. 88, 538–549. https://doi.org/10.1111/1574-6941.12323
dc.relationTrujillo, M.E., Dedysh, S., P., D., Hedlund, B., Kämpfer, P., Rainey, F.A., Whitman, W.B. (Eds.), 2015. Sporosarcina, in: Bergey’s Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Ltd, pp. 1–7. https://doi.org/https://doi.org/10.1002/9781118960608.gbm00563
dc.relationTsang, Y.F., Wang, L., Chua, H., 2015. Simultaneous hydrogen sulphide and ammonia removal in a biotrickling filter: Crossed inhibitory effects among selected pollutants and microbial community change. Chem. Eng. J. 281, 389–396. https://doi.org/10.1016/j.cej.2015.06.107
dc.relationTu, X., Li, J., Feng, R., Sun, G., Guo, J., 2016. Comparison of removal behavior of two biotrickling filters under transient condition and effect of pH on the bacterial communities. PLoS One 11, 1–14. https://doi.org/10.1371/journal.pone.0155593
dc.relationVan Horn, D.J., Okie, J.G., Buelow, H.N., Gooseff, M.N., Barrett, J.E., Takacs-Vesbach, C.D., 2014. Soil Microbial Responses to Increased Moisture and Organic Resources along a Salinity Gradient in a Polar Desert. Appl. Environ. Microbiol. 80, 3034–3043. https://doi.org/10.1128/AEM.03414-13
dc.relationVergara-Fernández, A., Hernández, S., Revah, S., 2011. Elimination of hydrophobic volatile organic compounds in fungal biofilters: Reducing start-up time using different carbon sources. Biotechnol. Bioeng. 108, 758–765. https://doi.org/10.1002/bit.23003
dc.relationVikrant, K., Kumar, S., Tsang, D.C.W., Soo, S., Kumar, P., Shekhar, B., Sharan, R., Kim, K., 2018. Bio fi ltration of hydrogen sul fi de : Trends and challenges 187. https://doi.org/10.1016/j.jclepro.2018.03.188
dc.relationWang, K., Li, W., Li, X., Ren, N., 2015. Spatial nitrifications of microbial processes during composting of swine, cow and chicken manure. Sci. Rep. 5, 1–8. https://doi.org/10.1038/srep14932
dc.relationWang, L., Shao, Z., 2021. Aerobic Denitrification and Heterotrophic Sulfur Oxidation in the Genus Halomonas Revealed by Six Novel Species Characterizations and Genome-Based Analysis. Front. Microbiol. 12, 390. https://doi.org/10.3389/fmicb.2021.652766
dc.relationWright, W.F., Schroeder, E.D., Chang, D.P., 2005. Transient Response of Flow-Direction-Switching Vapor-Phase Biofilters. J. Environ. Eng. 131, 999–1009. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:7(999)
dc.relationXi, B.D., He, X.S., Wei, Z.M., Jiang, Y.H., Li, M.X., Li, D., Li, Y., Dang, Q.L., 2012. Effect of inoculation methods on the composting efficiency of municipal solid wastes. Chemosphere 88, 744–750. https://doi.org/10.1016/J.CHEMOSPHERE.2012.04.032
dc.relationXia, Y., Lü, C., Hou, N., Xin, Y., Liu, J., Liu, H., Xun, L., 2017. Sulfide production and oxidation by heterotrophic bacteria under aerobic conditions. ISME J. 11, 2754–2766. https://doi.org/10.1038/ismej.2017.125
dc.relationXie, B., Liang, S.B., Tang, Y., Mi, W.X., Xu, Y., 2009. Petrochemical wastewater odor treatment by biofiltration. Bioresour. Technol. 100, 2204–2209. https://doi.org/10.1016/j.biortech.2008.10.035
dc.relationYang, L., Kent, A.D., Wang, X., Funk, T.L., Gates, R.S., Zhang, Y., 2014a. Moisture effects on gas-phase biofilter ammonia removal efficiency, nitrous oxide generation, and microbial communities. J. Hazard. Mater. 271, 292–301. https://doi.org/10.1016/j.jhazmat.2014.01.058
dc.relationYang, L., Wang, X., Funk, T.L., 2014b. Strong influence of medium pH condition on gas-phase biofilter ammonia removal, nitrous oxide generation and microbial communities. Bioresour. Technol. 152, 74–79. https://doi.org/10.1016/j.biortech.2013.10.116
dc.relationYang, X.P., Wang, S.M., Zhang, D.W., Zhou, L.X., 2011. Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying–denitrifying bacterium, Bacillus subtilis A1. Bioresour. Technol. 102, 854–862. https://doi.org/10.1016/J.BIORTECH.2010.09.007
dc.relationYasuda, T., Waki, M., Fukumoto, Y., Hanajima, D., Kuroda, K., Suzuki, K., Matsumoto, T., Uenishi, H., 2017. Community structure of denitrifying and total bacteria during nitrogen accumulation in an ammonia-loaded biofilter. J. Appl. Microbiol. 123, 1498–1511. https://doi.org/10.1111/jam.13603
dc.relationYe, J., Zhang, R., Nielsen, S., Joseph, S.D., Huang, D., Thomas, T., 2016. A Combination of Biochar–Mineral Complexes and Compost Improves Soil Bacterial Processes, Soil Quality, and Plant Properties. Front. Microbiol. 7, 372. https://doi.org/10.3389/fmicb.2016.00372
dc.relationYeung, M., Saingam, P., Xu, Y., Xi, J., 2021. Low-dosage ozonation in gas-phase biofilter promotes community diversity and robustness. Microbiome 9, 1–10. https://doi.org/10.1186/s40168-020-00944-4
dc.relationYing, S., Kong, X., Cai, Z., Man, Z., Xin, Y., Liu, D., 2020. Interactions and microbial variations in a biotrickling filter treating low concentrations of hydrogen sulfide and ammonia. Chemosphere 255. https://doi.org/10.1016/j.chemosphere.2020.126931
dc.relationYuan, J., Du, L., Li, S., Yang, F., Zhang, Z., Li, G., Wang, G., 2019. Use of mature compost as filter media and the effect of packing depth on hydrogen sulfide removal from composting exhaust gases by biofiltration. Environ. Sci. Pollut. Res. 26, 3762–3770. https://doi.org/10.1007/s11356-018-3795-z
dc.relationZainudin, M.H., Mustapha, N.A., Maeda, T., Ramli, N., Sakai, K., Hassan, M., 2020. Biochar enhanced the nitrifying and denitrifying bacterial communities during the composting of poultry manure and rice straw. Waste Manag. 106, 240–249. https://doi.org/10.1016/J.WASMAN.2020.03.029
dc.relationZainudin, M.H.M., Zulkarnain, A., Azmi, A.S., Muniandy, S., Sakai, K., Shirai, Y., Hassan, M.A., 2022. Enhancement of Agro-Industrial Waste Composting Process via the Microbial Inoculation: A Brief Review. Agronomy 12. https://doi.org/10.3390/agronomy12010198
dc.relationZamir, S.M., Halladj, R., Nasernejad, B., 2011. Removal of toluene vapors using a fungal biofilter under intermittent loading. Process Saf. Environ. Prot. 89, 8–14. https://doi.org/10.1016/J.PSEP.2010.10.001
dc.relationZarra, T., Naddeo, V., Belgiorno, V., Reiser, M., Kranert, M., 2008. Odour monitoring of small wastewater treatment plant located in sensitive environment. Water Sci. Technol. 58, 89–94. https://doi.org/10.2166/wst.2008.330
dc.relationZhang, J., Li, L., Liu, J., 2017. Effects of irrigation and water content of packing materials on a thermophilic biofilter for SO2 removal: Performance, oxygen distribution and microbial population. Biochem. Eng. J. 118, 105–112. https://doi.org/10.1016/J.BEJ.2016.11.015
dc.relationZheng, T., Li, L., Chai, F., Wang, Y., 2021. Factors impacting the performance and microbial populations of three biofilters for co-treatment of H2S and NH3 in a domestic waste landfill site. Process Saf. Environ. Prot. 149, 410–421. https://doi.org/10.1016/j.psep.2020.11.009
dc.relationZhilina, T.N., Garnova, E.S., Tourova, T.P., Kostrikina, N.A., Zavarzin, G.A., 2001. Amphibacillus fermentum sp. nov. and Amphibacillus tropicussp. nov., New Alkaliphilic, Facultatively Anaerobic, Saccharolytic Bacilli from Lake Magadi. Microbiology 70, 711–722. https://doi.org/10.1023/A:1013196017556
dc.relationZhu, X., Suidan, M.T., Pruden, A., Yang, C., Alonso, C., Kim, B.J., Kim, B.R., 2004. Effect of substrate henry’s constant on biofilter performance. J. Air Waste Manag. Assoc. 54, 409–418. https://doi.org/10.1080/10473289.2004.10470918
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEvaluación de la comunidad microbiana en un sistema de biofiltración simultánea de H2S y NH3 basado en lechos orgánicos
dc.typeTrabajo de grado - Doctorado


Este ítem pertenece a la siguiente institución