dc.contributorPrado-Rubio, Oscar Andrés
dc.contributorGrisales Diaz, Victor Hugo
dc.contributorGrupo de Investigación en Aplicación de Nuevas Tecnologías (GIANT)
dc.contributorLopez-Murillo, Luis Humberto [0000-0001-9973-1871]
dc.creatorLopez-Murillo, Luis Humberto
dc.date.accessioned2023-01-23T17:09:52Z
dc.date.accessioned2023-06-06T23:25:57Z
dc.date.available2023-01-23T17:09:52Z
dc.date.available2023-06-06T23:25:57Z
dc.date.created2023-01-23T17:09:52Z
dc.date.issued2022
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/83070
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6651287
dc.description.abstractThe microfiltration (MF) and ultrafiltration (UF) processes are widely used in several industrial and research fields, and different enterprises have emerged to develop enhancements and new designs of such technologies. Nevertheless, some drawbacks related to process operation, namely concentration polarization and fouling, keep membranes from spreading in all industrial sectors. Concentration polarization and fouling are the main problems in MF and UF to be managed in order to design a separation process. Dynamic operation strategies are used to mitigate adverse effects of polarization and fouling and improve the separation performance. Nevertheless, there is a balance among the operational conditions to reach the desired effects. In this research, two hybrid mathematical models are developed and tuned to represent the concentration polarization phenomena in dynamic UF of dextran T500. Such models yield an adjusted determination coefficient of 0.9185 and 0.9626, respectively, and can predict the concentration at the membrane surface, the flux and the observed rejection. The results display the intensifying effect of dynamic operation by decreasing the Molecular Weight Cut-Off (MWCO) of the membrane up to 74 times without reducing the flux. The experimental data from literature and herein developed hybrid models provide system insights for membrane systems design where the selectivity can be enhanced and tunned according to operating conditions rather than the membrane pore size. The best hybrid mathematical model is used to explore the UF system under dynamic operation at different scenarios aiming to provide further system understanding. With this focus, a sensitivity analysis is accomplished in order to evaluate the separation performance in terms of flux and rejection factor as a function of input variables: backshock time (BS), time between backshocks (TBBS), dextran bulk concentration (Cb). The sensitivity analysis allows finding operational regions where high fluxes can be achieved while keeping acceptable rejection factor. Aiming to highlight the advantages of applying dynamic operation instead of conventional filtration, a comparative analysis is performed between a membrane with low MWCO under conventional cross-flow operation and a membrane with high MWCO under dynamic operation. Concentration polarization effect is analyzed and explained by concentration polarization modulus. This modulus is defined as the ratio between concentration at the membrane surface and the bulk concentration. Values as high as 160 for this modulus have a negative impact on selectivity, while values close or lower than 34 improve separation. Average flux can be enhanced up to 43.8 % with BS = 1 s and TBBS = 5 s. With respect to the comparative analysis, membrane cost savings reach values around 50 % by operating a membrane of high MWCO under dynamic conditions. Mathematical modeling in dynamic ultrafiltration is a key tool, from a process system engineering perspective, to assess the separation performance under different operating conditions. The hybrid mathematical model developed in this research allows optimization of operation through sensitivity analysis, and allows designing of the separation process given a definite concentration target, in the context of dextran ultrafiltration. (Texto tomado de la fuente)
dc.description.abstractLos procesos de microfiltración (MF) y ultrafiltración (UF) se utilizan ampliamente en varios campos industriales y de investigación, y han surgido diferentes empresas para desarrollar mejoras y nuevos diseños de dichas tecnologı́as. Sin embargo, algunos inconvenientes re- lacionados con la operación del proceso, a saber, la polarización de la concentración y el ensuciamiento, impiden que el uso de las membranas se extienda en todos los sectores indus- triales. La polarización de la concentración y el ensuciamiento son los principales problemas en MF y UF que deben gestionarse para diseñar un proceso de separación. Las estrategias de operación dinámica se utilizan para mitigar los efectos adversos de la polarización y el ensuciamiento y mejorar el rendimiento de la separación. No obstante, existe un equilibrio entre las condiciones operativas para alcanzar los efectos deseados. En esta investigación, se desarrollan y ajustan dos modelos matemáticos hı́bridos para representar los fenómenos de polarización de la concentración en la UF dinámica de dextrano T500. Dichos modelos arro- jan un coeficiente de determinación ajustado de 0.9185 y 0.9626, respectivamente, y pueden predecir la concentración en la superficie de la membrana, el flujo y el rechazo observado. Los resultados muestran el efecto intensificador de la operación dinámica al disminuir el MWCO de la membrana hasta 74 veces sin reducir el flujo. Los datos experimentales de la literatura y los modelos hı́bridos desarrollados en este documento brindan información sobre el sistema para el diseño de sistemas de membrana donde la selectividad se puede mejorar y ajustar de acuerdo con las condiciones operativas en lugar del tamaño de poro de la membrana. El mejor modelo matemático hı́brido se utiliza para explorar el sistema de UF en funcionamiento dinámico en diferentes escenarios con el objetivo de proporcionar una mayor comprensión del sistema. Con este enfoque, se realiza un análisis de sensibilidad para evaluar el desempeño de la separación en términos de flujo y factor de rechazo en función de las variables de entrada: duración del backshock (BS), tiempo entre backshocks (TBBS) y concentración de dextrano (Cb). El análisis de sensibilidad permite encontrar regiones ope- rativas donde se pueden lograr flujos elevados manteniendo un factor de rechazo aceptable. Con el objetivo de resaltar las ventajas de aplicar la operación dinámica en lugar de la filtra- ción convencional, se realiza un análisis comparativo entre una membrana con bajo MWCO en operación convencional de flujo cruzado y una membrana con alto MWCO en operación dinámica. El efecto de la polarización de la concentración se analiza y explica mediante el módulo de polarización. Este módulo se define como la relación entre la concentración en la superficie de la membrana y la concentración en el seno del fluido. Valores tan altos como 160 para este módulo tienen un impacto negativo en la selectividad, mientras que valores cercanos o inferiores a 34 mejoran la separación. El flujo medio puede aumentarse hasta un 43,8 % con BS = 1 s y TBBS = 5 s. Con respecto al análisis comparativo, los ahorros en costos de membrana alcanzan valores en torno al 50 % al operar una membrana de alto MW- CO en condiciones dinámicas. El modelado matemático en ultrafiltración dinámica es una herramienta clave, desde la perspectiva de la ingenierı́a de sistemas de procesos, para evaluar el rendimiento de la separación en diferentes condiciones operativas. El modelo matemático hı́brido desarrollado en esta investigación permite la optimización de la operación a través del análisis de sensibilidad y permite diseñar el proceso de separación dado un objetivo de concentración definido, en el contexto de la ultrafiltración de dextrano.
dc.languageeng
dc.publisherUuniversidad Nacional de Colombia
dc.publisherManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Química
dc.publisherFacultad de Ingeniería y Arquitectura
dc.publisherManizales, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Manizales
dc.relationAbels, C., Carstensen, F., and Wessling, M. (2013). Membrane processes in biorefinery applications. Journal of Membrane Science, 444:285–317.
dc.relationAssociation, A. W. W. (2005). Microfiltration and Ultrafiltration Membranes for Drinking Water, volume 53. American Water Works Association.
dc.relationAzevedo, C. R., D´ıaz, V. G., Prado-Rubio, O. A., Willis, M. J., Pr´eat, V., Oliveira, R., and Stosch, M. (2019). Hybrid semiparametric modeling: A modular process systems engineering approach for the integration of available knowledge sources.
dc.relationBacchin, P., Aimar, P., and Field, R. (2006). Critical and sustainable fluxes: Theory, experiments and applications. Journal of Membrane Science, 281:42–69.
dc.relationBaker, R. W. (2012). Membrane Technology and Applications. John Wiley & Sons, 3 edition.
dc.relationBakhshayeshi, M., Kanani, D. M., Mehta, A., van Reis, R., Kuriyel, R., Jackson, N., and Zydney, A. L. (2011). Dextran sieving test for characterization of virus filtration membranes. Journal of Membrane Science, 379:239–248.
dc.relationBeier, S. P. and Jonsson, G. (2009). Critical flux determination by flux-stepping. AIChE Journal, 56:1739–1747.
dc.relationCalabro, V. and Basile, A. (2011). 1 - fundamental membrane processes, science and engineering.
dc.relationCapannelli, G., Vigo, F., and Munari, S. (1983). Ultrafiltration membranes — characterization methods. Journal of Membrane Science, 15:289–313.
dc.relationCharcosset, C. (2006). Membrane processes in biotechnology: An overview. Biotechnology Advances, 24:482–492.
dc.relationDiaz, V. H. G., Prado-Rubio, O. A., Willis, M. J., and von Stosch, M. (2017). Dynamic hybrid model for ultrafiltration membrane processes.
dc.relationEscobar, I. and der Bruggen, B. V. (2011). Modern Applications in Membrane Science and Technology, volume 1078. American Chemical Society.
dc.relationField, R. W. and Pearce, G. K. (2011). Critical, sustainable and threshold fluxes for membrane filtration with water industry applications. Advances in Colloid and Interface Science, 164:38–44.
dc.relationHangos, K. M. and Cameron, I. T. (2001). 1 - the role of models in process systems engineering.
dc.relationHillis, P. (2000). Membrane case studies, past present and future.
dc.relationHughes, D. and Field, R. W. (2006). Crossflow filtration of washed and unwashed yeast suspensions at constant shear under nominally sub-critical conditions. Journal of Membrane Science, 280:89–98.
dc.relationJonsson, G. E. and Rubio, O. A. P. (2011). Modeling and operation of dynamic membrane processes. International Congress on Membranes and Membrane Processes : ICOM 2011; Conference date: 01-01-2011.
dc.relationKeil, F. J. (2018). Process intensification. Reviews in Chemical Engineering, 34:135–200.
dc.relationKennedy, M. D., Kamanyi, J., Rodrguez, S. G. S., Lee, N. H., Schippers, J. C., and Amy, G. (2008). Water treatment by microfiltration and ultrafiltration.
dc.relationKnops, F. N. M. and Franklin, B. (2000). Ultrafiltration for 90 mld cryptosporidium and giardia-free drinking water. a case study for the yorkshire water keldgate plant.
dc.relationLeos, J. Z. and Zydney, A. L. (2017). Microfiltration and Ultrafiltration. Routledge.
dc.relationMulder, M. (1996). Basic Principles of Membrane Technology. Springer Netherlands.
dc.relationNunes, S. P. and Peinemann, K.-V. (2006). Membrane technology: in the chemical industry. John Wiley & Sons.
dc.relationPabby, A. K., Rizvi, S. S. H., and Requena, A. M. S. (2008). Handbook of membrane separations: chemical, pharmaceutical, food, and biotechnological applications. CRC press.
dc.relationPeinemann, K.-V. and Nunes, S. P. (2010). Membranes for water treatment. John Wiley & Sons.
dc.relationPistikopoulos, E. N., Barbosa-Povoa, A., Lee, J. H., Misener, R., Mitsos, A., Reklaitis, G. V., Venkatasubramanian, V., You, F., and Gani, R. (2021a). Process systems engineering – the generation next? Computers & Chemical Engineering, 147:107252.
dc.relationPistikopoulos, E. N., Tian, Y., and Bindlish, R. (2021b). Operability and control in process intensification and modular design: Challenges and opportunities. AIChE Journal, 67.
dc.relationPonce-Ortega, J. M., Al-Thubaiti, M. M., and El-Halwagi, M. M. (2012). Process intensification: New understanding and systematic approach. Chemical Engineering and Processing: Process Intensification, 53:63–75.
dc.relationPopham, N. (2019). Resin infusion for the manufacture of large composite structures.
dc.relationPrado-Rubio, O. A., Fontalvo, J., and Woodley, J. M. (2019). 8. conception, design, and development of intensified hybrid-bioprocesses.
dc.relationPrado-Rubio, O. A., Morales-Rodrıguez, R., Andrade-Santacoloma, P., and HernandezEscoto, H. (2016). Process intensification in biotechnology applications.
dc.relationPrado-Rubio, O. A. and von Stosch, M. (2017). Towards sustainable flux determination for dynamic ultrafiltration through multivariable system identification.
dc.relationRosinha, I. P. (2011). High frequency backshock effect on ultrafiltration of selected polysaccharides. master thesis. universidade técnica de lisboa & technical university of denmark.
dc.relationSchrotter, J.-C. and Bozkaya-Schrotter, B. (2010). Current and emerging membrane processes for water treatment.
dc.relationScott, K. (1995). Introduction to membrane separations.
dc.relationSikdar, S. K. and Criscuoli, A. (2017). Sustainability and how membrane technologies in water treatment can be a contributor.
dc.relationSingh, R. (2015). Water and membrane treatment.
dc.relationSkiborowski, M. (2018). Process synthesis and design methods for process intensification. Current Opinion in Chemical Engineering, 22:216–225.
dc.relationStankiewicz, A. and Moulijn, J. A. (2018). Re-Engineering the Chemical Processing Plant. CRC Press.
dc.relationStarbard, N. (2009). Beverage Industry Microfiltration. Wiley.
dc.relationTian, Y., Demirel, S. E., Hasan, M. F., and Pistikopoulos, E. N. (2018). An overview of process systems engineering approaches for process intensification: State of the art. Chemical Engineering and Processing - Process Intensification, 133:160–210.
dc.relationUnited-Nations (2015). Sustainable development goals.
dc.relationWagner, J. (2001). Membrane Filtration Handbook: Practical Tips and Hints. Osmonics.
dc.relationWei, P., Cheng, L.-H., Zhang, L., Xu, X.-H., lin Chen, H., and jie Gao, C. (2014). A review of membrane technology for bioethanol production. Renewable and Sustainable Energy Reviews, 30:388–400.
dc.relationWHO (2006). Guidelines for drinking-water quality.
dc.relationWickramasinghe, S. R., Bower, S. E., Chen, Z., Mukherjee, A., and Husson, S. M. (2009). Relating the pore size distribution of ultrafiltration membranes to dextran rejection. Journal of Membrane Science, 340:1–8.
dc.relationYehl, C. J. and Zydney, A. L. (2021). Characterization of dextran transport and molecular weight cutoff (mwco) of large pore size hollow fiber ultrafiltration membranes. Journal of Membrane Science, 622:119025.
dc.relationZendehboudi, S., Rezaei, N., and Lohi, A. (2018). Applications of hybrid models in chemical, petroleum, and energy systems: A systematic review. Applied Energy, 228:2539–2566.
dc.relationZhang, P. (2010). Industrial control system simulation routines.
dc.relationZydney, A. L. and Xenopoulos, A. (2007). Improving dextran tests for ultrafiltration membranes: Effect of device format. Journal of Membrane Science, 291:180–190.
dc.relationCengel, Y. A. and Ghajar, A. J. (2020). Heat and Mass Transfer: Fundamentals and Applications. McGraw-Hill Education.
dc.relationAzevedo, C. R., Dıaz, V. G., Prado-Rubio, O. A., Willis, M. J., Preat, V., Oliveira, R., and Stosch, M. (2019). Hybrid Semiparametric Modeling: A Modular Process Systems Engineering Approach for the Integration of Available Knowledge Sources. In Syst. Eng. Fourth Ind. Revolut., number January 2020, pages 345–373. Wiley.
dc.relationBaker, R. W. (2012). Membrane Technology and Applications. John Wiley & Sons, 3 edition.
dc.relationBakhshayeshi, M., Kanani, D. M., Mehta, A., van Reis, R., Kuriyel, R., Jackson, N., and Zydney, A. L. (2011a). Dextran sieving test for characterization of virus filtration membranes. J. Memb. Sci., 379(1-2):239–248.
dc.relationBakhshayeshi, M., Zhou, H., Olsen, C., Yuan, W., and Zydney, A. L. (2011b). Understanding dextran retention data for hollow fiber ultrafiltration membranes. J. Memb. Sci., 385- 386:243–250.
dc.relationBasedow, A. M. and Ebert, K. H. (1979). Production, characterization, and solution properties of dextran fractions of narrow molecular weight distributions. J. Polym. Sci. Polym. Symp., 66(1):101–115.
dc.relationBird, R. B., Stewart, W. E., and Lightfoot, E. N. (2002). Transport phenomena. J. Wiley, 2nd, wiley edition.
dc.relationBorujeni, E. E., Li, Y., and Zydney, A. L. (2015). Application of periodic backpulsing to reduce membrane fouling during ultrafiltration of plasmid DNA. J. Memb. Sci., 473:102– 108.
dc.relationByhlin, H. and J¨onsson, A.-S. (2003). Influence of adsorption and concentration polarisation on membrane performance during ultrafiltration of a non-ionic surfactant. Desalination, 151(1):21–31.
dc.relationChen, H. and Kim, A. S. (2006). Prediction of permeate flux decline in crossflow membrane filtration of colloidal suspension: a radial basis function neural network approach. Desalination, 192(1-3):415–428.
dc.relationChen, M., Shafer-Peltier, K., Randtke, S. J., and Peltier, E. (2018). Modeling arsenic (V) removal from water by micellar enhanced ultrafiltration in the presence of competing anions. Chemosphere, 213:285–294.
dc.relationChew, C. M., Aroua, M., and Hussain, M. (2017). A practical hybrid modelling approach for the prediction of potential fouling parameters in ultrafiltration membrane water treatment plant. J. Ind. Eng. Chem., 45:145–155.
dc.relationGao, Y., Qin, J., Wang, Z., and Østerhus, S. W. (2019). Backpulsing technology applied in MF and UF processes for membrane fouling mitigation: A review. J. Memb. Sci., 587:117136.
dc.relationGarcıa-Molina, V., Esplugas, S., Wintgens, T., and Melin, T. (2006). Ultrafiltration of aqueous solutions containing dextran. Desalination, 188(1-3):217–227.
dc.relationGaspar, V. M., Moreira, A. F., de Melo-Diogo, D., Costa, E. C., Queiroz, J. A., Sousa, F., Pichon, C., and Correia, I. J. (2016). Multifunctional nanocarriers for codelivery of nucleic acids and chemotherapeutics to cancer cells. In Nanobiomaterials Med. Imaging, pages 163–207. Elsevier.
dc.relationGrisales Dıaz, V. H., Prado-Rubio, O. A., Willis, M. J., and von Stosch, M. (2017). Dynamic hybrid model for ultrafiltration membrane processes. pages 193–198.
dc.relationGrzegorzek, M. and Majewska-Nowak, K. (2018). The use of micellar-enhanced ultrafiltration (MEUF) for fluoride removal from aqueous solutions. Sep. Purif. Technol., 195:1–11.
dc.relationGrznarova, G., Viktorin, M., and Lang, A. (2006). Characterization of virus retentive membranes by a tailor-made dextran method. Desalination, 200(1-3):297–298.
dc.relationInes Pereira Rosinha (2011). High frequency backshock effect on ultrafiltration of selected polysaccharides. Master thesis. Universidade Tecnica de Lisboa & Technical University of Denmark.
dc.relationJonsson, A.-S., Jonsson, B., and Byhlin, H. (2006). A concentration polarization model for the ultrafiltration of nonionic surfactants. J. Colloid Interface Sci., 304(1):191–199.
dc.relationJonsson, G. (1980). Overview of theories for water and solute transport in9 UF/RO membranes. Desalination, 35:21–38.
dc.relationJonsson, G. (1984). Boundary layer phenomena during ultrafiltration of dextran and whey protein solutions. Desalination, 51(1):61–77.
dc.relationJonsson, G. (2008). Tuning of the cut-off curves by dynamic ultrafiltration. In Proc. Int. Conf. Membr. Membr. Process. ICOM2008, Hawaii.
dc.relationKrishnakumar, N., Yea, M., and Cheryan, M. (2004). Ultrafiltration of soy protein concentrate: performance and modelling of spiral and tubular polymeric modules. J. Memb. Sci., 244(1-2):235–242.
dc.relationKwon, B., Molek, J., and Zydney, A. (2008). Ultrafiltration of PEGylated proteins: Fouling and concentration polarization effects. J. Memb. Sci., 319(1-2):206–213.
dc.relationMacedo, A., Duarte, E., and Pinho, M. (2011). The role of concentration polarization in ultrafiltration of ovine cheese whey. J. Memb. Sci., 381(1-2):34–40.
dc.relationNeggaz, Y., Vargas, M. L., Dris, A. O., Riera, F., and Alvarez, R. (2007). A combination of serial resistances and concentration polarization models along the membrane in ultrafiltration of pectin and albumin solutions. Sep. Purif. Technol., 54(1):18–27.
dc.relationPeinemann, K.-V. and Nunes, S. P. (2010). Membranes for water treatment. John Wiley & Sons.
dc.relationPrado-Rubio, O. A. and von Stosch, M. (2017). Towards Sustainable Flux Determination for Dynamic Ultrafiltration through Multivariable System Identification. In 27th Eur. Symp. Comput. Aided Process Eng., volume 3, pages 2719–2724.
dc.relationPu, Y., Zou, Q., Liu, L., Han, Z., Wang, X., Wang, Q., and Chen, S. (2012). Clinical dextran purified by fractional ultrafiltration coupled with water washing. Carbohydr. Polym., 87(2):1257–1260.
dc.relationSahoo, G. B. and Ray, C. (2006). Predicting flux decline in crossflow membranes using artificial neural networks and genetic algorithms. J. Memb. Sci., 283(1-2):147–157.
dc.relationSalladini, A., Prisciandaro, M., and Barba, D. (2007). Ultrafiltration of biologically treated wastewater by using backflushing. Desalination, 207(1-3):24–34.
dc.relationSaltık, M. B., Ozkan, L., Jacobs, M., and van der Padt, A. (2017). Dynamic modeling of ultrafiltration membranes for whey separation processes. Comput. Chem. Eng., 99:280– 295.
dc.relationScott, K. (1996). Handbook of Industrial Membranes. Elsevier Science, 1st edition.
dc.relationShi, L., Huang, J., Zhu, L., Shi, Y., Yi, K., and Li, X. (2019). Role of concentration polarization in cross flow micellar enhanced ultrafiltration of cadmium with low surfactant concentration. Chemosphere, 237:124859.
dc.relationSong, E.-H., Shang, J., and Ratner, D. (2012). Polysaccharides. In Polym. Sci. A Compr. Ref., pages 137–155. Elsevier.
dc.relationSrijaroonrat, P., Julien, E., and Aurelle, Y. (1999). Unstable secondary oil/water emulsion treatment using ultrafiltration: fouling control by backflushing. J. Memb. Sci., 159(1- 2):11–20.
dc.relationStankiewicz, A. I. and Moulijn, J. A. (2000). Process intensification: transforming chemical engineering. Chem. Eng. Prog., 96(1):22–34.
dc.relationTkacik, G. and Michaels, S. (1991). A Rejection Profile Test for Ultrafiltration Membranes & Devices. Bio/Technology, 9(10):941–946.
dc.relationVerma, S. P. and Sarkar, B. (2017). Rhamnolipid based micellar-enhanced ultrafiltration for simultaneous removal of Cd(II) and phenolic compound from wastewater. Chem. Eng. J., 319:131–142.
dc.relationVerma, S. P. and Sarkar, B. (2018). Simultaneous removal of Cd (II) and p-cresol from wastewater by micellar-enhanced ultrafiltration using rhamnolipid: Flux decline, adsorption kinetics and isotherm studies. J. Environ. Manage., 213:217–235.
dc.relationVinther, F. and J¨onsson, A.-S. (2016a). Modelling of optimal back-shock frequency in hollow fibre ultrafiltration membranes I: Computational fluid dynamics. J. Memb. Sci., 506:130– 136.
dc.relationVinther, F. and Jonsson, A.-S. (2016b). Modelling of optimal back-shock frequency in hollowfibre ultrafiltration membranes II: Semi-analytical mathematical model. J. Memb. Sci., 506:137–143.
dc.relationVinther, F., Pinelo, M., Brøns, M., Jonsson, G., and Meyer, A. S. (2014a). Mathematical modelling of dextran filtration through hollow fibre membranes. Sep. Purif. Technol., 125:21–36.
dc.relationVinther, F., Pinelo, M., Brøns, M., Jonsson, G., and Meyer, A. S. (2014b). Predicting optimal back-shock times in ultrafiltration hollow fibre modules through path-lines. J. Memb. Sci., 470:275–293.
dc.relationVinther, F., Pinelo, M., Brøns, M., Jonsson, G., and Meyer, A. S. (2015). Predicting optimal back-shock times in ultrafiltration hollow fiber modules II: Effect of inlet flow and concentration dependent viscosity. J. Memb. Sci., 493:486–495.
dc.relationWickramasinghe, S. R., Bower, S. E., Chen, Z., Mukherjee, A., and Husson, S. M. (2009). Relating the pore size distribution of ultrafiltration membranes to dextran rejection. J. Memb. Sci., 340(1-2):1–8.
dc.relationWijmans, J., Nakao, S., Van Den Berg, J., Troelstra, F., and Smolders, C. (1985). Hydrodynamic resistance of concentration polarization boundary layers in ultrafiltration. J. Memb. Sci., 22(1):117–135.
dc.relationYee, K. W., Wiley, D. E., and Bao, J. (2009). A unified model of the time dependence of flux decline for the long-term ultrafiltration of whey. J. Memb. Sci., 332(1-2):69–80.
dc.relationYehl, C. J. and Zydney, A. L. (2021). Characterization of dextran transport and molecular weight cutoff (MWCO) of large pore size hollow fiber ultrafiltration membranes. J. Memb. Sci., 622:119025.
dc.relationZaidi, S. and Kumar, A. (2004). Experimental studies in the dead-end ultrafiltration of dextran: analysis of concentration polarization. Sep. Purif. Technol., 36(2):115–130.
dc.relationZarrintaj, P., Saeb, M. R., Jafari, S. H., and Mozafari, M. (2020). Application of compatibilized polymer blends in biomedical fields. In Compat. Polym. Blends, pages 511–537. Elsevier.
dc.relationZydney, A. L. and Xenopoulos, A. (2007). Improving dextran tests for ultrafiltration membranes: Effect of device format. J. Memb. Sci., 291(1-2):180–190.
dc.relationAbels, C., Carstensen, F., and Wessling, M. (2013). Membrane processes in biorefinery applications. Journal of Membrane Science, 444:285–317.
dc.relationBaker, R. W. (2012). Membrane Technology and Applications. John Wiley & Sons, 3 edition.
dc.relationBakhshayeshi, M., Kanani, D. M., Mehta, A., van Reis, R., Kuriyel, R., Jackson, N., and Zydney, A. L. (2011). Dextran sieving test for characterization of virus filtration membranes. Journal of Membrane Science, 379:239–248.
dc.relationCharcosset, C. (2006). Membrane processes in biotechnology: An overview. Biotechnology Advances, 24:482–492.
dc.relationChhaya, Sharma, C., Mondal, S., Majumdar, G., and De, S. (2012). Clarification of stevia extract by ultrafiltration: Selection criteria of the membrane and effects of operating conditions. Food and Bioproducts Processing, 90:525–532.
dc.relationDıaz-Montes, E., Yanez-Fernandez, J., and Castro-Mu˜noz, R. (2020). Microfiltrationmediated extraction of dextran produced by leuconostoc mesenteroides sf3. Food and Bioproducts Processing, 119:317–328.
dc.relationGaspar, V. M., Moreira, A. F., de Melo-Diogo, D., Costa, E. C., Queiroz, J. A., Sousa, F., Pichon, C., and Correia, I. J. (2016). Multifunctional nanocarriers for codelivery of nucleic acids and chemotherapeutics to cancer cells.
dc.relationJonsson, G. E. and Prado-Rubio, O. A. (2011). Modeling and operation of dynamic membrane processes. International Congress on Membranes and Membrane Processes : ICOM 2011 ; Conference date: 01-01-2011.
dc.relationKwon, B., Molek, J., and Zydney, A. (2008). Ultrafiltration of pegylated proteins: Fouling and concentration polarization effects. Journal of Membrane Science, 319:206–213.
dc.relationLopez-Murillo, L. H., Grisales-Dıaz, V. H., Pinelo, M., and Prado-Rubio, O. A. (2021). Ultrafiltration intensification by dynamic operation: Insights from hybrid modeling. Chemical Engineering and Processing - Process Intensification, 169:108618.
dc.relationMacedo, A., Duarte, E., and Pinho, M. (2011). The role of concentration polarization in ultrafiltration of ovine cheese whey. Journal of Membrane Science, 381:34–40
dc.relationMach, O. and Lacko, L. (1968). Density gradient in a dextran medium. Analytical Biochemistry, 22:393–397.
dc.relationMountzouris, K., Gilmour, S., Grandison, A., and Rastall, R. (1999). Modeling of oligodextran production in an ultrafiltration stirred-cell membrane reactor. Enzyme and Microbial Technology, 24:75–85.
dc.relationMountzouris, K., Gilmour, S., and Rastall, R. (2002). Continuous production of oligodextrans via controlled hydrolysis of dextran in an enzyme membrane reactor. Journal of Food Science, 67:1767–1771.
dc.relationNeggaz, Y., Vargas, M. L., Dris, A. O., Riera, F., and Alvarez, R. (2007). A combination of serial resistances and concentration polarization models along the membrane in ultrafiltration of pectin and albumin solutions. Separation and Purification Technology, 54:18–27.
dc.relationPeinemann, K.-V. and Nunes, S. P. (2010). Membranes for water treatment. John Wiley & Sons.
dc.relationPinelo, M., Jonsson, G., and Meyer, A. S. (2009). Membrane technology for purification of enzymatically produced oligosaccharides: Molecular and operational features affecting performance. Separation and Purification Technology, 70:1–11.
dc.relationPrado-Rubio, O. A., Morales-Rodrıguez, R., Andrade-Santacoloma, P., and HernandezEscoto, H. (2016). Process intensification in biotechnology applications.
dc.relationPu, Y., Zou, Q., Liu, L., Han, Z., Wang, X., Wang, Q., and Chen, S. (2012). Clinical dextran purified by fractional ultrafiltration coupled with water washing. Carbohydrate Polymers, 87:1257–1260.
dc.relationQi, T., Da, X., Zhang, Y., Chen, X., Cui, Z., Qiu, M., and Fan, Y. (2020). Modeling and optimal operation of intermittent feed diafiltration for refining oligodextran using nanoporous ceramic membranes. Separation and Purification Technology, 253:117491.
dc.relationRosinha, I. P. (2011). High frequency backshock effect on ultrafiltration of selected polysaccharides. master thesis. universidade tecnica de lisboa & technical university of denmark.
dc.relationSu, Z., Luo, J., Pinelo, M., and Wan, Y. (2018). Directing filtration to narrow molecular weight distribution of oligodextran in an enzymatic membrane reactor. Journal of Membrane Science, 555:268–279.
dc.relationTorras, C., Nabarlatz, D., Vallot, G., Montane, D., and Garcia-Valls, R. (2008). Composite polymeric membranes for process intensification: Enzymatic hydrolysis of oligodextrans. Chemical Engineering Journal, 144:259–266.
dc.relationVinther, F. and Jonsson, A.-S. (2016a). Modelling of optimal back-shock frequency in hollow fibre ultrafiltration membranes i: Computational fluid dynamics. Journal of Membrane Science, 506:130–136.
dc.relationVinther, F. and Jonsson, A.-S. (2016b). Modelling of optimal back-shock frequency in hollowfibre ultrafiltration membranes ii: Semi-analytical mathematical model. Journal of Membrane Science, 506:137–143.
dc.relationVinther, F., Pinelo, M., Brøns, M., Jonsson, G., and Meyer, A. S. (2014a). Mathematical modelling of dextran filtration through hollow fibre membranes. Separation and Purification Technology, 125:21–36.
dc.relationVinther, F., Pinelo, M., Brøns, M., Jonsson, G., and Meyer, A. S. (2014b). Predicting optimal back-shock times in ultrafiltration hollow fibre modules through path-lines. Journal of Membrane Science, 470:275–293.
dc.relationVinther, F., Pinelo, M., Brøns, M., Jonsson, G., and Meyer, A. S. (2015). Predicting optimal back-shock times in ultrafiltration hollow fiber modules ii: Effect of inlet flow and concentration dependent viscosity. Journal of Membrane Science, 493:486–495.
dc.relationWei, P., Cheng, L.-H., Zhang, L., Xu, X.-H., lin Chen, H., and jie Gao, C. (2014). A review of membrane technology for bioethanol production. Renewable and Sustainable Energy Reviews, 30:388–400.
dc.relationWijmans, J., Nakao, S., Berg, J. V. D., Troelstra, F., and Smolders, C. (1985). Hydrodynamic resistance of concentration polarization boundary layers in ultrafiltration. Journal of Membrane Science, 22:117–135.
dc.relationYehl, C. J. and Zydney, A. L. (2021). Characterization of dextran transport and molecular weight cutoff (mwco) of large pore size hollow fiber ultrafiltration membranes. Journal of Membrane Science, 622:119025.
dc.relationZarrintaj, P., Saeb, M. R., Jafari, S. H., and Mozafari, M. (2020). Application of compatibilized polymer blends in biomedical fields.
dc.relationZeynali, R., Ghasemzadeh, K., Jalilnejad, E., and Basile, A. (2020). Economic evaluation of wastewater and water treatment technologies.
dc.relationZuriaga-Agustı, E., Alventosa-deLara, E., Barredo-Damas, S., Alcaina-Miranda, M., IborraClar, M., and Mendoza-Roca, J. (2014). Performance of ceramic ultrafiltration membranes and fouling behavior of a dye-polysaccharide binary system. Water Research, 54:199–210.
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleData-driven modelling of micro and ultra - filtration processes
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución