dc.contributor | Olaya, Yris | |
dc.contributor | Olaya Morales, Yris [0000-0001-5210-4731] | |
dc.creator | Córdoba Enríquez, Harol Andrés | |
dc.date.accessioned | 2022-11-09T16:32:57Z | |
dc.date.accessioned | 2023-06-06T23:25:10Z | |
dc.date.available | 2022-11-09T16:32:57Z | |
dc.date.available | 2023-06-06T23:25:10Z | |
dc.date.created | 2022-11-09T16:32:57Z | |
dc.date.issued | 2022 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/82671 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6651279 | |
dc.description.abstract | La industria cerámica y en particular el subsector de baldosas es intensiva en el consumo de energía, tanto térmica como eléctrica, lo que también le implica un alto grado de emisiones de CO2 al ambiente. En un marco donde la energía puede llegar a representar el 30% de los costos de producción de este subsector, junto con una regulación creciente en el tema de emisiones, buscar las tecnologías o iniciativas de ahorro energético más adecuadas, se constituye como una de las mejores soluciones disponibles con beneficios económicos y ambientales. Durante los últimos 20 años se ha abordado el tema de ahorro energético, inicialmente impulsado por el tema económico y variación de los precios de los energéticos, en la actualidad impulsado principalmente por el tema ambiental y compromisos de reducción de emisiones. Los trabajos desarrollados se enfocaron especialmente en el ahorro térmico, por ser el energético de mayor uso (80%) y donde se presentaban las mayores oportunidades de mejora. Se ha explorado la recuperación de aire caliente de los hornos, la cogeneración, cambio de quemadores e implementación del ciclo Rankine orgánico entre otras. Sin embargo, las tecnologías o iniciativas relacionadas con la energía eléctrica son muy escasas, con el agravante de que a pesar de contribuir únicamente con el 20% de la matriz energética su peso en costo total de la energía llega al 50%. Identificar las principales tecnologías de ahorro de energía y sus avances en un entorno cambiante, permitirá a las industrias tomar mejores decisiones en su implementación en el proceso productivo, garantizando su competitividad, simbiosis con el ambiente y sostenibilidad en el tiempo. El presente trabajo tiene como objetivo determinar la reducción del consumo de energía en el proceso productivo de baldosas cerámicas, asociado a las principales tecnologías de ahorro energético de la industria cerámica, recolectadas mediante una revisión de literatura. Para lograr este objetivo, se realiza una revisión de publicaciones (2001 a 2021) que permiten identificar el proceso productivo, los consumos energéticos del proceso y las iniciativas o tecnologías de ahorro energético para su posterior evaluación. Los hallazgos muestran que, respecto del estado inicial de consumo, el cambio de vía de producción de húmeda a seca genera ahorros térmicos y eléctricos del 70%, la recuperación de calor residual de los hornos de quema permite la reducción del 70% del consumo térmico en el proceso de secado, en la etapa de quemado, el enriquecimiento del aire de combustión con oxígeno logra ahorros del 30% de combustible. Las anteriores tecnologías y medidas se constituyen como las de mayor ahorro energético, mientras que la programación de la producción y el adecuado aislamiento de los hornos son medidas de baja o nula inversión que garantizan ahorros térmicos del 16% y 15% respectivamente, asociados a la gestión de los recursos disponibles. (Texto tomado de la fuente) | |
dc.description.abstract | Ceramic industry, specifically the floor tile sector is intensive in energy consumption, both thermal and electrical, which also implies a high degree of CO2 emission into the environment. In a framework where energy can represent up to 30% of the production costs of this subsector, and growing regulation in the emissions topic, finding the most appropriate energy saving technologies or initiatives constitute one of the best available solutions with economic and environmental benefits. Throughout the last 20 years the issue of energy saving has been leaded by the economic field and variation in energy prices and now driven mainly by the environmental concern and commitment to reduce emissions. Projects carried out focused primarly on thermal savings, as it was the most widely used energy source (80%) and where the greatest opportunities for improvement were conferred. Recovery of hot air from the furnaces, cogeneration, change of burners and implementation of the organic Rankine cycle have been explored among others. However, technologies and initiatives related to electrical energy are very limited, with the aggravating circumstance that despite contributing only to 20% of the energy matrix, the total weight of electricity in cost reaches up to 50%. Identifying the main energy saving technologies and their advances in a changing environment, will allow the industries to make better decisions in their implementation in the production process, guaranteeing their competitiveness, symbiosis with the environment and sustainability over time. This paper aims at determining the reduction in energy consumption in the floor tile productive process, based on the major energy saving technologies in the ceramic industry, through a literature review. To achieve this goal, a review of publications made from 2001 to 2021 in order to identify the productive procedure, its energy consumption and the energy saving initiatives or technologies for later evaluation. Findings revealed that, regarding to the initial state of consumption, the variation of production route from wet to dry generates thermal and electrical savings of 70%, that recovery of residual heat from the burning furnaces, allow the reduction of 70% of the thermal consumption in the drying process, and in the firing stage, the enrichment of combustion air with oxygen achieves 30% fuel savings. The previously mentioned technologies and measures are those with the greatest energy savings, while production scheduling and adequate insulation of the kilns are measures of low or null investment that guarantee termal savings of 16% and 15% respectively, associated with the management of available resources. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Medellín - Minas - Maestría en Ingeniería - Sistemas Energéticos | |
dc.publisher | Facultad de Minas | |
dc.publisher | Medellín, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | RedCol | |
dc.relation | LaReferencia | |
dc.relation | Agnani, E., Cavazzuti, M., & Corticelli, M. A. (2015). Optimization of recuperative burners for industrial kilns through CFD simulation OPTIMIZATION OF RECUPERATIVE BURNERS FOR. May. | |
dc.relation | Agrafiotis, C., & Tsoutsos, T. (2001). Energy saving technologies in the European ceramic sector: A systematic review. Applied Thermal Engineering, 21(12), 1231–1249. https://doi.org/10.1016/S1359-4311(01)00006-0 | |
dc.relation | Ahmad, M., Zhao, Z., & Li, H. (2019). Science of the Total Environment Revealing stylized empirical interactions among construction sector , urbanization , energy consumption , economic growth and CO 2 emissions in China. Science of the Total Environment, 657, 1085–1098. https://doi.org/10.1016/j.scitotenv.2018.12.112 | |
dc.relation | An, R., Yu, B., Li, R., & Wei, Y. (2018). Potential of energy savings and CO 2 emission reduction in China ’ s iron and steel industry. 226(June), 862–880. https://doi.org/10.1016/j.apenergy.2018.06.044 | |
dc.relation | ANDI. (2019). Precios Internacionales de Energía Eléctrica Para La Industria. | |
dc.relation | Atılgan, B. (2021). Improving the sustainability of ceramic tile production in Turkey. 27, 2193–2207. https://doi.org/10.1016/j.spc.2021.05.007 | |
dc.relation | Bonet-Martínez, E., Pérez-Villarejo, L., & Eliche-Quesada, D. Sánchez-Soto, P.J. Carrasco-Hurtado, B. Castro-Galiano, E. (2018). Manufacture of sustainable clay ceramic composite with composition SiO2-Al2O3-CaO-K2O materials valuing biomass ash from olive pomace. Materials Letters, 229, 21–25. | |
dc.relation | Borrell, A., & Salvador, M. D. (2018). Advanced Ceramic Materials Sintered by Microwave Technology. Sintering Technology-Method and Application. | |
dc.relation | Bovea, M. D., Díaz-Albo, E., Gallardo, A., Colomer, F. J., & Serrano, J. (2010). Environmental performance of ceramic tiles: Improvement proposals. Materials and Design, 31(1), 35–41. https://doi.org/10.1016/j.matdes.2009.07.021 | |
dc.relation | Branchini, L., Bignozzi, M. C., Ferrari, B., Mazzanti, B., Ottaviano, S., Salvio, M., Toro, C., Martini, F., & Canetti, A. (2021). Cogeneration supporting the energy transition in the italian ceramic tile industry. Sustainability (Switzerland), 13(7). https://doi.org/10.3390/su13074006 | |
dc.relation | Caglayan, H., & Caliskan, H. (2018a). Energy, exergy and sustainability assessments of a cogeneration system for ceramic industry. Applied Thermal Engineering, 136(May 2017), 504–515. https://doi.org/10.1016/j.applthermaleng.2018.02.064 | |
dc.relation | Caglayan, H., & Caliskan, H. (2018b). Investigation of the energy recovery in the burners of the ceramic factory kiln. Energy Procedia, 144, 118–124. https://doi.org/10.1016/j.egypro.2018.06.016 | |
dc.relation | Caglayan, H., Şöhret, Y., & Caliskan, H. (2018). Thermo-Ecologic Evaluation of a Spray Dryer for Ceramic Industry. Energy Procedia, 144, 164–169. https://doi.org/10.1016/j.egypro.2018.06.022 | |
dc.relation | Carabalí, M. (2017). Diagnóstico energético y estructuración de una propuesta de ahorro de energía en el subsector industrial de fundiciones. In Repositorio Universidad del Valle (Vol. 0, Issue 0). https://doi.org/10.1017/CBO9781107415324.004 | |
dc.relation | Castro, M., Iten, M., Cruz, P., & Monteiro, H. (2020). Review on Energy Efficiency Progresses, Technologies and Strategies in the Ceramic Sector Focousing on Waste Heat Recovery. MDPI Energies, 24. | |
dc.relation | Christiansen, O. B. (2002). Successful Spray Drying. Ceramic Industry, 152. | |
dc.relation | Chuenwong, K., Chiarakorn, S., & Sajjakulnukit, B. (2017). Specific energy consumption and carbon intensity of ceramic tablewares: Small enterprises (SEs) in Thailand. Journal of Cleaner Production, 147, 395–405. https://doi.org/10.1016/j.jclepro.2017.01.089 | |
dc.relation | Ciacco, E. F. S., Rocha, J. R., & Coutinho, A. R. (2017). The energy consumption in the ceramic tile industry in Brazil. Applied Thermal Engineering, 113, 1283–1289. https://doi.org/10.1016/j.applthermaleng.2016.11.068 | |
dc.relation | Cuadrado Peña, I. G., Colorado Granda, A. F., Cobos Gómez, J. C., & Vásquez Reda, J. C. (2015). FEASIBILITY ANALYSIS FOR THE APPLICATION OF AN ORGANIC RANKINE CYCLE IN AN OILFIELD. Revista EIA, 137–148. | |
dc.relation | Dadam, A. P. (2009). Numerical and Experimental Thermal Analysis of a Tunnel Kiln used in Ceramic Production. XXXI(4), 297–304. | |
dc.relation | Delpech, B., Axcell, B., & Jouhara, H. (2017). A review on waste heat recovery from exhaust in the ceramics industry. E3S Web of Conferences, 22. https://doi.org/10.1051/e3sconf/20172200034 | |
dc.relation | Delpech, B., Milani, M., Montorsi, L., Boscardin, D., Chauhan, A., Almahmoud, S., Axcell, B., & Jouhara, H. (2018). Energy efficiency enhancement and waste heat recovery in industrial processes by means of the heat pipe technology: Case of the ceramic industry. Energy, 158, 656–665. https://doi.org/10.1016/j.energy.2018.06.041 | |
dc.relation | Department of Energy and Climate Change, & Department for Business Innovation and Skills. (2015). Industrial Decarbonisation & Energy Efficiency Roadmaps to 2050. March. | |
dc.relation | DNP, DANE, S. (2019). Departamento Nacional de Planeación: Objetivos de Desarrollo Sostenible. Intensidad Energética. https://ods.dnp.gov.co/es/data-explorer?state=%7B%22goal%22%3A%227%22%2C%22indicator%22%3A%227.3.1.G%22%2C%22dimension%22%3A%22COUNTRY%22%2C%22view%22%3A%22line%22%7D | |
dc.relation | EIA. (2022). Electric Power Monthly. Average Price of Electricity to Ultimate Customers by End-Use Sector. https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_a | |
dc.relation | European Comission. (2007). Ceramic Manufacturing Industry. European Commission, August, 210–211. | |
dc.relation | Ferrer, S., Mezquita, A., Aguilella, V. M., & Monfort, E. (2019). Beyond the energy balance: Exergy analysis of an industrial roller kiln firing porcelain tiles. Applied Thermal Engineering, 150(January), 1002–1015. https://doi.org/10.1016/j.applthermaleng.2019.01.052 | |
dc.relation | Gao, M., Li, X., Huang, H., Liu, Z., Li, L., & Zhou, D. (2016). Energy-saving Methods for Hydraulic Presses Based on Energy Dissipation Analysis. Procedia CIRP, 48, 331–335. https://doi.org/10.1016/j.procir.2016.03.090 | |
dc.relation | Golman, B., & Julklang, W. (2014). Analysis of heat recovery from a spray dryer by recirculation of exhaust air. Energy Conversion and Management, 88, 641–649. | |
dc.relation | Grupo de Gestión Eficiente de Energía., & Grupo de Investigación en Energías. (2011). Ahorro de Energía en la Industria Cerámica. In Guía para la Implementación de Sistemas de Gestión Integral de la Energía. (p. 28). http://www.si3ea.gov.co/Portals/0/Gie/Guia/Guia.pdf | |
dc.relation | He, K., & Wang, L. (2017). A review of energy use and energy-efficient technologies for the iron and steel industry. Renewable and Sustainable Energy Reviews, 70(December 2016), 1022–1039. https://doi.org/10.1016/j.rser.2016.12.007 | |
dc.relation | Hepbasli, A., & Ozalp, N. (2002). Co-generation studies in Turkey: An application of a ceramic factory in Izmir. Applied Thermal Engineering, 22, 679–691. | |
dc.relation | Ibáñez-Forés, V., Bovea, M. D., & Azapagic, A. (2013). Assessing the sustainability of Best Available Techniques (BAT): Methodology and application in the ceramic tiles industry. Journal of Cleaner Production, 51, 162–176. https://doi.org/10.1016/j.jclepro.2013.01.020 | |
dc.relation | Ibáñez-Forés, Valeria, Bovea, M. D., & Simó, A. (2011). Life cycle assessment of ceramic tiles. Environmental and statistical analysis. International Journal of Life Cycle Assessment, 16(9), 916–928. https://doi.org/10.1007/s11367-011-0322-6 | |
dc.relation | IEA, IRENA, UNSD, World Bank, W. (2022a). Tracking SDG 7: The Energy Progress Report. Iea, 158–177. https://trackingsdg7.esmap.org/data/files/download-documents/2021_tracking_sdg7_chapter_6_outlook_for_sdg7.pdf | |
dc.relation | IEA, IRENA, UNSD, World Bank, W. (2022b). Tracking SDG 7: The Energy Progress Report. Results. https://trackingsdg7.esmap.org/results | |
dc.relation | IEA. (2021). World Energy Outlook 2021 - revised version October 2021. www.iea.org/weo | |
dc.relation | Norma Técnica Colombiana NTC-ISO 50001, 1 (2019). | |
dc.relation | International Energy Agency. (2019). Data & Statistics - IEA. Data and Statistics. https://www.iea.org/data-and-statistics/data-browser?country=COLOMBIA&fuel=Energy consumption&indicator=TFCbySector | |
dc.relation | International Energy Agency. (2020). Data & Statistics - IEA. Data and Statistics. https://www.iea.org/reports/tracking-industry-2020 | |
dc.relation | IRENA, & ETSAP. (2015). Solar Heat for Industrial Processes. https://www.irena.org/ publications/2015/Jan/Solar-Heat-for-Industrial-Processes | |
dc.relation | Islam, J., Hu, Y., Haltas, I., Balta-ozkan, N., Jr, G., & Varga, L. (2018). Reducing industrial energy demand in the UK : A review of energy e ffi ciency technologies and energy saving potential in selected sectors. Renewable and Sustainable Energy Reviews, 94(July), 1153–1178. https://doi.org/10.1016/j.rser.2018.06.040 | |
dc.relation | Jouhara, H., Khordehgah, N., Almahmoud, S., Delpech, B., Chauhan, A., & Tassou, S. A. (2018). Waste heat recovery technologies and applications. Thermal Science and Engineering Progress, 6(April), 268–289. https://doi.org/10.1016/j.tsep.2018.04.017 | |
dc.relation | Kandilli, C., Ayna, O. M., & Sahin, M. (2014). Evaluation of the performance of a hydrogen enriched combustion system for ceramic sector. International Journal of Hydrogen Energy, 40(34), 11195–11206. https://doi.org/10.1016/j.ijhydene.2015.01.019 | |
dc.relation | Ke, J., Zheng, N., Fridley, D., Price, L., & Zhou, N. (2020). Potential energy savings and CO 2 emissions reduction of China ’ s cement industry. Energy Policy, 45(2012), 739–751. https://doi.org/10.1016/j.enpol.2012.03.036 | |
dc.relation | Köhler, R. (2009). Energy saving concepts for the European ceramic industry CERAMIN—Tutorial About Energy Saving. http://www.ceramin.eu/downloads/D7_Tutorial_Energy_saving_UK.pdf | |
dc.relation | Manrique, R., Vásquez, D., Vallejo, G., Chejne, F., Amell, A. A., & Herrera, B. (2018). Analysis of barriers to the implementation of energy efficiency actions in the production of ceramics in Colombia. Energy, 143, 575–584. https://doi.org/10.1016/j.energy.2017.11.023 | |
dc.relation | Matthews, S., & Pickell, G. (1999). A new generation of low-mass kiln furniture. The American Ceramic Society, 78, 77–78. | |
dc.relation | Mezquita, A., Monfort, E., Ferrer, S., & Gabaldón-Estevan, D. (2017). How to reduce energy and water consumption in the preparation of raw materials for ceramic tile manufacturing: Dry versus wet route. Journal of Cleaner Production, 168, 1566–1570. https://doi.org/10.1016/j.jclepro.2017.04.082 | |
dc.relation | Mezquita, Ana, Boix, J., Monfort, E., & Mallol, G. (2014). Energy saving in ceramic tile kilns : Cooling gas heat recovery. 65, 102–110. | |
dc.relation | Mezquita, Ana, Monfort, G., Vaquer, E., & Pitarch, J. (2014). Reduction of CO2-emissions in ceramic tiles manufacture by combining energy-saving measures. Iso 690. | |
dc.relation | Milani, M., Montorsi, L., Stefani, M., Saponelli, R., & Lizzano, M. (2017). Numerical analysis of an entire ceramic kiln under actual operating conditions for the energy ef fi ciency improvement. Journal of Environmental Management, 203, 1026–1037. https://doi.org/10.1016/j.jenvman.2017.03.076 | |
dc.relation | Monfort, E., Mezquita, A., Granel, R., Vaquer, E., Miralles, A., & Zaera, V. (2010). ANALYSIS OF ENERGY CONSUMPTION AND CARBON DIOXIDE EMISSIONS IN CERAMIC TILE MANUFACTURE. QUALICER, 1, 1–15. | |
dc.relation | Monfort, E., Mezquita, A., Vaquer, E., Celades, I., Sanfelix, V., & Escrig, A. (2014). Ceramic Manufacturing Processes: Energy, Environmental, and Occupational Health Issues. In Comprehensive Materials Processing (Vol. 8). Elsevier. https://doi.org/10.1016/B978-0-08-096532-1.00809-8 | |
dc.relation | Monfort, E., Mezquita, A., Vaquer, E., Mallol, G., Alves, H. J., & Boschi, A. O. (2012). Consumo de energía térmica y emisiones de dióxido de carbono en la fabricación de baldosas cerámicas Análisis de las industrias Española y Brasileña. Boletin de La Sociedad Espanola de Ceramica y Vidrio, 51(5), 275–284. https://doi.org/10.3989/cyv.392012 | |
dc.relation | Monteiro, H., Cruz, P. L., Oliveira, M. C., & Iten, M. (2020). Technical and economical assessment of waste heat recovery on a ceramic industry. Wastes: Solutions, Treatments and Opportunities III - Selected Papers from the 5th International Conference Wastes: Solutions, Treatments and Opportunities, 2019, August, 524–530. https://doi.org/10.1201/9780429289798-83 | |
dc.relation | Naciones Unidas. (2022a). Objetivos de Desarrollo Sostenible. Objetivos de Desarrollo Sostenible. https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollo-sostenible/ | |
dc.relation | Naciones Unidas. (2022b). Objetivos de Desarrollo Sostenible. Objetivo 7: Garantizar El Acceso a Una Energía Asequible, Segura, Sostenible y Moderna. https://www.un.org/sustainabledevelopment/es/energy/ | |
dc.relation | Peris, B. (2015). Experimental study of an ORC ( organic Rankine cycle ) for low grade waste heat recovery in a ceramic industry. 85, 534–542. https://doi.org/10.1016/j.energy.2015.03.065 | |
dc.relation | Red Colombiana de Conocimiento en Eficiencia Energética. (2019). Implementación de un sistema de Gestión de la Energía Guía con base en la norma ISO. | |
dc.relation | Ros-Dosdá, T., Fullana-i-Palmer, P., Mezquita, A., Masoni, P., & Monfort, E. (2018). How can the European ceramic tile industry meet the EU’s low-carbon targets? A life cycle perspective. Journal of Cleaner Production, 199, 554–564. https://doi.org/10.1016/j.jclepro.2018.07.176 | |
dc.relation | Rozpondek, M., Wn, M., & Maciej, P. (2013). THE APPLICATION ASPECTS OF SELF-RECUPERATIVE AND SELF-REGENERATIVE BURNERS IN THERMAL DEVICES Maciej ROZPONDEK , Mariusz WNĘK. 20–26. | |
dc.relation | Sapa, I. (2013). Waste heat recovery in the ceramic industry. Universidade de Aveiro. | |
dc.relation | Sato, M., Singer, G., Dussaux, D., & Lovo, S. (2019). International and sectoral variation in industrial energy prices 1995 – 2015. Energy Economics, 78, 235–258. https://doi.org/10.1016/j.eneco.2018.11.008 | |
dc.relation | Stubbing, T. (1995). Airless drying: A quiet revolution. Glob. Ceram. Rev, 17–18. | |
dc.relation | Sumer, G., Rozak, S., Gallimore, P., Green, P., Tordoff, J., Kos, G., & Dahlman, G. (1995). Proper selection of kiln furniture. The American Ceramic Society, 74, 54–65. | |
dc.relation | Superintendencia de Servicios Públicos Domiciliarios. (2022). Boletín de Seguimiento y Monitoreo de los Mercados Mayoristas de Energía y Gas. https://www.superservicios.gov.co/sites/default/files/inline-files/boletin_ummeg_dic21_-_feb22-comprimido_0.pdf | |
dc.relation | Tile Edizioni S.r.L. (2020). Ceramic World Review. 138, 156. https://www.ceramicworldweb.it/cww-en/statistics-and-markets/world-production-and-consumption-of-ceramic-tiles-the-figures-for-2019-and-forecasts-for-2020/ | |
dc.relation | Trinomics, Enerdata, & Cambridge Econometrics. (2018). Study on Energy Prices , Costs and Subsidies and their Impact on Industry and Households Final report. https://ec.europa.eu/energy/sites/ener/files/documents/energy_prices_and_costs_-final_report-v12.3.pdf | |
dc.relation | U.S. Departament of Emergy. (2015). Barriers to Industrial Energy Efficiency (Issue June). | |
dc.relation | U.S. Departament of Energy. (2015). Bandwidth Study on Energy use and Potential Energy Saving Opportunities in U.S. Chemical Manufacturing. https://www.energy.gov/sites/prod/files/2015/08/f26/chemical_bandwidth_report.pdf | |
dc.relation | U.S. Energy Information Administration. (2019). EIA projects nearly 50% increase in world energy usage by 2050, led by growth in Asia - Today in Energy - U.S. Energy Information Administration (EIA). https://www.eia.gov/todayinenergy/detail.php?id=41433 | |
dc.relation | United States Department of State. (2021). The Long-Term Strategy of the United States: Pathways to Net-Zero Greenhouse Gas Emissions by 2050. United States Department of State and the United States Executive Office of the President, November. https://www.whitehouse.gov/wp-content/uploads/2021/10/US-Long-Term-Strategy.pdf | |
dc.relation | United States Environmental Protection. (2012). Available and Emerging Technologies for Reducing Greenhouse Gas Emissions From the Iron and Steel Industry. Available and Emerging Technologies for Reducing Greenhouse Gas Emissions From the Iron and Steel Industry,Environmental Protection Agency, September, 78. https://www.epa.gov/sites/production/files/2015-12/documents/ironsteel.pdf | |
dc.relation | United States Government. (2021). The White House. https://www.whitehouse.gov/briefing-room/statements-releases/2021/04/22/fact-sheet-president-biden-sets-2030-greenhouse-gas-pollution-reduction-target-aimed-at-creating-good-paying-union-jobs-and-securing-u-s-leadership-on-clean-energy-technologies/ | |
dc.relation | Utlu, Z., Hepbasli, A., Turan, M., Utlu, Z., Hepbasli, A., & Turan, M. (2011). Performance Analysis and Assessment of an Industrial Dryer in Ceramic Production Performance Analysis and Assessment of an Industrial Dryer in Ceramic Production. 3937. https://doi.org/10.1080/07373937.2011.602921 | |
dc.relation | Valdés, C. ., Chejne, F., Marrugo, G., Macias, R. ., Gómez, C. ., Montoya, J. ., Londoño, C. ., De La Cruz, J., & Arenas, E. (2016). Co-gasification of sub-bituminous coal with palm kernel shell in fluidized bed coupled to a ceramic industry process. Applied Thermal Engineering, 107, 1201–1209. | |
dc.relation | Vance, D., Nimbalkar, S., Thekdi, A., Armstrong, K., Wenning, T., Cresko, J., & Jin, M. (2019). Estimation of and barriers to waste heat recovery from harsh environments in industrial processes. Journal of Cleaner Production, 222, 539–549. https://doi.org/10.1016/j.jclepro.2019.03.011 | |
dc.relation | Venmans, F. (2014). Triggers and barriers to energy ef fi ciency measures in the ceramic , cement and lime sectors. Journal of Cleaner Production, 69, 133–142. https://doi.org/10.1016/j.jclepro.2014.01.076 | |
dc.relation | Zhang, L., Liu, B., Du, J., Liu, C., Li, H., & Wang, S. (2020). Internationalization trends of carbon emission linkages : A case study on the construction sector. Journal of Cleaner Production, 270, 122433. https://doi.org/10.1016/j.jclepro.2020.122433 | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Evaluación de tecnologías de reducción de consumo de energía en la producción de baldosas cerámicas | |
dc.type | Trabajo de grado - Maestría | |