dc.contributorCalderón Ozuna, Martha Nancy
dc.contributorBioquímica y Biología Molecular de las Micobacterias
dc.creatorPinto Niño, Monica Andrea
dc.date.accessioned2023-04-25T16:17:49Z
dc.date.accessioned2023-06-06T23:23:34Z
dc.date.available2023-04-25T16:17:49Z
dc.date.available2023-06-06T23:23:34Z
dc.date.created2023-04-25T16:17:49Z
dc.date.issued2023
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/83775
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6651265
dc.description.abstractLa alta diversidad bacteriana en el tracto gastrointestinal se caracteriza por la presencia de diferentes filos, que establecen interacciones relacionadas con una serie de sucesos a nivel celular que actúan fisiológicamente con el hospedero. La microbiota intestinal digiere oligosacáridos provenientes de la fibra dietaría que influye y genera diversos metabolitos, como son ácidos grasos de cadena corta (AGCC), vitamina K, vitamina B, triptófano, serotonina, entre otros. Aunque los mecanismos moleculares entre la microbiota intestinal y el hospedero aún continúan en estudio, se han establecido vías de interacción en un estado de eubiosis y en diferentes patologías. Se propuso en este trabajo de grado revisar los reportes científicos de caracterización de la microbiota en eubiosis y relacionar algunas vías del hospedero con el estado de disbiosis en diferentes patologías, además de consultar posibles tratamientos aplicados para la recuperación del equilibrio bacteriano. Para el desarrollo de esta revisión se emplearon diferentes plataformas de búsqueda, entre ellas, Scopus, Science Direct, Scielo, Base Search y PubMed, empleando palabras clave como “gut microbiota human”, “pathologies human gut microbiota”, “healthy human gut microbiota”. El estado de disbiosis se caracteriza por abundancias relativas desproporcionadas de géneros como Sutterella, Clostridium, Eggerthella, Escherichia, Shigella y Desulfovibrios. Se reporta disminución en las abundancias relativas de especies promotoras de salud como Akkermansia muciniphila, Faecalibacterium prausnitzii, los géneros Bifidobacterium, Lactobacillus y Roseburia. La pérdida de biodiversidad se asocia con el desarrollo de diferentes patologías como obesidad, diabetes, alteraciones del comportamiento, procesos inflamatorios y neurodegenerativos. La aplicación de prebióticos, probióticos, simbióticos y el trasplante de materia fecal (TMF), apuntan a la recuperación de la eubiosis intestinal como coadyuvantes en el tratamiento en diferentes patologías. (Texto tomado de la fuente)
dc.description.abstractThe high bacterial diversity in the gastrointestinal tract is characterized by the presence of different phyla, which generated interactions related to a series of events at the cellular level that act physiologically with the host. The intestinal microbiota digests oligosaccharides from dietary fiber that influences and generates various metabolites, such as short-chain fatty acids (SCFA), vitamin K, vitamin B, tryptophan, serotonin, among others. Although the molecular mechanisms between the intestinal microbiota and the host are still under study, interaction pathways have been established in a state of eubiosis and in different pathologies. It is perhaps in this degree work to review the scientific reports on the characterization of the microbiota in eubiosis and to relate some host pathways with the state of dysbiosis in different pathologies, in addition to consulting possible treatments applied for the recovery of the bacterial balance. For the development of this review, different search platforms were used, such as Scopus, Science Direct, Scielo, Base Search and PubMed, using keywords such as "gut microbiota human", "pathologies human gut microbiota", "healthy human gut microbiota". The state of dysbiosis is characterized by disproportionate relative abundances of genera such as Sutterella, Clostridium, Eggerthella, Escherichia, Shigella and Desulfovibrios. A decrease in the relative abundance of health-promoting species such as Akkermansia muciniphila, Faecalibacterium prausnitzii, the genera Bifidobacterium, Lactobacillus and Roseburia has been reported. The loss of biodiversity is associated with the development of different pathologies such as obesity, diabetes, behavioral disorders, inflammatory and neurodegenerative processes. The application of prebiotics, probiotics, synbiotics and fecal matter transplantation (FMT), point to the recovery of intestinal eubiosis as adjuvants in the treatment of different pathologies.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Química
dc.publisherFacultad de Ciencias
dc.publisherBogotá,Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAbbasi, S., & Masoumi, S. (2020). Next-generation sequencing (NGS). International Journal of Advanced Science and Technology, 29(3). https://doi.org/10.1007/978-981-16-1037-0_23
dc.relationAdlerberth, I., & Wold, A. E. (2009). Establishment of the gut microbiota in Western infants. Acta Pædiatrica, 98(2), 229–238. https://doi.org/10.1111/J.1651-2227.2008.01060.X
dc.relationAit-Belgnaoui, A., Durand, H., Cartier, C., Chaumaz, G., Eutamene, H., Ferrier, L., Houdeau, E.,Fioramonti, J., Bueno, L., & Theodorou, V. (2012). Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology, 37(11). https://doi.org/10.1016/j.psyneuen.2012.03.024
dc.relationAlam, M. T., Amos, G. C. A., Murphy, A. R. J., Murch, S., Wellington, E. M. H., & Arasaradnam, R. P. (2020). Microbial imbalance in inflammatory bowel disease patients at different taxonomic levels. Gut Pathogens, 12(1). https://doi.org/10.1186/s13099-019-0341-6
dc.relationAlex, S., Lichtenstein, L., Dijk, W., Mensink, R. P., Tan, N. S., & Kersten, S. (2014). ANGPTL4 is produced by entero-endocrine cells in the human intestinal tract. Histochemistry and Cell Biology, 141(4). https://doi.org/10.1007/s00418-013-1157-y
dc.relationÁlvarez, J., Fernández Real, J. M., Guarner, F., Gueimonde, M., Rodríguez, J. M., Saenz de Pipaon, M., & Sanz, Y. (2021). Gut microbes and health. Gastroenterologia y Hepatologia, 44(7), 519– 535. https://doi.org/10.1016/J.GASTROHEP.2021.01.009
dc.relationAmar, J., Chabo, C., Waget, A., Klopp, P., Vachoux, C., Bermúdez-Humarán, L. G., Smirnova, N., Bergé, M., Sulpice, T., Lahtinen, S., Ouwehand, A., Langella, P., Rautonen, N., Sansonetti, P. J., & Burcelin, R. (2011). Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: Molecular mechanisms and probiotic treatment. EMBO Molecular Medicine, 3(9). https://doi.org/10.1002/emmm.201100159
dc.relationAminov, R. I., Walker, A. W., Duncan, S. H., Harmsen, H. J. M., Welling, G. W., & Flint, H. J. (2006). Molecular diversity, cultivation, and improved detection by fluorescent in situ hybridization of a dominant group of human gut bacteria related to Roseburia spp. or Eubacterium rectale. Applied and Environmental Microbiology, 72(9). https://doi.org/10.1128/AEM.00701-06
dc.relationAoki, R., Kamikado, K., Suda, W., Takii, H., Mikami, Y., Suganuma, N., Hattori, M., & Koga, Y. (2017). A proliferative probiotic Bifidobacterium strain in the gut ameliorates progression of metabolic disorders via microbiota modulation and acetate elevation. Scientific Reports, 7. https://doi.org/10.1038/srep43522
dc.relationArcher, A. C., Muthukumar, S. P., & Halami, P. M. (2021). Lactobacillus fermentum MCC2759 and MCC2760 Alleviate Inflammation and Intestinal Function in High-Fat Diet-Fed and Streptozotocin-Induced Diabetic Rats. Probiotics and Antimicrobial Proteins, 13(4). https://doi.org/10.1007/s12602-021-09744-0
dc.relationAroniadis, O. C., & Brandt, L. J. (2013). Fecal microbiota transplantation: Past, present and future. In Current Opinion in Gastroenterology (Vol. 29, Issue 1). https://doi.org/10.1097/MOG.0b013e32835a4b3e
dc.relationBabakhani, S., & Hosseini, F. (2019). Gut Microbiota: An Effective Factor in the Human Brain and Behavior. The Neuroscience Journal of Shefaye Khatam, 7(1), 106–118. https://doi.org/10.29252/SHEFA.7.1.106
dc.relationBäckhed, F., Ding, H., Wang, T., Hooper, L. V., Gou, Y. K., Nagy, A., Semenkovich, C. F., & Gordon, J. I. (2004). The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America, 101(44). https://doi.org/10.1073/pnas.0407076101
dc.relationBäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. (2005). Host-bacterial mutualism in the human intestine. In Science (Vol. 307, Issue 5717). https://doi.org/10.1126/science.1104816
dc.relationBastard, J. P., Maachi, M., Van Nhieu, J. T., Jardel, C., Bruckert, E., Grimaldi, A., Robert, J. J., Capeau, J., & Hainque, B. (2002). Adipose tissue IL-6 content correlates with resistance to insulin activation of glucose uptake both in vivo and in vitro. Journal of Clinical Endocrinology and Metabolism, 87(5). https://doi.org/10.1210/jcem.87.5.8450
dc.relationBatterham, R. L., Cowley, M. A., Small, C. J., Herzog, H., Cohen, M. A., Dakin, C. L., Wren, A. M., Brynes, A. E., Low, M. J., Ghatei, M. A., Cone, R. D., & Bloom, S. R. (2002). Gut hormone PYY3-36 physiologically inhibits food intake. Nature 2002 418:6898, 418(6898), 650–654. https://doi.org/10.1038/nature00887
dc.relationBelizário, J. E., Faintuch, J., Belizário, J. E., & Faintuch, J. (2018). doi: 10.1007/978-3-319-74932- 7_13 ++. Experientia Supplementum, 109
dc.relationBeltrán Martín, A. (2017). Microbiota Intestinal Y Diabetes. 1–20. http://147.96.70.122/Web/TFG/TFG/Memoria/ALBA GARCIA ALONSO.pdf
dc.relationBercik, P., Denou, E., Collins, J., Jackson, W., Lu, J., Jury, J., Deng, Y., Blennerhassett, P., MacRi, J., McCoy, K. D., Verdu, E. F., & Collins, S. M. (2011). The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology, 141(2). https://doi.org/10.1053/j.gastro.2011.04.052
dc.relationBlaak, E. E., Canfora, E. E., Theis, S., Frost, G., Groen, A. K., Mithieux, G., Nauta, A., Scott, K., Stahl, B., van Harsselaar, J., van Tol, R., Vaughan, E. E., & Verbeke, K. (2020). Short chain fatty acids in human gut and metabolic health. In Beneficial Microbes (Vol. 11, Issue 5). https://doi.org/10.3920/BM2020.0057
dc.relationBozkurt, H. S., & Kara, B. (2020). A new treatment for ulcerative colitis: Intracolonic Bifidobacterium and xyloglucan application. European Journal of Inflammation, 18. https://doi.org/10.1177/2058739220942626
dc.relationBrahe, L. K., Astrup, A., & Larsen, L. H. (2016). Can we prevent obesity-Related metabolic diseases by dietary modulation of the gut microbiota? In Advances in Nutrition (Vol. 7, Issue 1). https://doi.org/10.3945/an.115.010587
dc.relationBraniste, V., Al-Asmakh, M., Kowal, C., Anuar, F., Abbaspour, A., Tóth, M., Korecka, A., Bakocevic, N., Guan, N. L., Kundu, P., Gulyás, B., Halldin, C., Hultenby, K., Nilsson, H., Hebert, H., Volpe, B. T., Diamond, B., & Pettersson, S. (2014). The gut microbiota influences blood-brain barrier permeability in mice. Science Translational Medicine, 6(263). https://doi.org/10.1126/scitranslmed.3009759
dc.relationBravo, J. A., Forsythe, P., Chew, M. V., Escaravage, E., Savignac, H. M., Dinan, T. G., Bienenstock, J., & Cryan, J. F. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences of the United States of America, 108(38). https://doi.org/10.1073/pnas.1102999108
dc.relationBrown, J., Wang, H., Hajishengallis, G. N., & Martin, M. (2011). TLR-signaling networks: An integration of adaptor molecules, kinases, and cross-talk. Journal of Dental Research, 90(4).
dc.relationBurokas, A., Arboleya, S., Moloney, R. D., Peterson, V. L., Murphy, K., Clarke, G., Stanton, C., Dinan, T. G., & Cryan, J. F. (2017). Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have Anxiolytic and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice. Biological Psychiatry, 82(7). https://doi.org/10.1016/j.biopsych.2016.12.031
dc.relationCandela, M., Biagi, E., Soverini, M., Consolandi, C., Quercia, S., Severgnini, M., Peano, C., Turroni, S., Rampelli, S., Pozzilli, P., Pianesi, M., Fallucca, F., & Brigidi, P. (2016). Modulation of gut microbiota dysbioses in type 2 diabetic patients by macrobiotic Ma-Pi 2 diet. British Journal of Nutrition, 116(1). https://doi.org/10.1017/S0007114516001045
dc.relationCani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A. M., Fava, F., Tuohy, K. M., Chabo, C., Waget, A., Delmée, E., Cousin, B., Sulpice, T., Chamontin, B., Ferrières, J., Tanti, J. F., Gibson, G. R., Casteilla, L., … Burcelin, R. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7). https://doi.org/10.2337/db06-1491
dc.relationCani, P. D., Neyrinck, A. M., Fava, F., Knauf, C., Burcelin, R. G., Tuohy, K. M., Gibson, G. R., & Delzenne, N. M. (2007). Selective increases of bifidobacteria in gut microflora improve highfat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia, 50(11). https://doi.org/10.1007/s00125-007-0791-0
dc.relationCani, P. D., Possemiers, S., Van De Wiele, T., Guiot, Y., Everard, A., Rottier, O., Geurts, L., Naslain, D., Neyrinck, A., Lambert, D. M., Muccioli, G. G., & Delzenne, N. M. (2009). Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut, 58(8). https://doi.org/10.1136/gut.2008.165886
dc.relationCani, P., & Delzenne, N. (2009). The Role of the Gut Microbiota in Energy Metabolism and Metabolic Disease. Current Pharmaceutical Design, 15(13). https://doi.org/10.2174/138161209788168164
dc.relationCaputi, V., Marsilio, I., Filpa, V., Cerantola, S., Orso, G., Bistoletti, M., Paccagnella, N., De Martin, S., Montopoli, M., Dall’Acqua, S., Crema, F., Di Gangi, I. M., Galuppini, F., Lante, I., Bogialli, S., Rugge, M., Debetto, P., Giaroni, C., & Giron, M. C. (2017). Antibiotic-induced dysbiosis of the microbiota impairs gut neuromuscular function in juvenile mice. British Journal of Pharmacology, 174(20). https://doi.org/10.1111/bph.13965
dc.relationChávez-Carbajal, A., Pizano-Zárate, M. L., Hernández-Quiroz, F., Ortiz-Luna, G. F., MoralesHernández, R. M., De Sales-Millán, A., Hernández-Trejo, M., García-Vite, A., Beltrán-Lagunes, L., Hoyo-Vadillo, C., & García-Mena, J. (2020). Characterization of the gut microbiota of individuals at different T2D stages reveals a complex relationship with the host. Microorganisms, 8(1). https://doi.org/10.3390/microorganisms8010094
dc.relationChen, Y., Xiao, N., Chen, Y., Chen, X., Zhong, C., Cheng, Y., Du, B., & Li, P. (2021). Semen Sojae Praeparatum alters depression-like behaviors in chronic unpredictable mild stress rats via intestinal microbiota. Food Research International, 150. https://doi.org/10.1016/j.foodres.2021.110808
dc.relationChiang, J. Y. L., & Ferrell, J. M. (2020). Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. American Journal of Physiology - Gastrointestinal and Liver Physiology, 318(3). https://doi.org/10.1152/ajpgi.00223.2019
dc.relationChimerel, C., Emery, E., Summers, D. K., Keyser, U., Gribble, F. M., & Reimann, F. (2014). Bacterial Metabolite Indole Modulates Incretin Secretion from Intestinal Enteroendocrine L Cells. Cell Reports, 9(4). https://doi.org/10.1016/j.celrep.2014.10.032
dc.relationClarke, G., Sandhu, K. V., Griffin, B. T., Dinan, T. G., Cryan, J. F., & Hyland, N. P. (2019). Gut Reactions: Breaking Down Xenobiotic–Microbiome Interactions. Pharmacological Reviews, 71(2), 198–224. https://doi.org/10.1124/PR.118.015768
dc.relationClooney, A. G., Eckenberger, J., Laserna-Mendieta, E., Sexton, K. A., Bernstein, M. T., Vagianos, K., Sargent, M., Ryan, F. J., Moran, C., Sheehan, D., Sleator, R. D., Targownik, L. E., Bernstein, C. N., Shanahan, F., & Claesson, M. J. (2021). Ranking microbiome variance in inflammatory bowel disease: A large longitudinal intercontinental study. Gut, 70(3). https://doi.org/10.1136/gutjnl-2020-321106
dc.relationCornejo-Pareja, I., Muñoz-Garach, A., Clemente-Postigo, M., & Tinahones, F. J. (2019). Importance of gut microbiota in obesity. European Journal of Clinical Nutrition, 72, 26–37. https://doi.org/10.1038/s41430-018-0306-8
dc.relationCreely, S. J., McTernan, P. G., Kusminski, C. M., Fisher, F. M., Da Silva, N. F., Khanolkar, M., Evans, M., Harte, A. L., & Kumar, S. (2007). Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 292(3). https://doi.org/10.1152/ajpendo.00302.2006
dc.relationCummings, J. H., Beatty, E. R., Kingman, S. M., Bingham, S. A., & Englyst, H. N. (1996). Digestion and physiological properties of resistant starch in the human large bowel. British Journal of Nutrition, 75(5). https://doi.org/10.1079/bjn19960177
dc.relationCummings, J. H., Macfarlane, G. T., & Englyst, H. N. (2001). Prebiotic digestion and fermentation. American Journal of Clinical Nutrition, 73(2 SUPPL.). https://doi.org/10.1093/ajcn/73.2.415s
dc.relationDalile, B., Vervliet, B., Bergonzelli, G., Verbeke, K., & Van Oudenhove, L. (2020). Colon-delivered short-chain fatty acids attenuate the cortisol response to psychosocial stress in healthy men: a randomized, placebo-controlled trial. Neuropsychopharmacology, 45(13). https://doi.org/10.1038/s41386-020-0732-x
dc.relationDam, B., Misra, A., & Banerjee, S. (2019). Role of Gut Microbiota in Combating Oxidative Stress. Oxidative Stress in Microbial Diseases, 43–82. https://doi.org/10.1007/978-981-13-8763-0_4
dc.relationDe Mello, V. D., Paananen, J., Lindström, J., Lankinen, M. A., Shi, L., Kuusisto, J., Pihlajamäki, J., Auriola, S., Lehtonen, M., Rolandsson, O., Bergdahl, I. A., Nordin, E., Ilanne-Parikka, P., Keinänen-Kiukaanniemi, S., Landberg, R., Eriksson, J. G., Tuomilehto, J., Hanhineva, K., & Uusitupa, M. (2017). Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study. Scientific Reports, 7. https://doi.org/10.1038/srep46337
dc.relationDe Santis, S., Cavalcanti, E., Mastronardi, M., Jirillo, E., & Chieppa, M. (2015). Nutritional keys for intestinal barrier modulation. In Frontiers in Immunology (Vol. 6, Issue DEC). https://doi.org/10.3389/fimmu.2015.00612
dc.relationDen Besten, G., Van Eunen, K., Groen, A. K., Venema, K., Reijngoud, D. J., & Bakker, B. M. (2013). The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research, 54(9), 2325. https://doi.org/10.1194/JLR.R036012
dc.relationDong, S., Zhu, M., Wang, K., Zhao, X., Hu, L., Jing, W., Lu, H., & Wang, S. (2021). Dihydromyricetin improves DSS-induced colitis in mice via modulation of fecal-bacteria-related bile acid metabolism. Pharmacological Research, 171. https://doi.org/10.1016/j.phrs.2021.105767
dc.relationDrake, H. L., Hu, S. I., & Wood, H. G. (1981). Purification of five components from Clostridium thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate. Properties of phosphotransacetylase. Journal of Biological Chemistry, 256(21).
dc.relationDuan, M., Wang, Y., Zhang, Q., Zou, R., Guo, M., & Zheng, H. (2021). Characteristics of gut microbiota in people with obesity. PLoS ONE, 16(8 August). https://doi.org/10.1371/journal.pone.0255446
dc.relationDuncan, S. H., Belenguer, A., Holtrop, G., Johnstone, A. M., Flint, H. J., & Lobley, G. E. (2007). Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Applied and Environmental Microbiology, 73(4). https://doi.org/10.1128/AEM.02340-06
dc.relationDuncan, S. H., Louis, P., & Flint, H. J. (2004). Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Applied and Environmental Microbiology, 70(10), 5810–5817. https://doi.org/10.1128/AEM.70.10.5810-5817.2004
dc.relationErny, D., De Angelis, A. L. H., Jaitin, D., Wieghofer, P., Staszewski, O., David, E., Keren-Shaul, H., Mahlakoiv, T., Jakobshagen, K., Buch, T., Schwierzeck, V., Utermöhlen, O., Chun, E., Garrett, W. S., Mccoy, K. D., Diefenbach, A., Staeheli, P., Stecher, B., Amit, I., & Prinz, M. (2015). Host microbiota constantly control maturation and function of microglia in the CNS. Nature Neuroscience, 18(7). https://doi.org/10.1038/nn.4030
dc.relationEscobar, J. S., Klotz, B., Valdes, B. E., & Agudelo, G. M. (2015). The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiology, 14(1). https://doi.org/10.1186/s12866-014-0311-6
dc.relationFan, Y., & Pedersen, O. (2020). Gut microbiota in human metabolic health and disease. Nature Reviews Microbiology 2020 19:1, 19(1), 55–71. https://doi.org/10.1038/s41579-020-0433-9
dc.relationFasano, A. (2012). Leaky gut and autoimmune diseases. Clinical Reviews in Allergy and Immunology, 42(1). https://doi.org/10.1007/s12016-011-8291-x
dc.relationFernández Real, J. M., Moreno-Navarrete, J. M., & Manco, M. (2019). Iron influences on the GutBrain axis and development of type 2 diabetes. In Critical Reviews in Food Science and Nutrition (Vol. 59, Issue 3). https://doi.org/10.1080/10408398.2017.1376616
dc.relationFiorucci, S., Carino, A., Baldoni, M., Santucci, L., Costanzi, E., Graziosi, L., Distrutti, E., & Biagioli, M. (2021). Bile Acid Signaling in Inflammatory Bowel Diseases. In Digestive Diseases and Sciences (Vol. 66, Issue 3). https://doi.org/10.1007/s10620-020-06715-3
dc.relationFlint, A., Raben, A., Rehfeld, J. F., Holst, J. J., & Astrup, A. (2000). The effect of glucagon-like peptide-1 on energy expenditure and substrate metabolism in humans. International Journal of Obesity, 24(3). https://doi.org/10.1038/sj.ijo.0801126
dc.relationFujimori, S., Tatsuguchi, A., Gudis, K., Kishida, T., Mitsui, K., Ehara, A., Kobayashi, T., Sekita, Y., Seo, T., & Sakamoto, C. (2007). High dose probiotic and prebiotic cotherapy for remission induction of active Crohn’s disease. Journal of Gastroenterology and Hepatology (Australia), 22(8). https://doi.org/10.1111/j.1440-1746.2006.04535.x
dc.relationFülling, C., Dinan, T. G., & Cryan, J. F. (2019a). Gut Microbe to Brain Signaling: What Happens in Vagus…. In Neuron (Vol. 101, Issue 6). https://doi.org/10.1016/j.neuron.2019.02.008
dc.relationFülling, C., Dinan, T. G., & Cryan, J. F. (2019b). Gut Microbe to Brain Signaling: What Happens in Vagus…. Neuron, 101(6), 998–1002. https://doi.org/10.1016/J.NEURON.2019.02.008
dc.relationGareau, M., Silva, M., & Perdue, M. (2008). Pathophysiological Mechanisms of Stress-Induced Intestina Damage. Current Molecular Medicine, 8(4), 274–281. https://doi.org/10.2174/156652408784533760
dc.relationGeneroso, J. S., Giridharan, V. V., Lee, J., Macedo, D., & Barichello, T. (2021). The role of the microbiota-gut-brain axis in neuropsychiatric disorders. In Revista brasileira de psiquiatria (Sao Paulo, Brazil : 1999) (Vol. 43, Issue 3). https://doi.org/10.1590/1516-4446-2020-0987
dc.relationGonzalez-Santana, A., & Diaz Heijtz, R. (2020). Bacterial Peptidoglycans from Microbiota in Neurodevelopment and Behavior. In Trends in Molecular Medicine (Vol. 26, Issue 8). https://doi.org/10.1016/j.molmed.2020.05.003
dc.relationGózd-Barszczewska, A., Kozioł-Montewka, M., Barszczewski, P., Młodzińska, A., & Humińska, K. (2017). Gut microbiome as a biomarker of cardiometabolic disorders. Annals of Agricultural and Environmental Medicine, 24(3). https://doi.org/10.26444/aaem/75456
dc.relationGrab, D. J., Perides, G., Dumler, J. S., Kim, K. J., Park, J., Kim, Y. V., Nikolskaia, O., Choi, K. S., Stins, M. F., & Kim, K. S. (2005). Borrelia burgdorferi, host-derived proteases, and the bloodbrain barrier. Infection and Immunity, 73(2). https://doi.org/10.1128/IAI.73.2.1014-1022.2005
dc.relationGuarner, F., & Malagelada, J. R. (2003). Gut flora in health and disease. The Lancet, 361(9356), 512–519. https://doi.org/10.1016/S0140-6736(03)12489-0
dc.relationGuo, J., Han, X., Tan, H., Huang, W., You, Y., & Zhan, J. (2019). Blueberry Extract Improves Obesity through Regulation of the Gut Microbiota and Bile Acids via Pathways Involving FXR and TGR5. IScience, 19. https://doi.org/10.1016/j.isci.2019.08.020
dc.relationGurung, M., Li, Z., You, H., Rodrigues, R., Jump, D. B., Morgun, A., & Shulzhenko, N. (2020). Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine, 51. https://doi.org/10.1016/J.EBIOM.2019.11.051/ATTACHMENT/CB942F49-C906-4922-A160- AC1B2D24B8E7/MMC1.XLSX
dc.relationHaileselassie, Y., Fischbach, M. A., Sonnenburg, J. L., & Habtezion, A. (2020). Clinical and Translational Report Dysbiosis-Induced Secondary Bile Acid Deficiency Clinical and Translational Report Dysbiosis-Induced Secondary Bile Acid Deficiency Promotes Intestinal Inflammation. Cell Host and Microbe, 0(0).
dc.relationHarpreet Kaur, Svetlana Golovko, Mikhail Y. Golovko, Surjeet Singh, D. C. D. and C. K. C. (2022). Erratum to “Effects of Probiotic Supplementation on Short Chain Fatty Acids in the AppNL–G– F Mouse Model of Alzheimer’s Disease.” Journal of Alzheimer’s Disease, 86(2). https://doi.org/10.3233/jad-229001
dc.relationHetzel, M., Brock, M., Selmer, T., Pierik, A. J., Golding, B. T., & Buckel, W. (2003). Acryloyl-CoA reductase from Clostridium propionicum: An enzyme complex of propionyl-CoA dehydrogenase and electron-transferring flavoprotein. European Journal of Biochemistry, 270(5). https://doi.org/10.1046/j.1432-1033.2003.03450.x
dc.relationHill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology and Hepatology, 11(8). https://doi.org/10.1038/nrgastro.2014.66
dc.relationHoentjen, F., Welling, G. W., Harmsen, H. J. M., Zhang, X., Snart, J., Tannock, G. W., Lien, K., Churchill, T. A., Lupicki, M., & Dieleman, L. A. (2005). Reduction of colitis by prebiotics in HLAB27 transgenic rats is associated with microflora changes and immunomodulation. Inflammatory Bowel Diseases, 11(11). https://doi.org/10.1097/01.MIB.0000183421.02316.d5
dc.relationHolmes, E., Li, J. V., Marchesi, J. R., & Nicholson, J. K. (2012). Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. In Cell Metabolism (Vol. 16, Issue 5). https://doi.org/10.1016/j.cmet.2012.10.007
dc.relationHou, M., Xu, G., Ran, M., Luo, W., & Wang, H. (2021). APOE-ε4 Carrier Status and Gut Microbiota Dysbiosis in Patients With Alzheimer Disease. Frontiers in Neuroscience, 15. https://doi.org/10.3389/fnins.2021.619051
dc.relationHouser, M. C., & Tansey, M. G. (2017). The gut-brain axis: Is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? In npj Parkinson’s Disease (Vol. 3, Issue 1). https://doi.org/10.1038/s41531-016-0002-0
dc.relationHsiao, E. Y., McBride, S. W., Hsien, S., Sharon, G., Hyde, E. R., McCue, T., Codelli, J. A., Chow, J., Reisman, S. E., Petrosino, J. F., Patterson, P. H., & Mazmanian, S. K. (2013). Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 155(7), 1451–1463. https://doi.org/10.1016/J.CELL.2013.11.024/ATTACHMENT/3C2F31F8-0226-47B8-A48EAB542B8C7423/MMC2.ZIP
dc.relationI., P., V., B., J., H., S., G., & A., H. (2017). Gut microbiome associated with cognitive and brain structural outcomes in apolipoprotein E4 variant. Journal of Cerebral Blood Flow and Metabolism, 37(1 Supplement 1).
dc.relationJaganathan, R., Ravindran, R., & Dhanasekaran, S. (2018). Emerging Role of Adipocytokines in Type 2 Diabetes as Mediators of Insulin Resistance and Cardiovascular Disease. In Canadian Journal of Diabetes (Vol. 42, Issue 4). https://doi.org/10.1016/j.jcjd.2017.10.040
dc.relationJan, G., Belzacq, A. S., Haouzi, D., Rouault, A., Métivier, D., Kroemer, G., & Brenner, C. (2002). Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death and Differentiation, 9(2). https://doi.org/10.1038/sj.cdd.4400935
dc.relationJandhyala, S. M., Talukdar, R., Subramanyam, C., Vuyyuru, H., Sasikala, M., & Reddy, D. N. (2015). Role of the normal gut microbiota. World Journal of Gastroenterology, 21(29). https://doi.org/10.3748/wjg.v21.i29.8787
dc.relationJang, H. M., Lee, K. E., Lee, H. J., & Kim, D. H. (2018). Immobilization stress-induced Escherichia coli causes anxiety by inducing NF-κB activation through gut microbiota disturbance. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-31764-0
dc.relationJanssen, A. W. F., & Kersten, S. (2017). Potential mediators linking gut bacteria to metabolic health: a critical view. In Journal of Physiology (Vol. 595, Issue 2). https://doi.org/10.1113/JP272476
dc.relationJumpertz, R., Le, D. S., Turnbaugh, P. J., Trinidad, C., Bogardus, C., Gordon, J. I., & Krakoff, J. (2011). Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. American Journal of Clinical Nutrition, 94(1). https://doi.org/10.3945/ajcn.110.010132
dc.relationJung, D., Fantin, A. C., Scheurer, U., Fried, M., & Kullak-Ublick, G. A. (2004). Human ileal bile acid transporter gene ASBT (SLC10A2) is transactivated by the glucocorticoid receptor. Gut, 53(1). https://doi.org/10.1136/gut.53.1.78
dc.relationKalia, L. V., & Lang, A. E. (2015). Parkinson’s disease. The Lancet, 386(9996), 896–912. https://doi.org/10.1016/S0140-6736(14)61393-3
dc.relationKaur, H., Nookala, S., Singh, S., Mukundan, S., Nagamoto-Combs, K., & Combs, C. K. (2021). Sexdependent effects of intestinal microbiome manipulation in a mouse model of alzheimer’s disease. Cells, 10(9). https://doi.org/10.3390/cells10092370
dc.relationKhanna, S., Vazquez-Baeza, Y., González, A., Weiss, S., Schmidt, B., Muñiz-Pedrogo, D. A., Rainey, J. F., Kammer, P., Nelson, H., Sadowsky, M., Khoruts, A., Farrugia, S. L., Knight, R.,Pardi, D. S., & Kashyap, P. C. (2017). Changes in microbial ecology after fecal microbiota transplantation for recurrent C. difficile infection affected by underlying inflammatory bowel disease. Microbiome, 5(1). https://doi.org/10.1186/S40168-017-0269-3
dc.relationKieler, I. N., Kamal, S. S., Vitger, A. D., Nielsen, D. S., Lauridsen, C., & Bjornvad, C. R. (2017). Gut microbiota composition may relate to weight loss rate in obese pet dogs. Veterinary Medicine and Science, 3(4). https://doi.org/10.1002/vms3.80
dc.relationKilinçarslan, S., & Evrensel, A. (2020). Efecto del trasplante de microbiota fecal sobre los síntomas psiquiátricos de los pacientes con enfermedad intestinal inflamatoria: estudio experimental. Actas Españolas de Psiquiatría, ISSN 1139-9287, Vol. 48, No . 1, 2020, Págs. 1-7, 48(1).
dc.relationKoh, A., De Vadder, F., Kovatcheva-Datchary, P., & Bäckhed, F. (2016). From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. In Cell (Vol. 165, Issue 6). https://doi.org/10.1016/j.cell.2016.05.041
dc.relationLeBlanc, J. G., Milani, C., de Giori, G. S., Sesma, F., van Sinderen, D., & Ventura, M. (2013). Bacteria as vitamin suppliers to their host: A gut microbiota perspective. In Current Opinion in Biotechnology (Vol. 24, Issue 2). https://doi.org/10.1016/j.copbio.2012.08.005
dc.relationLi, N., Zhan, S., Tian, Z., Liu, C., Xie, Z., Zhang, S., Chen, M., Zeng, Z., & Zhuang, X. (2021). Alterations in Bile Acid Metabolism Associated with Inflammatory Bowel Disease. In Inflammatory Bowel Diseases (Vol. 27, Issue 9). https://doi.org/10.1093/ibd/izaa342
dc.relationLi, Q., Chang, Y., Zhang, K., Chen, H., Tao, S., & Zhang, Z. (2020). Implication of the gut microbiome composition of type 2 diabetic patients from northern China. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-62224-3
dc.relationLi, X., Li, Z., He, Y., Li, P., Zhou, H., & Zeng, N. (2020). Regional distribution of Christensenellaceae and its associations with metabolic syndrome based on a population-level analysis. PeerJ, 8. https://doi.org/10.7717/peerj.9591
dc.relationLin, H. V., Frassetto, A., Kowalik, E. J., Nawrocki, A. R., Lu, M. M., Kosinski, J. R., Hubert, J. A., Szeto, D., Yao, X., Forrest, G., & Marsh, D. J. (2012). Butyrate and Propionate Protect against Diet-Induced Obesity and Regulate Gut Hormones via Free Fatty Acid Receptor 3-Independent Mechanisms. PLoS ONE, 7(4), e35240. https://doi.org/10.1371/JOURNAL.PONE.0035240
dc.relationLiu, B. N., Liu, X. T., Liang, Z. H., & Wang, J. H. (2021). Gut microbiota in obesity. World Journal of Gastroenterology, 27(25), 3837. https://doi.org/10.3748/WJG.V27.I25.3837
dc.relationLiu, Y., Sanderson, D., Mian, M. F., McVey Neufeld, K. A., & Forsythe, P. (2021). Loss of vagal integrity disrupts immune components of the microbiota-gut-brain axis and inhibits the effect of Lactobacillus rhamnosus on behavior and the corticosterone stress response. Neuropharmacology, 195. https://doi.org/10.1016/j.neuropharm.2021.108682
dc.relationLouis, P., Duncan, S. H., McCrae, S. I., Millar, J., Jackson, M. S., & Flint, H. J. (2004). Restricted Distribution of the Butyrate Kinase Pathway among Butyrate-Producing Bacteria from the Human Colon. Journal of Bacteriology, 186(7). https://doi.org/10.1128/JB.186.7.2099- 2106.2004
dc.relationLouis, P., & Flint, H. J. (2009). Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiology Letters, 294(1). https://doi.org/10.1111/j.1574-6968.2009.01514.x
dc.relationLouis, P., & Flint, H. J. (2017). Formation of propionate and butyrate by the human colonic microbiota. Environmental Microbiology, 19(1), 29–41. https://doi.org/10.1111/1462- 2920.13589
dc.relationLuck, B., Engevik, M. A., Ganesh, B. P., Lackey, E. P., Lin, T., Balderas, M., Major, A., Runge, J., Luna, R. A., Sillitoe, R. V., & Versalovic, J. (2020). Bifidobacteria shape host neural circuits during postnatal development by promoting synapse formation and microglial function. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-64173-3
dc.relationLukovac, S., Belzer, C., Pellis, L., Keijser, B. J., de Vos, W. M., Montijn, R. C., & Roeselers, G. (2014). Differential modulation by Akkermansia muciniphila and faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. MBio, 5(4). https://doi.org/10.1128/mBio.01438-14
dc.relationMacfarlane, S., & Macfarlane, G. T. (2003). Regulation of short-chain fatty acid production. Proceedings of the Nutrition Society, 62(1), 67–72. https://doi.org/10.1079/pns2002207
dc.relationMacfarlane, S., & Macfarlane, G. T. (2006). Composition and metabolic activities of bacterial biofilms colonizing food residues in the human gut. Applied and Environmental Microbiology, 72(9). https://doi.org/10.1128/AEM.00754-06
dc.relationMadan, A., Thompson, D., Fowler, J. C., Ajami, N. J., Salas, R., Frueh, B. C., Bradshaw, M. R., Weinstein, B. L., Oldham, J. M., & Petrosino, J. F. (2020). The gut microbiota is associated with psychiatric symptom severity and treatment outcome among individuals with serious mental illness. Journal of Affective Disorders, 264, 98–106. https://doi.org/10.1016/J.JAD.2019.12.020
dc.relationMäger, I., Roberts, T. C., Wood, M. J. A., & El Andaloussi, S. (2014). From gut to brain: Bioencapsulated therapeutic protein reduces amyloid load upon oral delivery. In Molecular Therapy (Vol. 22, Issue 3). https://doi.org/10.1038/mt.2014.13
dc.relationMagnúsdóttir, S., Ravcheev, D., De Crécy-Lagard, V., & Thiele, I. (2015). Systematic genome assessment of B-vitamin biosynthesis suggests cooperation among gut microbes. Frontiers in Genetics, 6(MAR). https://doi.org/10.3389/fgene.2015.00148
dc.relationMancabelli, L., Tarracchini, C., Milani, C., Lugli, G. A., Fontana, F., Turroni, F., van Sinderen, D., & Ventura, M. (2020). Multi-population cohort meta-analysis of human intestinal microbiota in early life reveals the existence of infant community state types (ICSTs). Computational and Structural Biotechnology Journal, 18. https://doi.org/10.1016/j.csbj.2020.08.028
dc.relationMandard, S., Zandbergen, F., Nguan, S. T., Escher, P., Patsouris, D., Koenig, W., Kleemann, R., Bakker, A., Veenman, F., Wahli, W., Müller, M., & Kersten, S. (2004). The direct peroxisome proliferator-activated receptor target fasting-induced adipose factor (FIAF/PGAR/ANGPTL4) is present in blood plasma as a truncated protein that is increased by fenofibrate treatment. Journal of Biological Chemistry, 279(33). https://doi.org/10.1074/jbc.M403058200
dc.relationMangiola, F., Ianiro, G., Franceschi, F., Fagiuoli, S., Gasbarrini, G., & Gasbarrini, A. (2016). Gut microbiota in autism and mood disorders. In World Journal of Gastroenterology (Vol. 22, Issue 1). https://doi.org/10.3748/wjg.v22.i1.361
dc.relationMarques, T. M., Wall, R., Ross, R. P., Fitzgerald, G. F., Ryan, C. A., & Stanton, C. (2010). Programming infant gut microbiota: influence of dietary and environmental factors. Current Opinion in Biotechnology, 21(2), 149–156. https://doi.org/10.1016/J.COPBIO.2010.03.020
dc.relationMartin-Gallausiaux, C., Marinelli, L., Blottière, H. M., Larraufie, P., & Lapaque, N. (2021). SCFA: mechanisms and functional importance in the gut. Proceedings of the Nutrition Society, 80(1). https://doi.org/10.1017/s0029665120006916
dc.relationMartin, R., Makino, H., Yavuz, A. C., Ben-Amor, K., Roelofs, M., Ishikawa, E., Kubota, H., Swinkels, S., Sakai, T., Oishi, K., Kushiro, A., & Knol, J. (2016). Early-Life events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut microbiota. PLoS ONE, 11(6). https://doi.org/10.1371/journal.pone.0158498
dc.relationMccartney, A. L., Wenzhi, W., & Tannock, G. W. (1996). Molecular analysis of the composition of the bifidobacterial and lactobacillus microflora of humans. Applied and Environmental Microbiology, 62(12). https://doi.org/10.1128/aem.62.12.4608-4613.1996
dc.relationMcCreath, K. J., Espada, S., Gálvez, B. G., Benito, M., De Molina, A., Sepúlveda, P., & Cervera, A. M. (2015). Targeted disruption of the SUCNR1 metabolic receptor leads to dichotomous effects on obesity. Diabetes, 64(4). https://doi.org/10.2337/db14-0346
dc.relationMcvey Neufeld, K. A., Mao, Y. K., Bienenstock, J., Foster, J. A., & Kunze, W. A. (2013). The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterology and Motility, 25(2). https://doi.org/10.1111/nmo.12049
dc.relationMedvecky, M., Cejkova, D., Polansky, O., Karasova, D., Kubasova, T., Cizek, A., & Rychlik, I. (2018). Whole genome sequencing and function prediction of 133 gut anaerobes isolated from chicken caecum in pure cultures. BMC Genomics, 19(1). https://doi.org/10.1186/s12864-018-4959-4
dc.relationMentella, M. C., Scaldaferri, F., Pizzoferrato, M., Gasbarrini, A., & Miggiano, G. A. D. (2020). Nutrition, IBD and Gut Microbiota: A Review. Nutrients, 12(4). https://doi.org/10.3390/NU12040944
dc.relationMiller, T. L., & Wolin, M. J. (1996). Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Applied and Environmental Microbiology, 62(5), 1589. https://doi.org/10.1128/AEM.62.5.1589-1592.1996
dc.relationMillion, M., Maraninchi, M., Henry, M., Armougom, F., Richet, H., Carrieri, P., Valero, R., Raccah, D., Vialettes, B., & Raoult, D. (2012). Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. International Journal of Obesity, 36(6). https://doi.org/10.1038/ijo.2011.153
dc.relationMitev, K., & Taleski, V. (2019). Association between the gut microbiota and obesity. Open Access Macedonian Journal of Medical Sciences, 7(12), 2050–2056. https://doi.org/10.3889/oamjms.2019.586
dc.relationMizrahi-Man, O., Davenport, E. R., & Gilad, Y. (2013). Taxonomic Classification of Bacterial 16S rRNA Genes Using Short Sequencing Reads: Evaluation of Effective Study Designs. PLoS ONE, 8(1). https://doi.org/10.1371/journal.pone.0053608
dc.relationMorais, L. H., Schreiber, H. L., & Mazmanian, S. K. (2021). The gut microbiota–brain axis in behaviour and brain disorders. Nature Reviews Microbiology, 19(4), 241–255. https://doi.org/10.1038/s41579-020-00460-0
dc.relationMoreno-Indias, I., Cardona, F., Tinahones, F. J., & Queipo-Ortuño, M. I. (2014). Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Frontiers in Microbiology, 5(APR). https://doi.org/10.3389/FMICB.2014.00190
dc.relationMorris, G., Berk, M., Carvalho, A., Caso, J. R., Sanz, Y., Walder, K., & Maes, M. (2017). The Role of the Microbial Metabolites Including Tryptophan Catabolites and Short Chain Fatty Acids in the Pathophysiology of Immune-Inflammatory and Neuroimmune Disease. In Molecular Neurobiology (Vol. 54, Issue 6). https://doi.org/10.1007/s12035-016-0004-2
dc.relationMorrow, L. E., Kollef, M. H., & Casale, T. B. (2010). Probiotic prophylaxis of ventilator-associated pneumonia: A blinded, randomized, controlled trial. American Journal of Respiratory and Critical Care Medicine, 182(8). https://doi.org/10.1164/rccm.200912-1853OC
dc.relationMorshedi, M., Saghafi-Asl, M., & Hosseinifard, E. S. (2020). The potential therapeutic effects of the gut microbiome manipulation by synbiotic containing-Lactobacillus plantarum on neuropsychological performance of diabetic rats. Journal of Translational Medicine, 18(1). https://doi.org/10.1186/s12967-019-02169-y
dc.relationNagpal, R., Wang, S., Ahmadi, S., Hayes, J., Gagliano, J., Subashchandrabose, S., Kitzman, D. W., Becton, T., Read, R., & Yadav, H. (2018). Human-origin probiotic cocktail increases short-chain fatty acid production via modulation of mice and human gut microbiome. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-30114-4
dc.relationNakkarach, A., Foo, H. L., Song, A. A. L., Mutalib, N. E. A., Nitisinprasert, S., & Withayagiat, U. (2021). Anti-cancer and anti-inflammatory effects elicited by short chain fatty acids produced by Escherichia coli isolated from healthy human gut microbiota. Microbial Cell Factories, 20(1). https://doi.org/10.1186/s12934-020-01477-z
dc.relationNeimark, E., Chen, F., Li, X., Magid, M. S., Alasio, T. M., Frankenberg, T., Sinha, J., Dawson, P. A., & Shneider, B. L. (2006). c-Fos Is a Critical Mediator of Inflammatory-Mediated Repression of the Apical Sodium-Dependent Bile Acid Transporter. Gastroenterology, 131(2). https://doi.org/10.1053/j.gastro.2006.05.002
dc.relationNelson, K. E., Weinstock, G. M., Highlander, S. K., Worley, K. C., Creasy, H. H., Wortman, J. R., Rusch, D. B., Mitreva, M., Sodergren, E., Chinwalla, A. T., Feldgarden, M., Gevers, D., Haas, B. J., Madupu, R., Ward, D. V., Birren, B. W., Gibbs, R. A., Methe, B., Petrosino, J. F., … Zhu, D. (2010). A catalog of reference genomes from the human microbiome. Science, 328(5981). https://doi.org/10.1126/science.1183605
dc.relationNicholson, J. K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., & Pettersson, S. (2012). Host-gut microbiota metabolic interactions. Science, 336(6086), 1262–1267. https://doi.org/10.1126/SCIENCE.1223813
dc.relationNishida, A., Inoue, R., Inatomi, O., Bamba, S., Naito, Y., & Andoh, A. (2018). Gut microbiota in the pathogenesis of inflammatory bowel disease. In Clinical Journal of Gastroenterology (Vol. 11, Issue 1). https://doi.org/10.1007/s12328-017-0813-5
dc.relationOdenwald, M. A., & Turner, J. R. (2013). Intestinal Permeability Defects: Is It Time to Treat? Clinical Gastroenterology and Hepatology, 11(9). https://doi.org/10.1016/j.cgh.2013.07.001
dc.relationOnyszkiewicz, M., Gawrys-Kopczynska, M., Konopelski, P., Aleksandrowicz, M., Sawicka, A., Koźniewska, E., Samborowska, E., & Ufnal, M. (2019). Butyric acid, a gut bacteria metabolite, lowers arterial blood pressure via colon-vagus nerve signaling and GPR41/43 receptors. Pflugers Archiv European Journal of Physiology, 471(11–12). https://doi.org/10.1007/s00424- 019-02322-y
dc.relationOróstica, L., García, P., Vera, C., García, V., Romero, C., & Vega, M. (2018). Effect of TNF-α on molecules related to the insulin action in endometrial cells exposed to hyperandrogenic and hyperinsulinic conditions characteristics of polycystic ovary syndrome. Reproductive Sciences, 25(7). https://doi.org/10.1177/1933719117732157
dc.relationOuellette, A. J. (2011). Paneth cell α-defensins in enteric innate immunity. In Cellular and Molecular Life Sciences (Vol. 68, Issue 13). https://doi.org/10.1007/s00018-011-0714-6
dc.relationPabst, O., & Slack, E. (2020). IgA and the intestinal microbiota: the importance of being specific. In Mucosal Immunology (Vol. 13, Issue 1). https://doi.org/10.1038/s41385-019-0227-4
dc.relationPachikian, B. D., Druart, C., Catry, E., Bindels, L. B., Neyrinck, A. M., Larondelle, Y., Cani, P. D., & Delzenne, N. M. (2018). Implication of trans-11,trans-13 conjugated linoleic acid in the development of hepatic steatosis. PLoS ONE, 13(2). https://doi.org/10.1371/journal.pone.0192447
dc.relationPaiva, I. H. R., Duarte-Silva, E., & Peixoto, C. A. (2020). The role of prebiotics in cognition, anxiety, and depression. In European Neuropsychopharmacology (Vol. 34). https://doi.org/10.1016/j.euroneuro.2020.03.006
dc.relationParks, D. H., Chuvochina, M., Waite, D. W., Rinke, C., Skarshewski, A., Chaumeil, P. A., & Hugenholtz, P. (2018). A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nature Biotechnology, 36(10), 996. https://doi.org/10.1038/nbt.4229
dc.relationPascual, V., Pozuelo, M., Borruel, N., Casellas, F., Campos, D., Santiago, A., Martinez, X., Varela, E., Sarrabayrouse, G., Machiels, K., Vermeire, S., Sokol, H., Guarner, F., & Manichanh, C. (2017). A microbial signature for Crohn’s disease. Gut, 66(5). https://doi.org/10.1136/gutjnl2016-313235
dc.relationPekkala, S., Munukka, E., Kong, L., Pöllänen, E., Autio, R., Roos, C., Wiklund, P., FischerPosovszky, P., Wabitsch, M., Alen, M., Huovinen, P., & Cheng, S. (2015). Toll-like receptor 5 in obesity: The role of gut microbiota and adipose tissue inflammation. Obesity, 23(3). https://doi.org/10.1002/oby.20993
dc.relationPeredo-Lovillo, A., Romero-Luna, H. E., & Jiménez-Fernández, M. (2020). Health promoting microbial metabolites produced by gut microbiota after prebiotics metabolism. In Food Research International (Vol. 136). https://doi.org/10.1016/j.foodres.2020.109473
dc.relationPistollato, F., Cano, S. S., Elio, I., Vergara, M. M., Giampieri, F., & Battino, M. (2016). Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutrition Reviews, 74(10). https://doi.org/10.1093/nutrit/nuw023
dc.relationPlovier, H., Everard, A., Druart, C., Depommier, C., Van Hul, M., Geurts, L., Chilloux, J., Ottman, N., Duparc, T., Lichtenstein, L., Myridakis, A., Delzenne, N. M., Klievink, J., Bhattacharjee, A., Van Der Ark, K. C. H., Aalvink, S., Martinez, L. O., Dumas, M. E., Maiter, D., … Cani, P. D. (2017). A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nature Medicine, 23(1). https://doi.org/10.1038/nm.4236
dc.relationQiang, X., Liotta, A. S., Shiloach, J., Gutierrez, J. C., Wang, H., Ochani, M., Ochani, K., Yang, H., Rabin, A., Leroith, D., Lesniak, M. A., Böhm, M., Maaser, C., Kannengiesser, K., Donowitz, M., Rabizadeh, S., Czura, C. J., Tracey, K. J., Westlake, M., … Roth, J. (2017). New melanocortinlike peptide of E. coli can suppress inflammation via the mammalian melanocortin-1 receptor (MC1R): Possible endocrine-like function for microbes of the gut. Npj Biofilms and Microbiomes, 3(1). https://doi.org/10.1038/s41522-017-0039-9
dc.relationRagsdale, S. W., & Pierce, E. (2008). Acetogenesis and the Wood-Ljungdahl Pathway of CO2 Fixation. Biochimica et Biophysica Acta, 1784(12), 1873. https://doi.org/10.1016/J.BBAPAP.2008.08.012
dc.relationReichardt, N., Duncan, S. H., Young, P., Belenguer, A., McWilliam Leitch, C., Scott, K. P., Flint, H. J., & Louis, P. (2014). Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME Journal, 8(6). https://doi.org/10.1038/ismej.2014.14
dc.relationRodríguez, J. M., Murphy, K., Stanton, C., Ross, R. P., Kober, O. I., Juge, N., Avershina, E., Rudi, K., Narbad, A., Jenmalm, M. C., Marchesi, J. R., & Collado, M. C. (2015). The composition of the gut microbiota throughout life, with an emphasis on early life. Microbial Ecology in Health & Disease, 26(0). https://doi.org/10.3402/MEHD.V26.26050
dc.relationRomanitsa, A. I., Nemchenko, U. M., Pogodina, A. V., Grigorova, E. V., Belkova, N. L., Voropaeva, N. M., Grigoryeva, E. A., Savelkaeva, M. V., & Rychkova, L. V. (2021). Associations of clinical features of functional bowel disorders with gut microbiota characteristics in adolescents: A pilot study. Acta Biomedica Scientifica, 6(6). https://doi.org/10.29413/ABS.2021-6.6-2.8
dc.relationRosado, E. L., & Crovesy, L. (2019). Gut microbiota modulation with probiotic or symbiotic in weight loss in women with obesity. Obes. Facts, 12.
dc.relationRüb, A. M., Tsakmaklis, A., Gräfe, S. K., Simon, M. C., Vehreschild, M. J. G. T., & Wuethrich, I. (2021). Biomarkers of human gut microbiota diversity and dysbiosis. In Biomarkers in Medicine (Vol. 15, Issue 2). https://doi.org/10.2217/bmm-2020-0353
dc.relationRyan, J. J., Monteagudo-Mera, A., Contractor, N., & Gibson, G. R. (2021). Impact of 2′-fucosyllactose on gut microbiota composition in adults with chronic gastrointestinal conditions: Batch culture fermentation model and pilot clinical trial findings. Nutrients, 13(3). https://doi.org/10.3390/nu13030938
dc.relationSakakibara, S., Yamauchi, T., Oshima, Y., Tsukamoto, Y., & Kadowaki, T. (2006). Acetic acid activates hepatic AMPK and reduces hyperglycemia in diabetic KK-A(y) mice. Biochemical and Biophysical Research Communications, 344(2). https://doi.org/10.1016/j.bbrc.2006.03.176
dc.relationSaltiel, A. R., & Olefsky, J. M. (2017). Inflammatory mechanisms linking obesity and metabolic disease. In Journal of Clinical Investigation (Vol. 127, Issue 1). https://doi.org/10.1172/JCI92035
dc.relationSampson, T. R., Challis, C., Jain, N., Moiseyenko, A., Ladinsky, M. S., Shastri, G. G., Thron, T., Needham, B. D., Horvath, I., Debelius, J. W., Janssen, S., Knight, R., Wittung-Stafshede, P., Gradinaru, V., Chapman, M., & Mazmanian, S. K. (2020). A gut bacterial amyloid promotes asynuclein aggregation and motor impairment in mice. ELife, 9. https://doi.org/10.7554/eLife.53111
dc.relationSankarasubramanian, J., Ahmad, R., Avuthu, N., Singh, A. B., & Guda, C. (2020). Gut Microbiota and Metabolic Specificity in Ulcerative Colitis and Crohn’s Disease. In Frontiers in Medicine (Vol. 7). https://doi.org/10.3389/fmed.2020.606298
dc.relationSchaupp, A., & Ljungdahl, L. G. (1974). Purification and properties of acetate kinase from Clostridium thermoaceticum. Archives of Microbiology, 100(1). https://doi.org/10.1007/BF00446312
dc.relationScheperjans, F., Aho, V., Pereira, P. A. B., Koskinen, K., Paulin, L., Pekkonen, E., Haapaniemi, E., Kaakkola, S., Eerola-Rautio, J., Pohja, M., Kinnunen, E., Murros, K., & Auvinen, P. (2015). Gut microbiota are related to Parkinson’s disease and clinical phenotype. Movement Disorders, 30(3). https://doi.org/10.1002/mds.26069
dc.relationScott, K. P., Martin, J. C., Campbell, G., Mayer, C. D., & Flint, H. J. (2006). Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium “Roseburia inulinivorans.” Journal of Bacteriology, 188(12). https://doi.org/10.1128/JB.00137-06
dc.relationSeekatz, A. M., Schnizlein, M. K., Koenigsknecht, M. J., Baker, J. R., Hasler, W. L., Bleske, B. E., Young, V. B., & Sun, D. (2019). Spatial and Temporal Analysis of the Stomach and SmallIntestinal Microbiota in Fasted Healthy Humans. MSphere, 4(2). https://doi.org/10.1128/msphere.00126-19
dc.relationSegata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12(6). https://doi.org/10.1186/gb-2011-12-6-r60
dc.relationSgritta, M., Dooling, S. W., Buffington, S. A., Momin, E. N., Francis, M. B., Britton, R. A., & CostaMattioli, M. (2019). Mechanisms underlying microbial-mediated changes in social behavior in mouse models of Autism Spectrum Disorder. Neuron, 101(2), 246
dc.relationShi, J., Xie, Q., Yue, Y., Chen, Q., Zhao, L., Evivie, S. E., Li, B., & Huo, G. (2021). Gut microbiota modulation and anti-inflammatory properties of mixed lactobacilli in dextran sodium sulfateinduced colitis in mice. Food and Function, 12(11). https://doi.org/10.1039/d1fo00317h
dc.relationSlatko, B. E., Gardner, A. F., & Ausubel, F. M. (2018). Overview of Next-Generation Sequencing Technologies. Current Protocols in Molecular Biology, 122(1). https://doi.org/10.1002/cpmb.59
dc.relationŚliżewska, K., Markowiak-Kopeć, P., & Śliżewska, W. (2020). The Role of Probiotics in Cancer Prevention. Cancers 2021, Vol. 13, Page 20, 13(1), 20. https://doi.org/10.3390/CANCERS13010020
dc.relationSmith, C., Berzins, K., Rodrigues, D. M., Sousa, A. J., Sherman, P. M., Barrett, K. E., & Gareau, M. G. (2013). Tu1979 Probiotics Can Normalize the Gut-Brain Axis in Immunodeficient Mice. Gastroenterology, 144(5). https://doi.org/10.1016/s0016-5085(13)63335-1
dc.relationSun, L., Ma, L., Zhang, H., Cao, Y., Wang, C., Hou, N., Huang, N., von Deneen, K. M., Zhao, C., Shi, Y., Pan, Y., Wang, M., Ji, G., & Nie, Y. (2019). FTO deficiency reduces anxiety- and depression-like behaviors in mice via alterations in gut microbiota. Theranostics, 9(3). https://doi.org/10.7150/thno.31562
dc.relationSun, N., Hu, H., Wang, F., Li, L., Zhu, W., Shen, Y., Xiu, J., & Xu, Q. (2021). Antibiotic-induced microbiome depletion in adult mice disrupts blood-brain barrier and facilitates brain infiltration of monocytes after bone-marrow transplantation. Brain, Behavior, and Immunity, 92. https://doi.org/10.1016/j.bbi.2020.11.032
dc.relationTabasi, M., Eybpoosh, S., Siadat, S. D., Elyasinia, F., Soroush, A., & Bouzari, S. (2021). Modulation of the Gut Microbiota and Serum Biomarkers After Laparoscopic Sleeve Gastrectomy: a 1-Year Follow-Up Study. Obesity Surgery, 31(5). https://doi.org/10.1007/s11695-020-05139-2
dc.relationTan, M. J., Teo, Z., Sng, M. K., Zhu, P., & Tan, N. S. (2012). Emerging roles of angiopoietin-like 4 in human cancer. In Molecular Cancer Research (Vol. 10, Issue 6). https://doi.org/10.1158/1541- 7786.MCR-11-0519
dc.relationTennoune, N., Chan, P., Breton, J., Legrand, R., Chabane, Y. N., Akkermann, K., Järv, A., Ouelaa, W., Takagi, K., Ghouzali, I., Francois, M., Lucas, N., Bole-Feysot, C., Pestel-Caron, M., do Rego, J. C., Vaudry, D., Harro, J., Dé, E., Déchelotte, P., & Fetissov, S. O. (2014). Bacterial ClpB heat-shock protein, an antigen-mimetic of the anorexigenic peptide α-MSH, at the origin of eating disorders. Translational Psychiatry, 4. https://doi.org/10.1038/tp.2014.98
dc.relationThursby, E., & Juge, N. (2017). Introduction to the human gut microbiota. In Biochemical Journal (Vol. 474, Issue 11). https://doi.org/10.1042/BCJ20160510
dc.relationTurnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122), 1027–1031. https://doi.org/10.1038/nature05414
dc.relationValdes, A. M., Walter, J., Segal, E., & Spector, T. D. (2018). Role of the gut microbiota in nutrition and health. BMJ, 361, 36–44. https://doi.org/10.1136/BMJ.K2179
dc.relationValdovinos-Díaz, M. (2013). Intestinal microbiota in digestive disorders. Probiotics, prebiotics and symbiotics. Revista de Gastroenterologia de Mexico, 78. https://doi.org/10.1016/j.rgmx.2013.06.008
dc.relationVancamelbeke, M., & Vermeire, S. (2017). The intestinal barrier: a fundamental role in health and disease. Expert Review of Gastroenterology & Hepatology, 11(9), 821.
dc.relationVascellari, S., Palmas, V., Melis, M., Pisanu, S., Cusano, R., Uva, P., Perra, D., Madau, V., Sarchioto, M., Oppo, V., Simola, N., Morelli, M., Santoru, M. L., Atzori, L., Melis, M., Cossu, G., & Manzin, A. (2020). Gut Microbiota and Metabolome Alterations Associated with Parkinson’s Disease. MSystems, 5(5). https://doi.org/10.1128/msystems.00561-20
dc.relationVenema, K. (2010). Role of gut microbiota in the control of energy and carbohydrate metabolism. Current Opinion in Clinical Nutrition and Metabolic Care, 13(4), 432–438. https://doi.org/10.1097/MCO.0B013E32833A8B60
dc.relationVerhaar, B. J. H., Hendriksen, H. M. A., de Leeuw, F. A., Doorduijn, A. S., van Leeuwenstijn, M., Teunissen, C. E., Barkhof, F., Scheltens, P., Kraaij, R., van Duijn, C. M., Nieuwdorp, M., Muller, M., & van der Flier, W. M. (2022). Gut Microbiota Composition Is Related to AD PathologVerhaar, B. J. H., Hendriksen, H. M. A., de Leeuw, F. A., Doorduijn, A. S., van Leeuwenstijn, M., Teunissen, C. E., Barkhof, F., Scheltens, P., Kraaij, R., van Duijn, C. M., Nieuwdorp, M., Muller, M., &. Frontiers in Immunology, 12. https://doi.org/10.3389/FIMMU.2021.794519/FULL
dc.relationVirtue, A. T., McCright, S. J., Wright, J. M., Jimenez, M. T., Mowel, W. K., Kotzin, J. J., Joannas, L., Basavappa, M. G., Spencer, S. P., Clark, M. L., Eisennagel, S. H., Williams, A., Levy, M., Manne, S., Henrickson, S. E., John Wherry, E., Thaiss, C. A., Elinav, E., & Henao-Mejia, J. (2019). The gut microbiota regulates white adipose tissue inflammation and obesity via a family of microRNAs. Science Translational Medicine, 11(496). https://doi.org/10.1126/scitranslmed.aav1892
dc.relationVital, M., Howe, A. C., & Tiedje, J. M. (2014). Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. MBio, 5(2). https://doi.org/10.1128/MBIO.00889-14
dc.relationWang, H. X., & Wang, Y. P. (2016). Gut Microbiota-brain Axis. Chinese Medical Journal, 129(19), 2373. https://doi.org/10.4103/0366-6999.190667
dc.relationWang, J., Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen, D., Peng, Y., Zhang, D., Jie, Z., Wu, W., Qin, Y., Xue, W., Li, J., Han, L., … Wang, J. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490(7418). https://doi.org/10.1038/nature11450
dc.relationWells, J. E., & Hylemon, P. B. (2000). Identification and characterization of a bile acid 7alphadehydroxylation operon in Clostridium sp. strain TO-931, a highly active 7alphadehydroxylating strain isolated from human feces. Applied and Environmental Microbiology, 66(3), 1107–1113. https://doi.org/10.1128/AEM.66.3.1107-1113.2000
dc.relationWu, H., Tremaroli, V., Schmidt, C., Lundqvist, A., Olsson, L. M., Krämer, M., Gummesson, A., Perkins, R., Bergström, G., & Bäckhed, F. (2020). The Gut Microbiota in Prediabetes and Diabetes: A Population-Based Cross-Sectional Study. Cell Metabolism, 32(3). https://doi.org/10.1016/j.cmet.2020.06.011
dc.relationXu, L., Ma, C., Huang, X., Yang, W., Chen, L., Bilotta, A. J., Yao, S., & Cong, Y. (2018). Microbiota metabolites short-chain fatty acid butyrate conditions intestinal epithelial cells to promote development of Treg cells and T cell IL-10 production. The Journal of Immunology, 200(1 Supplement).
dc.relationYadav, H., Lee, J. H., Lloyd, J., Walter, P., & Rane, S. G. (2013). Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. Journal of Biological Chemistry, 288(35). https://doi.org/10.1074/jbc.M113.452516
dc.relationYamashiro, Y. (2018). Gut Microbiota in Health and Disease. In Annals of Nutrition and Metabolism (Vol. 71, Issues 3–4). https://doi.org/10.1159/000481627
dc.relationYan, L., Yang, C., & Tang, J. (2013). Disruption of the intestinal mucosal barrier in Candida albicans infections. In Microbiological Research (Vol. 168, Issue 7). https://doi.org/10.1016/j.micres.2013.02.008
dc.relationYang, L. L., Millischer, V., Rodin, S., MacFabe, D. F., Villaescusa, J. C., & Lavebratt, C. (2020). Enteric short-chain fatty acids promote proliferation of human neural progenitor cells. Journal of Neurochemistry, 154(6). https://doi.org/10.1111/jnc.14928
dc.relationYoshii, K., Hosomi, K., Sawane, K., & Kunisawa, J. (2019). Metabolism of dietary and microbial vitamin b family in the regulation of host immunity. In Frontiers in Nutrition (Vol. 6). https://doi.org/10.3389/fnut.2019.00048
dc.relationYuille, S., Reichardt, N., Panda, S., Dunbar, H., & Mulder, I. E. (2018). Human gut bacteria as potent class I histone deacetylase inhibitors in vitro through production of butyric acid and valeric acid. PLoS ONE, 13(7). https://doi.org/10.1371/journal.pone.0201073
dc.relationZhang, Q., Zou, R., Guo, M., Duan, M., Li, Q., & Zheng, H. (2021). Comparison of gut microbiota between adults with autism spectrum disorder and obese adults. PeerJ, 9. https://doi.org/10.7717/peerj.10946
dc.relationZhao, J., Wang, L., Cheng, S., Zhang, Y., Yang, M., Fang, R., Li, H., Man, C., & Jiang, Y. (2022). A Potential Synbiotic Strategy for the Prevention of Type 2 Diabetes: Lactobacillus paracasei JY062 and Exopolysaccharide Isolated from Lactobacillus plantarum JY039. Nutrients, 14(2). https://doi.org/10.3390/nu14020377
dc.relationZheng, Z., Lyu, W., Ren, Y., Li, X., Zhao, S., Yang, H., & Xiao, Y. (2021). Allobaculum Involves in the Modulation of Intestinal ANGPTLT4 Expression in Mice Treated by High-Fat Diet. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.690138
dc.relationZhou, H., Tai, J., Xu, H., Lu, X., & Meng, D. (2019). Xanthoceraside could ameliorate Alzheimer’s disease symptoms of rats by affecting the gut microbiota composition and modulating the endogenous metabolite levels. Frontiers in Pharmacology, 10. https://doi.org/10.3389/fphar.2019.01035
dc.relationZhou, Y., He, Y., Liu, L., Zhou, W., Wang, P., Hu, H., Nie, Y., & Chen, Y. (2021). Alterations in Gut Microbial Communities Across Anatomical Locations in Inflammatory Bowel Diseases. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.615064
dc.relationZhuang, X., Liu, C., Zhan, S., Tian, Z., Li, N., Mao, R., Zeng, Z., & Chen, M. (2021). Gut Microbiota Profile in Pediatric Patients With Inflammatory Bowel Disease: A Systematic Review. In Frontiers in Pediatrics (Vol. 9). https://doi.org/10.3389/fped.2021.626232
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleLa microbiota intestinal y la disbiosis, relaciones metabólicas a nivel patológico y en la salud.
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución