dc.contributor | Calderón Ozuna, Martha Nancy | |
dc.contributor | Bioquímica y Biología Molecular de las Micobacterias | |
dc.creator | Pinto Niño, Monica Andrea | |
dc.date.accessioned | 2023-04-25T16:17:49Z | |
dc.date.accessioned | 2023-06-06T23:23:34Z | |
dc.date.available | 2023-04-25T16:17:49Z | |
dc.date.available | 2023-06-06T23:23:34Z | |
dc.date.created | 2023-04-25T16:17:49Z | |
dc.date.issued | 2023 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/83775 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6651265 | |
dc.description.abstract | La alta diversidad bacteriana en el tracto gastrointestinal se caracteriza por la presencia de diferentes filos, que establecen interacciones relacionadas con una serie de sucesos a nivel celular que actúan fisiológicamente con el hospedero. La microbiota intestinal digiere oligosacáridos provenientes de la fibra dietaría que influye y genera diversos metabolitos, como son ácidos grasos de cadena corta (AGCC), vitamina K, vitamina B, triptófano, serotonina, entre otros. Aunque los mecanismos moleculares entre la microbiota intestinal y el hospedero aún continúan en estudio, se han establecido vías de interacción en un estado de eubiosis y en diferentes patologías. Se propuso en este trabajo de grado revisar los reportes científicos de caracterización de la microbiota en eubiosis y relacionar algunas vías del hospedero con el estado de disbiosis en diferentes patologías, además de consultar posibles tratamientos aplicados para la recuperación del equilibrio bacteriano.
Para el desarrollo de esta revisión se emplearon diferentes plataformas de búsqueda, entre ellas, Scopus, Science Direct, Scielo, Base Search y PubMed, empleando palabras clave como “gut microbiota human”, “pathologies human gut microbiota”, “healthy human gut microbiota”. El estado de disbiosis se caracteriza por abundancias relativas desproporcionadas de géneros como Sutterella, Clostridium, Eggerthella, Escherichia, Shigella y Desulfovibrios. Se reporta disminución en las abundancias relativas de especies promotoras de salud como Akkermansia muciniphila, Faecalibacterium prausnitzii, los
géneros Bifidobacterium, Lactobacillus y Roseburia. La pérdida de biodiversidad se asocia con el desarrollo de diferentes patologías como obesidad, diabetes, alteraciones del comportamiento, procesos inflamatorios y neurodegenerativos. La aplicación de prebióticos, probióticos, simbióticos y el trasplante de materia fecal (TMF), apuntan a la recuperación de la eubiosis intestinal como coadyuvantes en el tratamiento en diferentes patologías. (Texto tomado de la fuente) | |
dc.description.abstract | The high bacterial diversity in the gastrointestinal tract is characterized by the presence of different phyla, which generated interactions related to a series of events at the cellular level that act physiologically with the host. The intestinal microbiota digests oligosaccharides from dietary fiber that influences and generates various metabolites, such as short-chain fatty acids (SCFA), vitamin K, vitamin B, tryptophan, serotonin, among others. Although the molecular mechanisms between the intestinal microbiota and the host
are still under study, interaction pathways have been established in a state of eubiosis and in different pathologies. It is perhaps in this degree work to review the scientific reports on the characterization of the microbiota in eubiosis and to relate some host pathways with the state of dysbiosis in different pathologies, in addition to consulting possible treatments
applied for the recovery of the bacterial balance. For the development of this review, different search platforms were used, such as Scopus, Science Direct, Scielo, Base Search and PubMed, using keywords such as "gut microbiota human", "pathologies human gut microbiota", "healthy human gut microbiota". The state of dysbiosis is characterized by disproportionate relative abundances of genera such as Sutterella, Clostridium, Eggerthella, Escherichia, Shigella and Desulfovibrios. A decrease in the relative abundance
of health-promoting species such as Akkermansia muciniphila, Faecalibacterium prausnitzii, the genera Bifidobacterium, Lactobacillus and Roseburia has been reported. The loss of biodiversity is associated with the development of different pathologies such as obesity, diabetes, behavioral disorders, inflammatory and neurodegenerative processes. The application of prebiotics, probiotics, synbiotics and fecal matter transplantation (FMT),
point to the recovery of intestinal eubiosis as adjuvants in the treatment of different pathologies. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Química | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá,Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Abbasi, S., & Masoumi, S. (2020). Next-generation sequencing (NGS). International Journal of Advanced Science and Technology, 29(3). https://doi.org/10.1007/978-981-16-1037-0_23 | |
dc.relation | Adlerberth, I., & Wold, A. E. (2009). Establishment of the gut microbiota in Western infants. Acta Pædiatrica, 98(2), 229–238. https://doi.org/10.1111/J.1651-2227.2008.01060.X | |
dc.relation | Ait-Belgnaoui, A., Durand, H., Cartier, C., Chaumaz, G., Eutamene, H., Ferrier, L., Houdeau, E.,Fioramonti, J., Bueno, L., & Theodorou, V. (2012). Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology, 37(11). https://doi.org/10.1016/j.psyneuen.2012.03.024 | |
dc.relation | Alam, M. T., Amos, G. C. A., Murphy, A. R. J., Murch, S., Wellington, E. M. H., & Arasaradnam, R.
P. (2020). Microbial imbalance in inflammatory bowel disease patients at different taxonomic
levels. Gut Pathogens, 12(1). https://doi.org/10.1186/s13099-019-0341-6 | |
dc.relation | Alex, S., Lichtenstein, L., Dijk, W., Mensink, R. P., Tan, N. S., & Kersten, S. (2014). ANGPTL4 is
produced by entero-endocrine cells in the human intestinal tract. Histochemistry and Cell
Biology, 141(4). https://doi.org/10.1007/s00418-013-1157-y | |
dc.relation | Álvarez, J., Fernández Real, J. M., Guarner, F., Gueimonde, M., Rodríguez, J. M., Saenz de Pipaon,
M., & Sanz, Y. (2021). Gut microbes and health. Gastroenterologia y Hepatologia, 44(7), 519–
535. https://doi.org/10.1016/J.GASTROHEP.2021.01.009 | |
dc.relation | Amar, J., Chabo, C., Waget, A., Klopp, P., Vachoux, C., Bermúdez-Humarán, L. G., Smirnova, N.,
Bergé, M., Sulpice, T., Lahtinen, S., Ouwehand, A., Langella, P., Rautonen, N., Sansonetti, P.
J., & Burcelin, R. (2011). Intestinal mucosal adherence and translocation of commensal
bacteria at the early onset of type 2 diabetes: Molecular mechanisms and probiotic treatment.
EMBO Molecular Medicine, 3(9). https://doi.org/10.1002/emmm.201100159 | |
dc.relation | Aminov, R. I., Walker, A. W., Duncan, S. H., Harmsen, H. J. M., Welling, G. W., & Flint, H. J. (2006).
Molecular diversity, cultivation, and improved detection by fluorescent in situ hybridization of a
dominant group of human gut bacteria related to Roseburia spp. or Eubacterium rectale.
Applied and Environmental Microbiology, 72(9). https://doi.org/10.1128/AEM.00701-06 | |
dc.relation | Aoki, R., Kamikado, K., Suda, W., Takii, H., Mikami, Y., Suganuma, N., Hattori, M., & Koga, Y.
(2017). A proliferative probiotic Bifidobacterium strain in the gut ameliorates progression of
metabolic disorders via microbiota modulation and acetate elevation. Scientific Reports, 7.
https://doi.org/10.1038/srep43522 | |
dc.relation | Archer, A. C., Muthukumar, S. P., & Halami, P. M. (2021). Lactobacillus fermentum MCC2759 and
MCC2760 Alleviate Inflammation and Intestinal Function in High-Fat Diet-Fed and
Streptozotocin-Induced Diabetic Rats. Probiotics and Antimicrobial Proteins, 13(4).
https://doi.org/10.1007/s12602-021-09744-0 | |
dc.relation | Aroniadis, O. C., & Brandt, L. J. (2013). Fecal microbiota transplantation: Past, present and future.
In Current Opinion in Gastroenterology (Vol. 29, Issue 1).
https://doi.org/10.1097/MOG.0b013e32835a4b3e | |
dc.relation | Babakhani, S., & Hosseini, F. (2019). Gut Microbiota: An Effective Factor in the Human Brain and
Behavior. The Neuroscience Journal of Shefaye Khatam, 7(1), 106–118.
https://doi.org/10.29252/SHEFA.7.1.106 | |
dc.relation | Bäckhed, F., Ding, H., Wang, T., Hooper, L. V., Gou, Y. K., Nagy, A., Semenkovich, C. F., & Gordon,
J. I. (2004). The gut microbiota as an environmental factor that regulates fat storage.
Proceedings of the National Academy of Sciences of the United States of America, 101(44).
https://doi.org/10.1073/pnas.0407076101 | |
dc.relation | Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. (2005). Host-bacterial
mutualism in the human intestine. In Science (Vol. 307, Issue 5717).
https://doi.org/10.1126/science.1104816 | |
dc.relation | Bastard, J. P., Maachi, M., Van Nhieu, J. T., Jardel, C., Bruckert, E., Grimaldi, A., Robert, J. J.,
Capeau, J., & Hainque, B. (2002). Adipose tissue IL-6 content correlates with resistance to
insulin activation of glucose uptake both in vivo and in vitro. Journal of Clinical Endocrinology
and Metabolism, 87(5). https://doi.org/10.1210/jcem.87.5.8450 | |
dc.relation | Batterham, R. L., Cowley, M. A., Small, C. J., Herzog, H., Cohen, M. A., Dakin, C. L., Wren, A. M.,
Brynes, A. E., Low, M. J., Ghatei, M. A., Cone, R. D., & Bloom, S. R. (2002). Gut hormone
PYY3-36 physiologically inhibits food intake. Nature 2002 418:6898, 418(6898), 650–654.
https://doi.org/10.1038/nature00887 | |
dc.relation | Belizário, J. E., Faintuch, J., Belizário, J. E., & Faintuch, J. (2018). doi: 10.1007/978-3-319-74932-
7_13 ++. Experientia Supplementum, 109 | |
dc.relation | Beltrán Martín, A. (2017). Microbiota Intestinal Y Diabetes. 1–20.
http://147.96.70.122/Web/TFG/TFG/Memoria/ALBA GARCIA ALONSO.pdf | |
dc.relation | Bercik, P., Denou, E., Collins, J., Jackson, W., Lu, J., Jury, J., Deng, Y., Blennerhassett, P., MacRi,
J., McCoy, K. D., Verdu, E. F., & Collins, S. M. (2011). The intestinal microbiota affect central
levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology, 141(2).
https://doi.org/10.1053/j.gastro.2011.04.052 | |
dc.relation | Blaak, E. E., Canfora, E. E., Theis, S., Frost, G., Groen, A. K., Mithieux, G., Nauta, A., Scott, K.,
Stahl, B., van Harsselaar, J., van Tol, R., Vaughan, E. E., & Verbeke, K. (2020). Short chain
fatty acids in human gut and metabolic health. In Beneficial Microbes (Vol. 11, Issue 5).
https://doi.org/10.3920/BM2020.0057 | |
dc.relation | Bozkurt, H. S., & Kara, B. (2020). A new treatment for ulcerative colitis: Intracolonic Bifidobacterium
and xyloglucan application. European Journal of Inflammation, 18.
https://doi.org/10.1177/2058739220942626 | |
dc.relation | Brahe, L. K., Astrup, A., & Larsen, L. H. (2016). Can we prevent obesity-Related metabolic diseases
by dietary modulation of the gut microbiota? In Advances in Nutrition (Vol. 7, Issue 1).
https://doi.org/10.3945/an.115.010587 | |
dc.relation | Braniste, V., Al-Asmakh, M., Kowal, C., Anuar, F., Abbaspour, A., Tóth, M., Korecka, A., Bakocevic,
N., Guan, N. L., Kundu, P., Gulyás, B., Halldin, C., Hultenby, K., Nilsson, H., Hebert, H., Volpe,
B. T., Diamond, B., & Pettersson, S. (2014). The gut microbiota influences blood-brain barrier
permeability in mice. Science Translational Medicine, 6(263).
https://doi.org/10.1126/scitranslmed.3009759 | |
dc.relation | Bravo, J. A., Forsythe, P., Chew, M. V., Escaravage, E., Savignac, H. M., Dinan, T. G., Bienenstock,
J., & Cryan, J. F. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and
central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National
Academy of Sciences of the United States of America, 108(38).
https://doi.org/10.1073/pnas.1102999108 | |
dc.relation | Brown, J., Wang, H., Hajishengallis, G. N., & Martin, M. (2011). TLR-signaling networks: An
integration of adaptor molecules, kinases, and cross-talk. Journal of Dental Research, 90(4). | |
dc.relation | Burokas, A., Arboleya, S., Moloney, R. D., Peterson, V. L., Murphy, K., Clarke, G., Stanton, C.,
Dinan, T. G., & Cryan, J. F. (2017). Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have
Anxiolytic and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice.
Biological Psychiatry, 82(7). https://doi.org/10.1016/j.biopsych.2016.12.031 | |
dc.relation | Candela, M., Biagi, E., Soverini, M., Consolandi, C., Quercia, S., Severgnini, M., Peano, C., Turroni,
S., Rampelli, S., Pozzilli, P., Pianesi, M., Fallucca, F., & Brigidi, P. (2016). Modulation of gut
microbiota dysbioses in type 2 diabetic patients by macrobiotic Ma-Pi 2 diet. British Journal of
Nutrition, 116(1). https://doi.org/10.1017/S0007114516001045 | |
dc.relation | Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A. M., Fava, F.,
Tuohy, K. M., Chabo, C., Waget, A., Delmée, E., Cousin, B., Sulpice, T., Chamontin, B.,
Ferrières, J., Tanti, J. F., Gibson, G. R., Casteilla, L., … Burcelin, R. (2007). Metabolic
endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7).
https://doi.org/10.2337/db06-1491 | |
dc.relation | Cani, P. D., Neyrinck, A. M., Fava, F., Knauf, C., Burcelin, R. G., Tuohy, K. M., Gibson, G. R., &
Delzenne, N. M. (2007). Selective increases of bifidobacteria in gut microflora improve highfat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia.
Diabetologia, 50(11). https://doi.org/10.1007/s00125-007-0791-0 | |
dc.relation | Cani, P. D., Possemiers, S., Van De Wiele, T., Guiot, Y., Everard, A., Rottier, O., Geurts, L., Naslain,
D., Neyrinck, A., Lambert, D. M., Muccioli, G. G., & Delzenne, N. M. (2009). Changes in gut
microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven
improvement of gut permeability. Gut, 58(8). https://doi.org/10.1136/gut.2008.165886 | |
dc.relation | Cani, P., & Delzenne, N. (2009). The Role of the Gut Microbiota in Energy Metabolism and Metabolic
Disease. Current Pharmaceutical Design, 15(13).
https://doi.org/10.2174/138161209788168164 | |
dc.relation | Caputi, V., Marsilio, I., Filpa, V., Cerantola, S., Orso, G., Bistoletti, M., Paccagnella, N., De Martin,
S., Montopoli, M., Dall’Acqua, S., Crema, F., Di Gangi, I. M., Galuppini, F., Lante, I., Bogialli,
S., Rugge, M., Debetto, P., Giaroni, C., & Giron, M. C. (2017). Antibiotic-induced dysbiosis of
the microbiota impairs gut neuromuscular function in juvenile mice. British Journal of
Pharmacology, 174(20). https://doi.org/10.1111/bph.13965 | |
dc.relation | Chávez-Carbajal, A., Pizano-Zárate, M. L., Hernández-Quiroz, F., Ortiz-Luna, G. F., MoralesHernández, R. M., De Sales-Millán, A., Hernández-Trejo, M., García-Vite, A., Beltrán-Lagunes,
L., Hoyo-Vadillo, C., & García-Mena, J. (2020). Characterization of the gut microbiota of
individuals at different T2D stages reveals a complex relationship with the host.
Microorganisms, 8(1). https://doi.org/10.3390/microorganisms8010094 | |
dc.relation | Chen, Y., Xiao, N., Chen, Y., Chen, X., Zhong, C., Cheng, Y., Du, B., & Li, P. (2021). Semen Sojae
Praeparatum alters depression-like behaviors in chronic unpredictable mild stress rats via
intestinal microbiota. Food Research International, 150.
https://doi.org/10.1016/j.foodres.2021.110808 | |
dc.relation | Chiang, J. Y. L., & Ferrell, J. M. (2020). Bile acid receptors FXR and TGR5 signaling in fatty liver
diseases and therapy. American Journal of Physiology - Gastrointestinal and Liver Physiology,
318(3). https://doi.org/10.1152/ajpgi.00223.2019 | |
dc.relation | Chimerel, C., Emery, E., Summers, D. K., Keyser, U., Gribble, F. M., & Reimann, F. (2014). Bacterial
Metabolite Indole Modulates Incretin Secretion from Intestinal Enteroendocrine L Cells. Cell
Reports, 9(4). https://doi.org/10.1016/j.celrep.2014.10.032 | |
dc.relation | Clarke, G., Sandhu, K. V., Griffin, B. T., Dinan, T. G., Cryan, J. F., & Hyland, N. P. (2019). Gut
Reactions: Breaking Down Xenobiotic–Microbiome Interactions. Pharmacological Reviews,
71(2), 198–224. https://doi.org/10.1124/PR.118.015768 | |
dc.relation | Clooney, A. G., Eckenberger, J., Laserna-Mendieta, E., Sexton, K. A., Bernstein, M. T., Vagianos,
K., Sargent, M., Ryan, F. J., Moran, C., Sheehan, D., Sleator, R. D., Targownik, L. E.,
Bernstein, C. N., Shanahan, F., & Claesson, M. J. (2021). Ranking microbiome variance in
inflammatory bowel disease: A large longitudinal intercontinental study. Gut, 70(3).
https://doi.org/10.1136/gutjnl-2020-321106 | |
dc.relation | Cornejo-Pareja, I., Muñoz-Garach, A., Clemente-Postigo, M., & Tinahones, F. J. (2019). Importance
of gut microbiota in obesity. European Journal of Clinical Nutrition, 72, 26–37.
https://doi.org/10.1038/s41430-018-0306-8 | |
dc.relation | Creely, S. J., McTernan, P. G., Kusminski, C. M., Fisher, F. M., Da Silva, N. F., Khanolkar, M., Evans,
M., Harte, A. L., & Kumar, S. (2007). Lipopolysaccharide activates an innate immune system
response in human adipose tissue in obesity and type 2 diabetes. American Journal of
Physiology - Endocrinology and Metabolism, 292(3).
https://doi.org/10.1152/ajpendo.00302.2006 | |
dc.relation | Cummings, J. H., Beatty, E. R., Kingman, S. M., Bingham, S. A., & Englyst, H. N. (1996). Digestion
and physiological properties of resistant starch in the human large bowel. British Journal of
Nutrition, 75(5). https://doi.org/10.1079/bjn19960177 | |
dc.relation | Cummings, J. H., Macfarlane, G. T., & Englyst, H. N. (2001). Prebiotic digestion and fermentation.
American Journal of Clinical Nutrition, 73(2 SUPPL.). https://doi.org/10.1093/ajcn/73.2.415s | |
dc.relation | Dalile, B., Vervliet, B., Bergonzelli, G., Verbeke, K., & Van Oudenhove, L. (2020). Colon-delivered
short-chain fatty acids attenuate the cortisol response to psychosocial stress in healthy men: a
randomized, placebo-controlled trial. Neuropsychopharmacology, 45(13).
https://doi.org/10.1038/s41386-020-0732-x | |
dc.relation | Dam, B., Misra, A., & Banerjee, S. (2019). Role of Gut Microbiota in Combating Oxidative Stress.
Oxidative Stress in Microbial Diseases, 43–82. https://doi.org/10.1007/978-981-13-8763-0_4 | |
dc.relation | De Mello, V. D., Paananen, J., Lindström, J., Lankinen, M. A., Shi, L., Kuusisto, J., Pihlajamäki, J.,
Auriola, S., Lehtonen, M., Rolandsson, O., Bergdahl, I. A., Nordin, E., Ilanne-Parikka, P.,
Keinänen-Kiukaanniemi, S., Landberg, R., Eriksson, J. G., Tuomilehto, J., Hanhineva, K., &
Uusitupa, M. (2017). Indolepropionic acid and novel lipid metabolites are associated with a
lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study. Scientific Reports, 7.
https://doi.org/10.1038/srep46337 | |
dc.relation | De Santis, S., Cavalcanti, E., Mastronardi, M., Jirillo, E., & Chieppa, M. (2015). Nutritional keys for
intestinal barrier modulation. In Frontiers in Immunology (Vol. 6, Issue DEC).
https://doi.org/10.3389/fimmu.2015.00612 | |
dc.relation | Den Besten, G., Van Eunen, K., Groen, A. K., Venema, K., Reijngoud, D. J., & Bakker, B. M. (2013).
The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy
metabolism. Journal of Lipid Research, 54(9), 2325. https://doi.org/10.1194/JLR.R036012 | |
dc.relation | Dong, S., Zhu, M., Wang, K., Zhao, X., Hu, L., Jing, W., Lu, H., & Wang, S. (2021). Dihydromyricetin
improves DSS-induced colitis in mice via modulation of fecal-bacteria-related bile acid
metabolism. Pharmacological Research, 171. https://doi.org/10.1016/j.phrs.2021.105767 | |
dc.relation | Drake, H. L., Hu, S. I., & Wood, H. G. (1981). Purification of five components from Clostridium
thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate.
Properties of phosphotransacetylase. Journal of Biological Chemistry, 256(21). | |
dc.relation | Duan, M., Wang, Y., Zhang, Q., Zou, R., Guo, M., & Zheng, H. (2021). Characteristics of gut
microbiota in people with obesity. PLoS ONE, 16(8 August).
https://doi.org/10.1371/journal.pone.0255446 | |
dc.relation | Duncan, S. H., Belenguer, A., Holtrop, G., Johnstone, A. M., Flint, H. J., & Lobley, G. E. (2007).
Reduced dietary intake of carbohydrates by obese subjects results in decreased
concentrations of butyrate and butyrate-producing bacteria in feces. Applied and
Environmental Microbiology, 73(4). https://doi.org/10.1128/AEM.02340-06 | |
dc.relation | Duncan, S. H., Louis, P., & Flint, H. J. (2004). Lactate-utilizing bacteria, isolated from human feces,
that produce butyrate as a major fermentation product. Applied and Environmental
Microbiology, 70(10), 5810–5817. https://doi.org/10.1128/AEM.70.10.5810-5817.2004 | |
dc.relation | Erny, D., De Angelis, A. L. H., Jaitin, D., Wieghofer, P., Staszewski, O., David, E., Keren-Shaul, H.,
Mahlakoiv, T., Jakobshagen, K., Buch, T., Schwierzeck, V., Utermöhlen, O., Chun, E., Garrett,
W. S., Mccoy, K. D., Diefenbach, A., Staeheli, P., Stecher, B., Amit, I., & Prinz, M. (2015). Host
microbiota constantly control maturation and function of microglia in the CNS. Nature
Neuroscience, 18(7). https://doi.org/10.1038/nn.4030 | |
dc.relation | Escobar, J. S., Klotz, B., Valdes, B. E., & Agudelo, G. M. (2015). The gut microbiota of Colombians
differs from that of Americans, Europeans and Asians. BMC Microbiology, 14(1).
https://doi.org/10.1186/s12866-014-0311-6 | |
dc.relation | Fan, Y., & Pedersen, O. (2020). Gut microbiota in human metabolic health and disease. Nature
Reviews Microbiology 2020 19:1, 19(1), 55–71. https://doi.org/10.1038/s41579-020-0433-9 | |
dc.relation | Fasano, A. (2012). Leaky gut and autoimmune diseases. Clinical Reviews in Allergy and
Immunology, 42(1). https://doi.org/10.1007/s12016-011-8291-x | |
dc.relation | Fernández Real, J. M., Moreno-Navarrete, J. M., & Manco, M. (2019). Iron influences on the GutBrain axis and development of type 2 diabetes. In Critical Reviews in Food Science and
Nutrition (Vol. 59, Issue 3). https://doi.org/10.1080/10408398.2017.1376616 | |
dc.relation | Fiorucci, S., Carino, A., Baldoni, M., Santucci, L., Costanzi, E., Graziosi, L., Distrutti, E., & Biagioli,
M. (2021). Bile Acid Signaling in Inflammatory Bowel Diseases. In Digestive Diseases and
Sciences (Vol. 66, Issue 3). https://doi.org/10.1007/s10620-020-06715-3 | |
dc.relation | Flint, A., Raben, A., Rehfeld, J. F., Holst, J. J., & Astrup, A. (2000). The effect of glucagon-like
peptide-1 on energy expenditure and substrate metabolism in humans. International Journal of
Obesity, 24(3). https://doi.org/10.1038/sj.ijo.0801126 | |
dc.relation | Fujimori, S., Tatsuguchi, A., Gudis, K., Kishida, T., Mitsui, K., Ehara, A., Kobayashi, T., Sekita, Y.,
Seo, T., & Sakamoto, C. (2007). High dose probiotic and prebiotic cotherapy for remission
induction of active Crohn’s disease. Journal of Gastroenterology and Hepatology (Australia),
22(8). https://doi.org/10.1111/j.1440-1746.2006.04535.x | |
dc.relation | Fülling, C., Dinan, T. G., & Cryan, J. F. (2019a). Gut Microbe to Brain Signaling: What Happens in
Vagus…. In Neuron (Vol. 101, Issue 6). https://doi.org/10.1016/j.neuron.2019.02.008 | |
dc.relation | Fülling, C., Dinan, T. G., & Cryan, J. F. (2019b). Gut Microbe to Brain Signaling: What Happens in
Vagus…. Neuron, 101(6), 998–1002. https://doi.org/10.1016/J.NEURON.2019.02.008 | |
dc.relation | Gareau, M., Silva, M., & Perdue, M. (2008). Pathophysiological Mechanisms of Stress-Induced
Intestina Damage. Current Molecular Medicine, 8(4), 274–281.
https://doi.org/10.2174/156652408784533760 | |
dc.relation | Generoso, J. S., Giridharan, V. V., Lee, J., Macedo, D., & Barichello, T. (2021). The role of the
microbiota-gut-brain axis in neuropsychiatric disorders. In Revista brasileira de psiquiatria (Sao
Paulo, Brazil : 1999) (Vol. 43, Issue 3). https://doi.org/10.1590/1516-4446-2020-0987 | |
dc.relation | Gonzalez-Santana, A., & Diaz Heijtz, R. (2020). Bacterial Peptidoglycans from Microbiota in
Neurodevelopment and Behavior. In Trends in Molecular Medicine (Vol. 26, Issue 8).
https://doi.org/10.1016/j.molmed.2020.05.003 | |
dc.relation | Gózd-Barszczewska, A., Kozioł-Montewka, M., Barszczewski, P., Młodzińska, A., & Humińska, K.
(2017). Gut microbiome as a biomarker of cardiometabolic disorders. Annals of Agricultural
and Environmental Medicine, 24(3). https://doi.org/10.26444/aaem/75456 | |
dc.relation | Grab, D. J., Perides, G., Dumler, J. S., Kim, K. J., Park, J., Kim, Y. V., Nikolskaia, O., Choi, K. S.,
Stins, M. F., & Kim, K. S. (2005). Borrelia burgdorferi, host-derived proteases, and the bloodbrain barrier. Infection and Immunity, 73(2). https://doi.org/10.1128/IAI.73.2.1014-1022.2005 | |
dc.relation | Guarner, F., & Malagelada, J. R. (2003). Gut flora in health and disease. The Lancet, 361(9356),
512–519. https://doi.org/10.1016/S0140-6736(03)12489-0 | |
dc.relation | Guo, J., Han, X., Tan, H., Huang, W., You, Y., & Zhan, J. (2019). Blueberry Extract Improves Obesity
through Regulation of the Gut Microbiota and Bile Acids via Pathways Involving FXR and
TGR5. IScience, 19. https://doi.org/10.1016/j.isci.2019.08.020 | |
dc.relation | Gurung, M., Li, Z., You, H., Rodrigues, R., Jump, D. B., Morgun, A., & Shulzhenko, N. (2020). Role
of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine, 51.
https://doi.org/10.1016/J.EBIOM.2019.11.051/ATTACHMENT/CB942F49-C906-4922-A160-
AC1B2D24B8E7/MMC1.XLSX | |
dc.relation | Haileselassie, Y., Fischbach, M. A., Sonnenburg, J. L., & Habtezion, A. (2020). Clinical and
Translational Report Dysbiosis-Induced Secondary Bile Acid Deficiency Clinical and
Translational Report Dysbiosis-Induced Secondary Bile Acid Deficiency Promotes Intestinal
Inflammation. Cell Host and Microbe, 0(0). | |
dc.relation | Harpreet Kaur, Svetlana Golovko, Mikhail Y. Golovko, Surjeet Singh, D. C. D. and C. K. C. (2022).
Erratum to “Effects of Probiotic Supplementation on Short Chain Fatty Acids in the AppNL–G–
F Mouse Model of Alzheimer’s Disease.” Journal of Alzheimer’s Disease, 86(2).
https://doi.org/10.3233/jad-229001 | |
dc.relation | Hetzel, M., Brock, M., Selmer, T., Pierik, A. J., Golding, B. T., & Buckel, W. (2003). Acryloyl-CoA
reductase from Clostridium propionicum: An enzyme complex of propionyl-CoA
dehydrogenase and electron-transferring flavoprotein. European Journal of Biochemistry,
270(5). https://doi.org/10.1046/j.1432-1033.2003.03450.x | |
dc.relation | Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B.,
Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). Expert consensus document:
The international scientific association for probiotics and prebiotics consensus statement on
the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology and
Hepatology, 11(8). https://doi.org/10.1038/nrgastro.2014.66 | |
dc.relation | Hoentjen, F., Welling, G. W., Harmsen, H. J. M., Zhang, X., Snart, J., Tannock, G. W., Lien, K.,
Churchill, T. A., Lupicki, M., & Dieleman, L. A. (2005). Reduction of colitis by prebiotics in HLAB27 transgenic rats is associated with microflora changes and immunomodulation.
Inflammatory Bowel Diseases, 11(11). https://doi.org/10.1097/01.MIB.0000183421.02316.d5 | |
dc.relation | Holmes, E., Li, J. V., Marchesi, J. R., & Nicholson, J. K. (2012). Gut microbiota composition and
activity in relation to host metabolic phenotype and disease risk. In Cell Metabolism (Vol. 16,
Issue 5). https://doi.org/10.1016/j.cmet.2012.10.007 | |
dc.relation | Hou, M., Xu, G., Ran, M., Luo, W., & Wang, H. (2021). APOE-ε4 Carrier Status and Gut Microbiota
Dysbiosis in Patients With Alzheimer Disease. Frontiers in Neuroscience, 15.
https://doi.org/10.3389/fnins.2021.619051 | |
dc.relation | Houser, M. C., & Tansey, M. G. (2017). The gut-brain axis: Is intestinal inflammation a silent driver
of Parkinson’s disease pathogenesis? In npj Parkinson’s Disease (Vol. 3, Issue 1).
https://doi.org/10.1038/s41531-016-0002-0 | |
dc.relation | Hsiao, E. Y., McBride, S. W., Hsien, S., Sharon, G., Hyde, E. R., McCue, T., Codelli, J. A., Chow, J.,
Reisman, S. E., Petrosino, J. F., Patterson, P. H., & Mazmanian, S. K. (2013). Microbiota
modulate behavioral and physiological abnormalities associated with neurodevelopmental
disorders. Cell, 155(7), 1451–1463.
https://doi.org/10.1016/J.CELL.2013.11.024/ATTACHMENT/3C2F31F8-0226-47B8-A48EAB542B8C7423/MMC2.ZIP | |
dc.relation | I., P., V., B., J., H., S., G., & A., H. (2017). Gut microbiome associated with cognitive and brain
structural outcomes in apolipoprotein E4 variant. Journal of Cerebral Blood Flow and
Metabolism, 37(1 Supplement 1). | |
dc.relation | Jaganathan, R., Ravindran, R., & Dhanasekaran, S. (2018). Emerging Role of Adipocytokines in
Type 2 Diabetes as Mediators of Insulin Resistance and Cardiovascular Disease. In Canadian
Journal of Diabetes (Vol. 42, Issue 4). https://doi.org/10.1016/j.jcjd.2017.10.040 | |
dc.relation | Jan, G., Belzacq, A. S., Haouzi, D., Rouault, A., Métivier, D., Kroemer, G., & Brenner, C. (2002).
Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids
acting on mitochondria. Cell Death and Differentiation, 9(2).
https://doi.org/10.1038/sj.cdd.4400935 | |
dc.relation | Jandhyala, S. M., Talukdar, R., Subramanyam, C., Vuyyuru, H., Sasikala, M., & Reddy, D. N. (2015).
Role of the normal gut microbiota. World Journal of Gastroenterology, 21(29).
https://doi.org/10.3748/wjg.v21.i29.8787 | |
dc.relation | Jang, H. M., Lee, K. E., Lee, H. J., & Kim, D. H. (2018). Immobilization stress-induced Escherichia
coli causes anxiety by inducing NF-κB activation through gut microbiota disturbance. Scientific
Reports, 8(1). https://doi.org/10.1038/s41598-018-31764-0 | |
dc.relation | Janssen, A. W. F., & Kersten, S. (2017). Potential mediators linking gut bacteria to metabolic health:
a critical view. In Journal of Physiology (Vol. 595, Issue 2). https://doi.org/10.1113/JP272476 | |
dc.relation | Jumpertz, R., Le, D. S., Turnbaugh, P. J., Trinidad, C., Bogardus, C., Gordon, J. I., & Krakoff, J.
(2011). Energy-balance studies reveal associations between gut microbes, caloric load, and
nutrient absorption in humans. American Journal of Clinical Nutrition, 94(1).
https://doi.org/10.3945/ajcn.110.010132 | |
dc.relation | Jung, D., Fantin, A. C., Scheurer, U., Fried, M., & Kullak-Ublick, G. A. (2004). Human ileal bile acid
transporter gene ASBT (SLC10A2) is transactivated by the glucocorticoid receptor. Gut, 53(1).
https://doi.org/10.1136/gut.53.1.78 | |
dc.relation | Kalia, L. V., & Lang, A. E. (2015). Parkinson’s disease. The Lancet, 386(9996), 896–912.
https://doi.org/10.1016/S0140-6736(14)61393-3 | |
dc.relation | Kaur, H., Nookala, S., Singh, S., Mukundan, S., Nagamoto-Combs, K., & Combs, C. K. (2021). Sexdependent effects of intestinal microbiome manipulation in a mouse model of alzheimer’s
disease. Cells, 10(9). https://doi.org/10.3390/cells10092370 | |
dc.relation | Khanna, S., Vazquez-Baeza, Y., González, A., Weiss, S., Schmidt, B., Muñiz-Pedrogo, D. A.,
Rainey, J. F., Kammer, P., Nelson, H., Sadowsky, M., Khoruts, A., Farrugia, S. L., Knight, R.,Pardi, D. S., & Kashyap, P. C. (2017). Changes in microbial ecology after fecal microbiota
transplantation for recurrent C. difficile infection affected by underlying inflammatory bowel
disease. Microbiome, 5(1). https://doi.org/10.1186/S40168-017-0269-3 | |
dc.relation | Kieler, I. N., Kamal, S. S., Vitger, A. D., Nielsen, D. S., Lauridsen, C., & Bjornvad, C. R. (2017). Gut
microbiota composition may relate to weight loss rate in obese pet dogs. Veterinary Medicine
and Science, 3(4). https://doi.org/10.1002/vms3.80 | |
dc.relation | Kilinçarslan, S., & Evrensel, A. (2020). Efecto del trasplante de microbiota fecal sobre los síntomas
psiquiátricos de los pacientes con enfermedad intestinal inflamatoria: estudio experimental.
Actas Españolas de Psiquiatría, ISSN 1139-9287, Vol. 48, No
. 1, 2020, Págs. 1-7, 48(1). | |
dc.relation | Koh, A., De Vadder, F., Kovatcheva-Datchary, P., & Bäckhed, F. (2016). From dietary fiber to host
physiology: Short-chain fatty acids as key bacterial metabolites. In Cell (Vol. 165, Issue 6).
https://doi.org/10.1016/j.cell.2016.05.041 | |
dc.relation | LeBlanc, J. G., Milani, C., de Giori, G. S., Sesma, F., van Sinderen, D., & Ventura, M. (2013).
Bacteria as vitamin suppliers to their host: A gut microbiota perspective. In Current Opinion in
Biotechnology (Vol. 24, Issue 2). https://doi.org/10.1016/j.copbio.2012.08.005 | |
dc.relation | Li, N., Zhan, S., Tian, Z., Liu, C., Xie, Z., Zhang, S., Chen, M., Zeng, Z., & Zhuang, X. (2021).
Alterations in Bile Acid Metabolism Associated with Inflammatory Bowel Disease. In
Inflammatory Bowel Diseases (Vol. 27, Issue 9). https://doi.org/10.1093/ibd/izaa342 | |
dc.relation | Li, Q., Chang, Y., Zhang, K., Chen, H., Tao, S., & Zhang, Z. (2020). Implication of the gut microbiome
composition of type 2 diabetic patients from northern China. Scientific Reports, 10(1).
https://doi.org/10.1038/s41598-020-62224-3 | |
dc.relation | Li, X., Li, Z., He, Y., Li, P., Zhou, H., & Zeng, N. (2020). Regional distribution of Christensenellaceae
and its associations with metabolic syndrome based on a population-level analysis. PeerJ, 8.
https://doi.org/10.7717/peerj.9591 | |
dc.relation | Lin, H. V., Frassetto, A., Kowalik, E. J., Nawrocki, A. R., Lu, M. M., Kosinski, J. R., Hubert, J. A.,
Szeto, D., Yao, X., Forrest, G., & Marsh, D. J. (2012). Butyrate and Propionate Protect against
Diet-Induced Obesity and Regulate Gut Hormones via Free Fatty Acid Receptor 3-Independent
Mechanisms. PLoS ONE, 7(4), e35240. https://doi.org/10.1371/JOURNAL.PONE.0035240 | |
dc.relation | Liu, B. N., Liu, X. T., Liang, Z. H., & Wang, J. H. (2021). Gut microbiota in obesity. World Journal of
Gastroenterology, 27(25), 3837. https://doi.org/10.3748/WJG.V27.I25.3837 | |
dc.relation | Liu, Y., Sanderson, D., Mian, M. F., McVey Neufeld, K. A., & Forsythe, P. (2021). Loss of vagal
integrity disrupts immune components of the microbiota-gut-brain axis and inhibits the effect of
Lactobacillus rhamnosus on behavior and the corticosterone stress response.
Neuropharmacology, 195. https://doi.org/10.1016/j.neuropharm.2021.108682 | |
dc.relation | Louis, P., Duncan, S. H., McCrae, S. I., Millar, J., Jackson, M. S., & Flint, H. J. (2004). Restricted
Distribution of the Butyrate Kinase Pathway among Butyrate-Producing Bacteria from the
Human Colon. Journal of Bacteriology, 186(7). https://doi.org/10.1128/JB.186.7.2099-
2106.2004 | |
dc.relation | Louis, P., & Flint, H. J. (2009). Diversity, metabolism and microbial ecology of butyrate-producing
bacteria from the human large intestine. FEMS Microbiology Letters, 294(1).
https://doi.org/10.1111/j.1574-6968.2009.01514.x | |
dc.relation | Louis, P., & Flint, H. J. (2017). Formation of propionate and butyrate by the human colonic
microbiota. Environmental Microbiology, 19(1), 29–41. https://doi.org/10.1111/1462-
2920.13589 | |
dc.relation | Luck, B., Engevik, M. A., Ganesh, B. P., Lackey, E. P., Lin, T., Balderas, M., Major, A., Runge, J.,
Luna, R. A., Sillitoe, R. V., & Versalovic, J. (2020). Bifidobacteria shape host neural circuits
during postnatal development by promoting synapse formation and microglial function.
Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-64173-3 | |
dc.relation | Lukovac, S., Belzer, C., Pellis, L., Keijser, B. J., de Vos, W. M., Montijn, R. C., & Roeselers, G.
(2014). Differential modulation by Akkermansia muciniphila and faecalibacterium prausnitzii of
host peripheral lipid metabolism and histone acetylation in mouse gut organoids. MBio, 5(4).
https://doi.org/10.1128/mBio.01438-14 | |
dc.relation | Macfarlane, S., & Macfarlane, G. T. (2003). Regulation of short-chain fatty acid production.
Proceedings of the Nutrition Society, 62(1), 67–72. https://doi.org/10.1079/pns2002207 | |
dc.relation | Macfarlane, S., & Macfarlane, G. T. (2006). Composition and metabolic activities of bacterial biofilms
colonizing food residues in the human gut. Applied and Environmental Microbiology, 72(9).
https://doi.org/10.1128/AEM.00754-06 | |
dc.relation | Madan, A., Thompson, D., Fowler, J. C., Ajami, N. J., Salas, R., Frueh, B. C., Bradshaw, M. R.,
Weinstein, B. L., Oldham, J. M., & Petrosino, J. F. (2020). The gut microbiota is associated
with psychiatric symptom severity and treatment outcome among individuals with serious
mental illness. Journal of Affective Disorders, 264, 98–106.
https://doi.org/10.1016/J.JAD.2019.12.020 | |
dc.relation | Mäger, I., Roberts, T. C., Wood, M. J. A., & El Andaloussi, S. (2014). From gut to brain:
Bioencapsulated therapeutic protein reduces amyloid load upon oral delivery. In Molecular
Therapy (Vol. 22, Issue 3). https://doi.org/10.1038/mt.2014.13 | |
dc.relation | Magnúsdóttir, S., Ravcheev, D., De Crécy-Lagard, V., & Thiele, I. (2015). Systematic genome
assessment of B-vitamin biosynthesis suggests cooperation among gut microbes. Frontiers in
Genetics, 6(MAR). https://doi.org/10.3389/fgene.2015.00148 | |
dc.relation | Mancabelli, L., Tarracchini, C., Milani, C., Lugli, G. A., Fontana, F., Turroni, F., van Sinderen, D., &
Ventura, M. (2020). Multi-population cohort meta-analysis of human intestinal microbiota in
early life reveals the existence of infant community state types (ICSTs). Computational and
Structural Biotechnology Journal, 18. https://doi.org/10.1016/j.csbj.2020.08.028 | |
dc.relation | Mandard, S., Zandbergen, F., Nguan, S. T., Escher, P., Patsouris, D., Koenig, W., Kleemann, R.,
Bakker, A., Veenman, F., Wahli, W., Müller, M., & Kersten, S. (2004). The direct peroxisome
proliferator-activated receptor target fasting-induced adipose factor (FIAF/PGAR/ANGPTL4) is
present in blood plasma as a truncated protein that is increased by fenofibrate treatment.
Journal of Biological Chemistry, 279(33). https://doi.org/10.1074/jbc.M403058200 | |
dc.relation | Mangiola, F., Ianiro, G., Franceschi, F., Fagiuoli, S., Gasbarrini, G., & Gasbarrini, A. (2016). Gut
microbiota in autism and mood disorders. In World Journal of Gastroenterology (Vol. 22, Issue
1). https://doi.org/10.3748/wjg.v22.i1.361 | |
dc.relation | Marques, T. M., Wall, R., Ross, R. P., Fitzgerald, G. F., Ryan, C. A., & Stanton, C. (2010).
Programming infant gut microbiota: influence of dietary and environmental factors. Current
Opinion in Biotechnology, 21(2), 149–156. https://doi.org/10.1016/J.COPBIO.2010.03.020 | |
dc.relation | Martin-Gallausiaux, C., Marinelli, L., Blottière, H. M., Larraufie, P., & Lapaque, N. (2021). SCFA:
mechanisms and functional importance in the gut. Proceedings of the Nutrition Society, 80(1).
https://doi.org/10.1017/s0029665120006916 | |
dc.relation | Martin, R., Makino, H., Yavuz, A. C., Ben-Amor, K., Roelofs, M., Ishikawa, E., Kubota, H., Swinkels,
S., Sakai, T., Oishi, K., Kushiro, A., & Knol, J. (2016). Early-Life events, including mode of
delivery and type of feeding, siblings and gender, shape the developing gut microbiota. PLoS ONE, 11(6). https://doi.org/10.1371/journal.pone.0158498 | |
dc.relation | Mccartney, A. L., Wenzhi, W., & Tannock, G. W. (1996). Molecular analysis of the composition of
the bifidobacterial and lactobacillus microflora of humans. Applied and Environmental
Microbiology, 62(12). https://doi.org/10.1128/aem.62.12.4608-4613.1996 | |
dc.relation | McCreath, K. J., Espada, S., Gálvez, B. G., Benito, M., De Molina, A., Sepúlveda, P., & Cervera, A.
M. (2015). Targeted disruption of the SUCNR1 metabolic receptor leads to dichotomous effects
on obesity. Diabetes, 64(4). https://doi.org/10.2337/db14-0346 | |
dc.relation | Mcvey Neufeld, K. A., Mao, Y. K., Bienenstock, J., Foster, J. A., & Kunze, W. A. (2013). The
microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the
mouse. Neurogastroenterology and Motility, 25(2). https://doi.org/10.1111/nmo.12049 | |
dc.relation | Medvecky, M., Cejkova, D., Polansky, O., Karasova, D., Kubasova, T., Cizek, A., & Rychlik, I. (2018).
Whole genome sequencing and function prediction of 133 gut anaerobes isolated from chicken
caecum in pure cultures. BMC Genomics, 19(1). https://doi.org/10.1186/s12864-018-4959-4 | |
dc.relation | Mentella, M. C., Scaldaferri, F., Pizzoferrato, M., Gasbarrini, A., & Miggiano, G. A. D. (2020).
Nutrition, IBD and Gut Microbiota: A Review. Nutrients, 12(4).
https://doi.org/10.3390/NU12040944 | |
dc.relation | Miller, T. L., & Wolin, M. J. (1996). Pathways of acetate, propionate, and butyrate formation by the
human fecal microbial flora. Applied and Environmental Microbiology, 62(5), 1589.
https://doi.org/10.1128/AEM.62.5.1589-1592.1996 | |
dc.relation | Million, M., Maraninchi, M., Henry, M., Armougom, F., Richet, H., Carrieri, P., Valero, R., Raccah,
D., Vialettes, B., & Raoult, D. (2012). Obesity-associated gut microbiota is enriched in
Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii.
International Journal of Obesity, 36(6). https://doi.org/10.1038/ijo.2011.153 | |
dc.relation | Mitev, K., & Taleski, V. (2019). Association between the gut microbiota and obesity. Open Access
Macedonian Journal of Medical Sciences, 7(12), 2050–2056.
https://doi.org/10.3889/oamjms.2019.586 | |
dc.relation | Mizrahi-Man, O., Davenport, E. R., & Gilad, Y. (2013). Taxonomic Classification of Bacterial 16S
rRNA Genes Using Short Sequencing Reads: Evaluation of Effective Study Designs. PLoS
ONE, 8(1). https://doi.org/10.1371/journal.pone.0053608 | |
dc.relation | Morais, L. H., Schreiber, H. L., & Mazmanian, S. K. (2021). The gut microbiota–brain axis in
behaviour and brain disorders. Nature Reviews Microbiology, 19(4), 241–255.
https://doi.org/10.1038/s41579-020-00460-0 | |
dc.relation | Moreno-Indias, I., Cardona, F., Tinahones, F. J., & Queipo-Ortuño, M. I. (2014). Impact of the gut
microbiota on the development of obesity and type 2 diabetes mellitus. Frontiers in
Microbiology, 5(APR). https://doi.org/10.3389/FMICB.2014.00190 | |
dc.relation | Morris, G., Berk, M., Carvalho, A., Caso, J. R., Sanz, Y., Walder, K., & Maes, M. (2017). The Role
of the Microbial Metabolites Including Tryptophan Catabolites and Short Chain Fatty Acids in
the Pathophysiology of Immune-Inflammatory and Neuroimmune Disease. In Molecular
Neurobiology (Vol. 54, Issue 6). https://doi.org/10.1007/s12035-016-0004-2 | |
dc.relation | Morrow, L. E., Kollef, M. H., & Casale, T. B. (2010). Probiotic prophylaxis of ventilator-associated
pneumonia: A blinded, randomized, controlled trial. American Journal of Respiratory and
Critical Care Medicine, 182(8). https://doi.org/10.1164/rccm.200912-1853OC | |
dc.relation | Morshedi, M., Saghafi-Asl, M., & Hosseinifard, E. S. (2020). The potential therapeutic effects of the gut microbiome manipulation by synbiotic containing-Lactobacillus plantarum on
neuropsychological performance of diabetic rats. Journal of Translational Medicine, 18(1).
https://doi.org/10.1186/s12967-019-02169-y | |
dc.relation | Nagpal, R., Wang, S., Ahmadi, S., Hayes, J., Gagliano, J., Subashchandrabose, S., Kitzman, D. W.,
Becton, T., Read, R., & Yadav, H. (2018). Human-origin probiotic cocktail increases short-chain
fatty acid production via modulation of mice and human gut microbiome. Scientific Reports,
8(1). https://doi.org/10.1038/s41598-018-30114-4 | |
dc.relation | Nakkarach, A., Foo, H. L., Song, A. A. L., Mutalib, N. E. A., Nitisinprasert, S., & Withayagiat, U.
(2021). Anti-cancer and anti-inflammatory effects elicited by short chain fatty acids produced
by Escherichia coli isolated from healthy human gut microbiota. Microbial Cell Factories, 20(1).
https://doi.org/10.1186/s12934-020-01477-z | |
dc.relation | Neimark, E., Chen, F., Li, X., Magid, M. S., Alasio, T. M., Frankenberg, T., Sinha, J., Dawson, P. A.,
& Shneider, B. L. (2006). c-Fos Is a Critical Mediator of Inflammatory-Mediated Repression of
the Apical Sodium-Dependent Bile Acid Transporter. Gastroenterology, 131(2).
https://doi.org/10.1053/j.gastro.2006.05.002 | |
dc.relation | Nelson, K. E., Weinstock, G. M., Highlander, S. K., Worley, K. C., Creasy, H. H., Wortman, J. R.,
Rusch, D. B., Mitreva, M., Sodergren, E., Chinwalla, A. T., Feldgarden, M., Gevers, D., Haas,
B. J., Madupu, R., Ward, D. V., Birren, B. W., Gibbs, R. A., Methe, B., Petrosino, J. F., … Zhu,
D. (2010). A catalog of reference genomes from the human microbiome. Science, 328(5981).
https://doi.org/10.1126/science.1183605 | |
dc.relation | Nicholson, J. K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., & Pettersson, S. (2012).
Host-gut microbiota metabolic interactions. Science, 336(6086), 1262–1267.
https://doi.org/10.1126/SCIENCE.1223813 | |
dc.relation | Nishida, A., Inoue, R., Inatomi, O., Bamba, S., Naito, Y., & Andoh, A. (2018). Gut microbiota in the
pathogenesis of inflammatory bowel disease. In Clinical Journal of Gastroenterology (Vol. 11,
Issue 1). https://doi.org/10.1007/s12328-017-0813-5 | |
dc.relation | Odenwald, M. A., & Turner, J. R. (2013). Intestinal Permeability Defects: Is It Time to Treat? Clinical
Gastroenterology and Hepatology, 11(9). https://doi.org/10.1016/j.cgh.2013.07.001 | |
dc.relation | Onyszkiewicz, M., Gawrys-Kopczynska, M., Konopelski, P., Aleksandrowicz, M., Sawicka, A.,
Koźniewska, E., Samborowska, E., & Ufnal, M. (2019). Butyric acid, a gut bacteria metabolite,
lowers arterial blood pressure via colon-vagus nerve signaling and GPR41/43 receptors.
Pflugers Archiv European Journal of Physiology, 471(11–12). https://doi.org/10.1007/s00424-
019-02322-y | |
dc.relation | Oróstica, L., García, P., Vera, C., García, V., Romero, C., & Vega, M. (2018). Effect of TNF-α on
molecules related to the insulin action in endometrial cells exposed to hyperandrogenic and
hyperinsulinic conditions characteristics of polycystic ovary syndrome. Reproductive Sciences,
25(7). https://doi.org/10.1177/1933719117732157 | |
dc.relation | Ouellette, A. J. (2011). Paneth cell α-defensins in enteric innate immunity. In Cellular and Molecular
Life Sciences (Vol. 68, Issue 13). https://doi.org/10.1007/s00018-011-0714-6 | |
dc.relation | Pabst, O., & Slack, E. (2020). IgA and the intestinal microbiota: the importance of being specific. In
Mucosal Immunology (Vol. 13, Issue 1). https://doi.org/10.1038/s41385-019-0227-4 | |
dc.relation | Pachikian, B. D., Druart, C., Catry, E., Bindels, L. B., Neyrinck, A. M., Larondelle, Y., Cani, P. D., &
Delzenne, N. M. (2018). Implication of trans-11,trans-13 conjugated linoleic acid in the
development of hepatic steatosis. PLoS ONE, 13(2).
https://doi.org/10.1371/journal.pone.0192447 | |
dc.relation | Paiva, I. H. R., Duarte-Silva, E., & Peixoto, C. A. (2020). The role of prebiotics in cognition, anxiety,
and depression. In European Neuropsychopharmacology (Vol. 34).
https://doi.org/10.1016/j.euroneuro.2020.03.006 | |
dc.relation | Parks, D. H., Chuvochina, M., Waite, D. W., Rinke, C., Skarshewski, A., Chaumeil, P. A., &
Hugenholtz, P. (2018). A standardized bacterial taxonomy based on genome phylogeny
substantially revises the tree of life. Nature Biotechnology, 36(10), 996.
https://doi.org/10.1038/nbt.4229 | |
dc.relation | Pascual, V., Pozuelo, M., Borruel, N., Casellas, F., Campos, D., Santiago, A., Martinez, X., Varela,
E., Sarrabayrouse, G., Machiels, K., Vermeire, S., Sokol, H., Guarner, F., & Manichanh, C.
(2017). A microbial signature for Crohn’s disease. Gut, 66(5). https://doi.org/10.1136/gutjnl2016-313235 | |
dc.relation | Pekkala, S., Munukka, E., Kong, L., Pöllänen, E., Autio, R., Roos, C., Wiklund, P., FischerPosovszky, P., Wabitsch, M., Alen, M., Huovinen, P., & Cheng, S. (2015). Toll-like receptor 5
in obesity: The role of gut microbiota and adipose tissue inflammation. Obesity, 23(3).
https://doi.org/10.1002/oby.20993 | |
dc.relation | Peredo-Lovillo, A., Romero-Luna, H. E., & Jiménez-Fernández, M. (2020). Health promoting
microbial metabolites produced by gut microbiota after prebiotics metabolism. In Food
Research International (Vol. 136). https://doi.org/10.1016/j.foodres.2020.109473 | |
dc.relation | Pistollato, F., Cano, S. S., Elio, I., Vergara, M. M., Giampieri, F., & Battino, M. (2016). Role of gut
microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutrition
Reviews, 74(10). https://doi.org/10.1093/nutrit/nuw023 | |
dc.relation | Plovier, H., Everard, A., Druart, C., Depommier, C., Van Hul, M., Geurts, L., Chilloux, J., Ottman, N.,
Duparc, T., Lichtenstein, L., Myridakis, A., Delzenne, N. M., Klievink, J., Bhattacharjee, A., Van
Der Ark, K. C. H., Aalvink, S., Martinez, L. O., Dumas, M. E., Maiter, D., … Cani, P. D. (2017).
A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium
improves metabolism in obese and diabetic mice. Nature Medicine, 23(1).
https://doi.org/10.1038/nm.4236 | |
dc.relation | Qiang, X., Liotta, A. S., Shiloach, J., Gutierrez, J. C., Wang, H., Ochani, M., Ochani, K., Yang, H.,
Rabin, A., Leroith, D., Lesniak, M. A., Böhm, M., Maaser, C., Kannengiesser, K., Donowitz, M.,
Rabizadeh, S., Czura, C. J., Tracey, K. J., Westlake, M., … Roth, J. (2017). New melanocortinlike peptide of E. coli can suppress inflammation via the mammalian melanocortin-1 receptor
(MC1R): Possible endocrine-like function for microbes of the gut. Npj Biofilms and
Microbiomes, 3(1). https://doi.org/10.1038/s41522-017-0039-9 | |
dc.relation | Ragsdale, S. W., & Pierce, E. (2008). Acetogenesis and the Wood-Ljungdahl Pathway of CO2
Fixation. Biochimica et Biophysica Acta, 1784(12), 1873.
https://doi.org/10.1016/J.BBAPAP.2008.08.012 | |
dc.relation | Reichardt, N., Duncan, S. H., Young, P., Belenguer, A., McWilliam Leitch, C., Scott, K. P., Flint, H.
J., & Louis, P. (2014). Phylogenetic distribution of three pathways for propionate production
within the human gut microbiota. ISME Journal, 8(6). https://doi.org/10.1038/ismej.2014.14 | |
dc.relation | Rodríguez, J. M., Murphy, K., Stanton, C., Ross, R. P., Kober, O. I., Juge, N., Avershina, E., Rudi,
K., Narbad, A., Jenmalm, M. C., Marchesi, J. R., & Collado, M. C. (2015). The composition of
the gut microbiota throughout life, with an emphasis on early life. Microbial Ecology in Health
& Disease, 26(0). https://doi.org/10.3402/MEHD.V26.26050 | |
dc.relation | Romanitsa, A. I., Nemchenko, U. M., Pogodina, A. V., Grigorova, E. V., Belkova, N. L., Voropaeva,
N. M., Grigoryeva, E. A., Savelkaeva, M. V., & Rychkova, L. V. (2021). Associations of clinical
features of functional bowel disorders with gut microbiota characteristics in adolescents: A pilot study. Acta Biomedica Scientifica, 6(6). https://doi.org/10.29413/ABS.2021-6.6-2.8 | |
dc.relation | Rosado, E. L., & Crovesy, L. (2019). Gut microbiota modulation with probiotic or symbiotic in weight
loss in women with obesity. Obes. Facts, 12. | |
dc.relation | Rüb, A. M., Tsakmaklis, A., Gräfe, S. K., Simon, M. C., Vehreschild, M. J. G. T., & Wuethrich, I.
(2021). Biomarkers of human gut microbiota diversity and dysbiosis. In Biomarkers in Medicine
(Vol. 15, Issue 2). https://doi.org/10.2217/bmm-2020-0353 | |
dc.relation | Ryan, J. J., Monteagudo-Mera, A., Contractor, N., & Gibson, G. R. (2021). Impact of 2′-fucosyllactose
on gut microbiota composition in adults with chronic gastrointestinal conditions: Batch culture
fermentation model and pilot clinical trial findings. Nutrients, 13(3).
https://doi.org/10.3390/nu13030938 | |
dc.relation | Sakakibara, S., Yamauchi, T., Oshima, Y., Tsukamoto, Y., & Kadowaki, T. (2006). Acetic acid
activates hepatic AMPK and reduces hyperglycemia in diabetic KK-A(y) mice. Biochemical and
Biophysical Research Communications, 344(2). https://doi.org/10.1016/j.bbrc.2006.03.176 | |
dc.relation | Saltiel, A. R., & Olefsky, J. M. (2017). Inflammatory mechanisms linking obesity and metabolic
disease. In Journal of Clinical Investigation (Vol. 127, Issue 1).
https://doi.org/10.1172/JCI92035 | |
dc.relation | Sampson, T. R., Challis, C., Jain, N., Moiseyenko, A., Ladinsky, M. S., Shastri, G. G., Thron, T.,
Needham, B. D., Horvath, I., Debelius, J. W., Janssen, S., Knight, R., Wittung-Stafshede, P.,
Gradinaru, V., Chapman, M., & Mazmanian, S. K. (2020). A gut bacterial amyloid promotes asynuclein aggregation and motor impairment in mice. ELife, 9.
https://doi.org/10.7554/eLife.53111 | |
dc.relation | Sankarasubramanian, J., Ahmad, R., Avuthu, N., Singh, A. B., & Guda, C. (2020). Gut Microbiota
and Metabolic Specificity in Ulcerative Colitis and Crohn’s Disease. In Frontiers in Medicine
(Vol. 7). https://doi.org/10.3389/fmed.2020.606298 | |
dc.relation | Schaupp, A., & Ljungdahl, L. G. (1974). Purification and properties of acetate kinase from Clostridium
thermoaceticum. Archives of Microbiology, 100(1). https://doi.org/10.1007/BF00446312 | |
dc.relation | Scheperjans, F., Aho, V., Pereira, P. A. B., Koskinen, K., Paulin, L., Pekkonen, E., Haapaniemi, E.,
Kaakkola, S., Eerola-Rautio, J., Pohja, M., Kinnunen, E., Murros, K., & Auvinen, P. (2015). Gut
microbiota are related to Parkinson’s disease and clinical phenotype. Movement Disorders,
30(3). https://doi.org/10.1002/mds.26069 | |
dc.relation | Scott, K. P., Martin, J. C., Campbell, G., Mayer, C. D., & Flint, H. J. (2006). Whole-genome
transcription profiling reveals genes up-regulated by growth on fucose in the human gut
bacterium “Roseburia inulinivorans.” Journal of Bacteriology, 188(12).
https://doi.org/10.1128/JB.00137-06 | |
dc.relation | Seekatz, A. M., Schnizlein, M. K., Koenigsknecht, M. J., Baker, J. R., Hasler, W. L., Bleske, B. E.,
Young, V. B., & Sun, D. (2019). Spatial and Temporal Analysis of the Stomach and SmallIntestinal Microbiota in Fasted Healthy Humans. MSphere, 4(2).
https://doi.org/10.1128/msphere.00126-19 | |
dc.relation | Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C.
(2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12(6).
https://doi.org/10.1186/gb-2011-12-6-r60 | |
dc.relation | Sgritta, M., Dooling, S. W., Buffington, S. A., Momin, E. N., Francis, M. B., Britton, R. A., & CostaMattioli, M. (2019). Mechanisms underlying microbial-mediated changes in social behavior in
mouse models of Autism Spectrum Disorder. Neuron, 101(2), 246 | |
dc.relation | Shi, J., Xie, Q., Yue, Y., Chen, Q., Zhao, L., Evivie, S. E., Li, B., & Huo, G. (2021). Gut microbiota
modulation and anti-inflammatory properties of mixed lactobacilli in dextran sodium sulfateinduced colitis in mice. Food and Function, 12(11). https://doi.org/10.1039/d1fo00317h | |
dc.relation | Slatko, B. E., Gardner, A. F., & Ausubel, F. M. (2018). Overview of Next-Generation Sequencing
Technologies. Current Protocols in Molecular Biology, 122(1). https://doi.org/10.1002/cpmb.59 | |
dc.relation | Śliżewska, K., Markowiak-Kopeć, P., & Śliżewska, W. (2020). The Role of Probiotics in Cancer
Prevention. Cancers 2021, Vol. 13, Page 20, 13(1), 20.
https://doi.org/10.3390/CANCERS13010020 | |
dc.relation | Smith, C., Berzins, K., Rodrigues, D. M., Sousa, A. J., Sherman, P. M., Barrett, K. E., & Gareau, M.
G. (2013). Tu1979 Probiotics Can Normalize the Gut-Brain Axis in Immunodeficient Mice.
Gastroenterology, 144(5). https://doi.org/10.1016/s0016-5085(13)63335-1 | |
dc.relation | Sun, L., Ma, L., Zhang, H., Cao, Y., Wang, C., Hou, N., Huang, N., von Deneen, K. M., Zhao, C.,
Shi, Y., Pan, Y., Wang, M., Ji, G., & Nie, Y. (2019). FTO deficiency reduces anxiety- and
depression-like behaviors in mice via alterations in gut microbiota. Theranostics, 9(3).
https://doi.org/10.7150/thno.31562 | |
dc.relation | Sun, N., Hu, H., Wang, F., Li, L., Zhu, W., Shen, Y., Xiu, J., & Xu, Q. (2021). Antibiotic-induced
microbiome depletion in adult mice disrupts blood-brain barrier and facilitates brain infiltration
of monocytes after bone-marrow transplantation. Brain, Behavior, and Immunity, 92.
https://doi.org/10.1016/j.bbi.2020.11.032 | |
dc.relation | Tabasi, M., Eybpoosh, S., Siadat, S. D., Elyasinia, F., Soroush, A., & Bouzari, S. (2021). Modulation
of the Gut Microbiota and Serum Biomarkers After Laparoscopic Sleeve Gastrectomy: a 1-Year
Follow-Up Study. Obesity Surgery, 31(5). https://doi.org/10.1007/s11695-020-05139-2 | |
dc.relation | Tan, M. J., Teo, Z., Sng, M. K., Zhu, P., & Tan, N. S. (2012). Emerging roles of angiopoietin-like 4 in
human cancer. In Molecular Cancer Research (Vol. 10, Issue 6). https://doi.org/10.1158/1541-
7786.MCR-11-0519 | |
dc.relation | Tennoune, N., Chan, P., Breton, J., Legrand, R., Chabane, Y. N., Akkermann, K., Järv, A., Ouelaa,
W., Takagi, K., Ghouzali, I., Francois, M., Lucas, N., Bole-Feysot, C., Pestel-Caron, M., do
Rego, J. C., Vaudry, D., Harro, J., Dé, E., Déchelotte, P., & Fetissov, S. O. (2014). Bacterial
ClpB heat-shock protein, an antigen-mimetic of the anorexigenic peptide α-MSH, at the origin
of eating disorders. Translational Psychiatry, 4. https://doi.org/10.1038/tp.2014.98 | |
dc.relation | Thursby, E., & Juge, N. (2017). Introduction to the human gut microbiota. In Biochemical Journal
(Vol. 474, Issue 11). https://doi.org/10.1042/BCJ20160510 | |
dc.relation | Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An
obesity-associated gut microbiome with increased capacity for energy harvest. Nature,
444(7122), 1027–1031. https://doi.org/10.1038/nature05414 | |
dc.relation | Valdes, A. M., Walter, J., Segal, E., & Spector, T. D. (2018). Role of the gut microbiota in nutrition
and health. BMJ, 361, 36–44. https://doi.org/10.1136/BMJ.K2179 | |
dc.relation | Valdovinos-Díaz, M. (2013). Intestinal microbiota in digestive disorders. Probiotics, prebiotics and
symbiotics. Revista de Gastroenterologia de Mexico, 78.
https://doi.org/10.1016/j.rgmx.2013.06.008 | |
dc.relation | Vancamelbeke, M., & Vermeire, S. (2017). The intestinal barrier: a fundamental role in health and
disease. Expert Review of Gastroenterology & Hepatology, 11(9), 821. | |
dc.relation | Vascellari, S., Palmas, V., Melis, M., Pisanu, S., Cusano, R., Uva, P., Perra, D., Madau, V.,
Sarchioto, M., Oppo, V., Simola, N., Morelli, M., Santoru, M. L., Atzori, L., Melis, M., Cossu, G.,
& Manzin, A. (2020). Gut Microbiota and Metabolome Alterations Associated with Parkinson’s
Disease. MSystems, 5(5). https://doi.org/10.1128/msystems.00561-20 | |
dc.relation | Venema, K. (2010). Role of gut microbiota in the control of energy and carbohydrate metabolism.
Current Opinion in Clinical Nutrition and Metabolic Care, 13(4), 432–438.
https://doi.org/10.1097/MCO.0B013E32833A8B60 | |
dc.relation | Verhaar, B. J. H., Hendriksen, H. M. A., de Leeuw, F. A., Doorduijn, A. S., van Leeuwenstijn, M.,
Teunissen, C. E., Barkhof, F., Scheltens, P., Kraaij, R., van Duijn, C. M., Nieuwdorp, M., Muller,
M., & van der Flier, W. M. (2022). Gut Microbiota Composition Is Related to AD
PathologVerhaar, B. J. H., Hendriksen, H. M. A., de Leeuw, F. A., Doorduijn, A. S., van
Leeuwenstijn, M., Teunissen, C. E., Barkhof, F., Scheltens, P., Kraaij, R., van Duijn, C. M.,
Nieuwdorp, M., Muller, M., &. Frontiers in Immunology, 12.
https://doi.org/10.3389/FIMMU.2021.794519/FULL | |
dc.relation | Virtue, A. T., McCright, S. J., Wright, J. M., Jimenez, M. T., Mowel, W. K., Kotzin, J. J., Joannas, L.,
Basavappa, M. G., Spencer, S. P., Clark, M. L., Eisennagel, S. H., Williams, A., Levy, M.,
Manne, S., Henrickson, S. E., John Wherry, E., Thaiss, C. A., Elinav, E., & Henao-Mejia, J.
(2019). The gut microbiota regulates white adipose tissue inflammation and obesity via a family
of microRNAs. Science Translational Medicine, 11(496).
https://doi.org/10.1126/scitranslmed.aav1892 | |
dc.relation | Vital, M., Howe, A. C., & Tiedje, J. M. (2014). Revealing the bacterial butyrate synthesis pathways
by analyzing (meta)genomic data. MBio, 5(2). https://doi.org/10.1128/MBIO.00889-14 | |
dc.relation | Wang, H. X., & Wang, Y. P. (2016). Gut Microbiota-brain Axis. Chinese Medical Journal, 129(19),
2373. https://doi.org/10.4103/0366-6999.190667 | |
dc.relation | Wang, J., Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen, D.,
Peng, Y., Zhang, D., Jie, Z., Wu, W., Qin, Y., Xue, W., Li, J., Han, L., … Wang, J. (2012). A
metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490(7418).
https://doi.org/10.1038/nature11450 | |
dc.relation | Wells, J. E., & Hylemon, P. B. (2000). Identification and characterization of a bile acid 7alphadehydroxylation operon in Clostridium sp. strain TO-931, a highly active 7alphadehydroxylating strain isolated from human feces. Applied and Environmental Microbiology,
66(3), 1107–1113. https://doi.org/10.1128/AEM.66.3.1107-1113.2000 | |
dc.relation | Wu, H., Tremaroli, V., Schmidt, C., Lundqvist, A., Olsson, L. M., Krämer, M., Gummesson, A.,
Perkins, R., Bergström, G., & Bäckhed, F. (2020). The Gut Microbiota in Prediabetes and
Diabetes: A Population-Based Cross-Sectional Study. Cell Metabolism, 32(3).
https://doi.org/10.1016/j.cmet.2020.06.011 | |
dc.relation | Xu, L., Ma, C., Huang, X., Yang, W., Chen, L., Bilotta, A. J., Yao, S., & Cong, Y. (2018). Microbiota
metabolites short-chain fatty acid butyrate conditions intestinal epithelial cells to promote
development of Treg cells and T cell IL-10 production. The Journal of Immunology, 200(1
Supplement). | |
dc.relation | Yadav, H., Lee, J. H., Lloyd, J., Walter, P., & Rane, S. G. (2013). Beneficial metabolic effects of a
probiotic via butyrate-induced GLP-1 hormone secretion. Journal of Biological Chemistry,
288(35). https://doi.org/10.1074/jbc.M113.452516 | |
dc.relation | Yamashiro, Y. (2018). Gut Microbiota in Health and Disease. In Annals of Nutrition and Metabolism (Vol. 71, Issues 3–4). https://doi.org/10.1159/000481627 | |
dc.relation | Yan, L., Yang, C., & Tang, J. (2013). Disruption of the intestinal mucosal barrier in Candida albicans
infections. In Microbiological Research (Vol. 168, Issue 7).
https://doi.org/10.1016/j.micres.2013.02.008 | |
dc.relation | Yang, L. L., Millischer, V., Rodin, S., MacFabe, D. F., Villaescusa, J. C., & Lavebratt, C. (2020).
Enteric short-chain fatty acids promote proliferation of human neural progenitor cells. Journal
of Neurochemistry, 154(6). https://doi.org/10.1111/jnc.14928 | |
dc.relation | Yoshii, K., Hosomi, K., Sawane, K., & Kunisawa, J. (2019). Metabolism of dietary and microbial
vitamin b family in the regulation of host immunity. In Frontiers in Nutrition (Vol. 6).
https://doi.org/10.3389/fnut.2019.00048 | |
dc.relation | Yuille, S., Reichardt, N., Panda, S., Dunbar, H., & Mulder, I. E. (2018). Human gut bacteria as potent
class I histone deacetylase inhibitors in vitro through production of butyric acid and valeric acid.
PLoS ONE, 13(7). https://doi.org/10.1371/journal.pone.0201073 | |
dc.relation | Zhang, Q., Zou, R., Guo, M., Duan, M., Li, Q., & Zheng, H. (2021). Comparison of gut microbiota
between adults with autism spectrum disorder and obese adults. PeerJ, 9.
https://doi.org/10.7717/peerj.10946 | |
dc.relation | Zhao, J., Wang, L., Cheng, S., Zhang, Y., Yang, M., Fang, R., Li, H., Man, C., & Jiang, Y. (2022). A
Potential Synbiotic Strategy for the Prevention of Type 2 Diabetes: Lactobacillus paracasei
JY062 and Exopolysaccharide Isolated from Lactobacillus plantarum JY039. Nutrients, 14(2).
https://doi.org/10.3390/nu14020377 | |
dc.relation | Zheng, Z., Lyu, W., Ren, Y., Li, X., Zhao, S., Yang, H., & Xiao, Y. (2021). Allobaculum Involves in
the Modulation of Intestinal ANGPTLT4 Expression in Mice Treated by High-Fat Diet. Frontiers
in Nutrition, 8. https://doi.org/10.3389/fnut.2021.690138 | |
dc.relation | Zhou, H., Tai, J., Xu, H., Lu, X., & Meng, D. (2019). Xanthoceraside could ameliorate Alzheimer’s
disease symptoms of rats by affecting the gut microbiota composition and modulating the
endogenous metabolite levels. Frontiers in Pharmacology, 10.
https://doi.org/10.3389/fphar.2019.01035 | |
dc.relation | Zhou, Y., He, Y., Liu, L., Zhou, W., Wang, P., Hu, H., Nie, Y., & Chen, Y. (2021). Alterations in Gut
Microbial Communities Across Anatomical Locations in Inflammatory Bowel Diseases.
Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.615064 | |
dc.relation | Zhuang, X., Liu, C., Zhan, S., Tian, Z., Li, N., Mao, R., Zeng, Z., & Chen, M. (2021). Gut Microbiota
Profile in Pediatric Patients With Inflammatory Bowel Disease: A Systematic Review. In
Frontiers in Pediatrics (Vol. 9). https://doi.org/10.3389/fped.2021.626232 | |
dc.rights | Atribución-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | La microbiota intestinal y la disbiosis, relaciones metabólicas a nivel patológico y en la salud. | |
dc.type | Trabajo de grado - Maestría | |