dc.contributor | Mojica Nava,Eduardo Alirio | |
dc.contributor | Rakoto Ravalontsalama, Naly | |
dc.contributor | Programa de Investigacion sobre Adquisicion y Analisis de Señales Paas-Un | |
dc.contributor | LS2N, IMT-Atlantique | |
dc.creator | Toro Tovar, Billy Wladimir | |
dc.date.accessioned | 2023-02-03T16:38:38Z | |
dc.date.accessioned | 2023-06-06T23:20:19Z | |
dc.date.available | 2023-02-03T16:38:38Z | |
dc.date.available | 2023-06-06T23:20:19Z | |
dc.date.created | 2023-02-03T16:38:38Z | |
dc.date.issued | 2022-12-14 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/83285 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6651233 | |
dc.description.abstract | This research proposed several algorithms for the identification and control of microgrids based on the Koopman operator. The contributions presented in this manuscript are focused on the control of voltage and reactive power. We have considered five control scenarios based on the Koopman operator: (i) a centralized algorithm that regulates the microgrid voltage without sharing information using MPC. (ii) a non-cooperative distributed control, with a consensus term in the restrictions, that regulates the voltage based on the Koopman model of the inverters. (iii) a cooperative distributed MPC that uses the microgrid Koopman model, where the agents share their control inputs to generate the control signals. Here, we identify the input matrices by using data. (iv) a distributed control that uses data to identify the system error to design an ADMM algorithm. (v) an online data-driven controller that regulates the microgrid voltage and an analysis of the eigenvalues of the system and the effects of noisy measurements. | |
dc.description.abstract | Esta investigación propone varios algoritmos para la identificación y el control de microrredes eléctricas basados en el operador de Koopman. Las contribuciones que presentamos en este manuscrito se enfocan en el control de voltaje y de la potencia reactiva. Hemos considerado cinco escenarios de control basados en el operador de Koopman: (i) Un algoritmo centralizado que regula el voltaje de la microrred sin necesidad de compartir información y que usa MPC. (ii) un control distribuido no cooperativo, con un término de consenso en las restricciones del problema de optimización, que regula el voltaje y que se basa en el modelo de los inversores en el espacio de Koopman (iii) un control distribuido cooperativo que usa el modelo de la microrred en el espacio de Koopman, en donde los agentes usan las señales de control tomadas por otros agentes para generar sus propias señales. Aquí, identificamos las matrices de entrada usando datos. (iv) Un control distribuido, que usa datos para identificar el error del sistema, para diseñar un algoritmo basado en ADMM. (v) un controlador en línea basado en datos que regula el voltaje de la microrred. También, un análisis de los valores propios del sistema y los efectos de mediciones con ruido. (Texto tomado de la fuente). | |
dc.language | eng | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctrica | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Jean and D. Pitteloud, “Global Wind Power Statistics – Wind Energy International Platform,” 2019. | |
dc.relation | International Energy Agency, “Solar PV – Analysis - IEA,” 2020. | |
dc.relation | F. Milano, F. Dorfler, G. Hug, D. J. Hill, and G. Verbič, “Foundations and challenges of low-inertia systems (Invited Paper),” 20th Power Systems Computation Conference, PSCC 2018, 2018. | |
dc.relation | S. Akkari, E. Prieto-Araujo, J. Dai, O. Gomis-Bellmunt, and X. Guillaud, “Impact
of the dc cable models on the svd analysis of a multi-terminal hvdc system,” in 2016
Power Systems Computation Conference (PSCC), pp. 1–6, IEEE, 2016. | |
dc.relation | M. Budišić, R. Mohr, and I. Mezić, “Applied koopmanism,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 22, no. 4, p. 047510, 2012. | |
dc.relation | Y. Susuki and A. Chakrabortty, “Introduction to Koopman Mode Decomposition for
Data-Based Technology of Power System Nonlinear Dynamics,” IFAC-PapersOnLine,
vol. 51, no. 28, pp. 327–332, 2018. | |
dc.relation | V. T. Priyanga, M. Chandni, N. Mohan, and K. P. Soman, “Data-driven analysis
for low frequency oscillation identification in smart grid using FB-DMD and T-DMD
methods,” Proceedings of the 2019 9th International Conference on Advances in Computing and Communication, ICACC 2019, pp. 51–57, 2019. | |
dc.relation | F. Raak, Y. Susuki, and T. Hikihara, “Multi-Way Partitioning of Power Networks
via Koopman Mode Analysis,” IFAC-PapersOnLine, vol. 48, no. 30, pp. 421–426,
2015. | |
dc.relation | S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Sparse identification of nonlinear
dynamics with control (sindyc),” IFAC-PapersOnLine, vol. 49, no. 18, pp. 710–715,
2016. | |
dc.relation | M. Korda and I. Mezić, “Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control,” Automatica, vol. 93, pp. 149–160,
2018. | |
dc.relation | M. Korda, Y. Susuki, and I. Mezić, “Power grid transient stabilization using koopman
model predictive control,” IFAC-PapersOnLine, vol. 51, no. 28, pp. 297–302, 2018. | |
dc.relation | T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang, Z. Lin, and
K. H. Johansson, “A survey of distributed optimization,” Annual Reviews in Control,
vol. 47, no. xxxx, pp. 278–305, 2019. | |
dc.relation | R. H. Lasseter, “MicroGrids,” IEEE Power Engineering Society winter Meeting,
pp. 305–308, 2002. | |
dc.relation | J. J. Justo, F. Mwasilu, J. Lee, and J. W. Jung, “AC-microgrids versus DC-microgrids
with distributed energy resources: A review,” Renewable and Sustainable Energy
Reviews, vol. 24, pp. 387–405, 2013. | |
dc.relation | A. Tayyebi, F. Dörfler, F. Kupzog, Z. Miletic, and W. Hribernik, “Grid-Forming
Converters - Inevitability , Control Strategies and Challenges in Future Grid Applications and Challenges in Future Grids Application,” CIRED Workshop 2018,
no. 0236, pp. 1–5, 2018. | |
dc.relation | S. Sen and V. Kumar, “Microgrid control: A comprehensive survey,” Annual Reviews
in Control, vol. 45, no. March, pp. 118–151, 2018. | |
dc.relation | J. Schiffer, D. Zonetti, R. Ortega, A. M. Stanković, T. Sezi, and J. Raisch, “A
survey on modeling of microgrids—From fundamental physics to phasors and voltage
sources,” Automatica, vol. 74, pp. 135–150, 2016. | |
dc.relation | S. Moayedi and A. Davoudi, “Distributed Tertiary Control of DC Microgrid Clusters,”
IEEE Transactions on Power Electronics, vol. 31, no. 2, pp. 1717–1733, 2016. | |
dc.relation | F. Dörfler, J. W. Simpson-Porco, and F. Bullo, “Breaking the hierarchy: Distributed
control and economic optimality in microgrids,” IEEE Transactions on Control of
Network Systems, vol. 3, no. 3, pp. 241–253, 2015. | |
dc.relation | Z. S. Hou and Z. Wang, “From model-based control to data-driven control: Survey,
classification and perspective,” Information Sciences, vol. 235, pp. 3–35, 2013. | |
dc.relation | S. Yin, X. Li, H. Gao, and O. Kaynak, “Data-based techniques focused on modern
industry: An overview,” IEEE Transactions on Industrial Electronics, vol. 62, no. 1,
pp. 657–667, 2015. | |
dc.relation | Z. Hou and S. Xiong, “On model-free adaptive control and its stability analysis,”
IEEE Transactions on Automatic Control, vol. 64, no. 11, pp. 4555–4569, 2019. | |
dc.relation | S. L. Brunton and J. N. Kutz, Data-driven science and engineering: Machine learning, dynamical systems, and control. Cambridge University Press, 2022. | |
dc.relation | F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive dynamic programming for feedback control,” IEEE Circuits and Systems Magazine, vol. 9, no. 3,
pp. 32–50, 2009. | |
dc.relation | L. Buşoniu, T. de Bruin, D. Tolić, J. Kober, and I. Palunko, “Reinforcement learning
for control: Performance, stability, and deep approximators,” Annual Reviews in
Control, vol. 46, pp. 8–28, 2018. | |
dc.relation | B. Kiumarsi, K. G. Vamvoudakis, H. Modares, and F. L. Lewis, “Optimal and Autonomous Control Using Reinforcement Learning: A Survey,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 29, no. 6, pp. 2042–2062, 2018 | |
dc.relation | L. Buşoniu, R. Babuška, and B. De Schutter, “A comprehensive survey of multiagent
reinforcement learning,” IEEE Transactions on Systems, Man and Cybernetics Part
C: Applications and Reviews, vol. 38, no. 2, pp. 156–172, 2008. | |
dc.relation | M. L. Li, S. Chen, and J. Chen, “Adaptive Learning: A New Decentralized Reinforcement Learning Approach for Cooperative Multiagent Systems,” IEEE Access,
vol. 8, pp. 99404–99421, 2020. | |
dc.relation | F. Dietrich, T. N. Thiem, and I. G. Kevrekidis, “On the koopman operator of algorithms,” SIAM Journal on Applied Dynamical Systems, vol. 19, no. 2, pp. 860–885,
2020. | |
dc.relation | Z. Ping, Z. Yin, X. Li, Y. Liu, and T. Yang, “Deep Koopman model predictive control
for enhancing transient stability in power grids,” International Journal of Robust and
Nonlinear Control, vol. 31, no. 6, pp. 1964–1978, 2021. | |
dc.relation | C. W. Rowley, I. Mezi, S. Bagheri, P. Schlatter, and D. S. Henningson, “Spectral
analysis of nonlinear flows,” Journal of Fluid Mechanics, vol. 641, pp. 115–127, 2009. | |
dc.relation | M. Haseli and J. Cortés, “Approximating the Koopman operator using noisy data:
Noise-resilient extended dynamic mode decomposition,” Proceedings of the American
Control Conference, vol. 2019-July, pp. 5499–5504, 2019. | |
dc.relation | S. Peitz and S. Klus, “Koopman operator-based model reduction for switched-system
control of PDEs,” Automatica, vol. 106, pp. 184–191, 2019. | |
dc.relation | S. Klus, F. Nüske, P. Koltai, H. Wu, I. Kevrekidis, C. Schütte, and F. Noé, “DataDriven Model Reduction and Transfer Operator Approximation,” Journal of Nonlinear Science, vol. 28, no. 3, pp. 985–1010, 2018. | |
dc.relation | J. N. Kutz, X. Fu, and S. L. Brunton, “Multiresolution dynamic mode decomposition,” SIAM Journal on Applied Dynamical Systems, vol. 15, no. 2, pp. 713–735,
2016. | |
dc.relation | A. Mauroy, Y. Susuki, and I. Mezić, “Introduction to the koopman operator in dynamical systems and control theory,” in The Koopman Operator in Systems and
Control, vol. 484, pp. 3–33, Springer, 2020. | |
dc.relation | Y. Susuki and I. Mezić, “A prony approximation of Koopman Mode Decomposition,” Proceedings of the IEEE Conference on Decision and Control, vol. 54rd IEEE
Conference on Decision and Control,CDC 2015, no. Cdc, pp. 7022–7027, 2015. | |
dc.relation | M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, “A Data–Driven Approximation
of the Koopman Operator: Extending Dynamic Mode Decomposition,” Journal of
Nonlinear Science, vol. 25, no. 6, pp. 1307–1346, 2015. | |
dc.relation | P. J. Schmid, “Dynamic mode decomposition of numerical and experimental data,”
Journal of Fluid Mechanics, vol. 656, pp. 5–28, 2010. | |
dc.relation | J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz, “On
dynamic mode decomposition: Theory and applications,” Journal of Computational
Dynamics, vol. 1, no. 2, pp. 391–421, 2014. | |
dc.relation | I. Mezic, “Spectral properties of dynamical systems, model reduction and decompositions,” Nonlinear Dynamics, vol. 41, pp. 309–325, 2005. | |
dc.relation | J. L. Proctor, S. L. Brunton, and J. N. Kutz, “Dynamic mode decomposition with
control,” SIAM Journal on Applied Dynamical Systems, vol. 15, no. 1, pp. 142–161,
2016. | |
dc.relation | J. Mann and J. N. Kutz, “Dynamic mode decomposition for financial trading strategies,” Quantitative Finance, vol. 16, no. 11, pp. 1643–1655, 2016 | |
dc.relation | N. B. Erichson, S. L. Brunton, and J. N. Kutz, “Compressed dynamic mode decomposition for background modeling,” Journal of Real-Time Image Processing, vol. 16,
no. 5, pp. 1479–1492, 2019. | |
dc.relation | A. E. Saldana, E. Barocio, A. R. Messina, J. J. Ramos, R. J. Segundo, and G. A.
Tinajero, “Monitoring harmonic distortion in microgrids using dynamic mode decomposition,” IEEE Power and Energy Society General Meeting, vol. 2018-Janua,
pp. 1–5, 2018. | |
dc.relation | E. Kaiser, J. N. Kutz, and S. Brunton, “Data-driven discovery of Koopman eigenfunctions for control,” Machine Learning: Science and Technology, vol. 98195, pp. 1–40,
2021. | |
dc.relation | M. Korda and I. Mezic, “Optimal Construction of Koopman Eigenfunctions for Prediction and Control,” IEEE Transactions on Automatic Control, vol. 65, no. 12,
pp. 5114–5129, 2020. | |
dc.relation | M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent networks.
Princeton University Press, 2010. | |
dc.relation | D. P. Bertsekas and J. N. Tsitsiklis, “Comments on "Coordination of groups of mobile
autonomous agents using nearest neighbor rules",” IEEE Transactions on Automatic
Control, vol. 52, no. 5, pp. 968–969, 2007. | |
dc.relation | F. L. Lewis, H. Zhang, K. Hengster-Movric, and A. Das, Cooperative Control of
Multi-Agent Systems. Communications and Control Engineering, London: Springer
London, 2014. | |
dc.relation | A. Mohammed, S. S. Refaat, S. Bayhan, and H. Abu-Rub, “Ac microgrid control and
management strategies: Evaluation and review,” IEEE Power Electronics Magazine,
vol. 6, no. 2, pp. 18–31, 2019. | |
dc.relation | D. K. Molzahn, F. Dörfler, H. Sandberg, S. H. Low, S. Chakrabarti, R. Baldick, and
J. Lavaei, “A Survey of Distributed Optimization and Control Algorithms for Electric
Power Systems,” IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 2941–2962,
2017. | |
dc.relation | R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 215–233,
2007. | |
dc.relation | Dörfler, Florian, “Distributed consensus-based optimization review of optimization theory.” https://people.ee.ethz.ch/~floriand/docs/Teaching/ATIC_
2017/Optimization_Lecture.pdf, 2017. Accessed: 2021-02-06. | |
dc.relation | T. Tatarenko and B. Touri, “Non-Convex Distributed Optimization,” IEEE Transactions on Automatic Control, vol. 62, no. 8, pp. 3744–3757, 2017. | |
dc.relation | W. Powell, Approximate Dynamic Programming: Solving the Curses of Dimensionality: Second Edition. United States: Wiley-Blackwell, Sept. 2011. | |
dc.relation | M. Korda, Y. Susuki, and I. Mezić, “Power grid transient stabilization using Koopman
model predictive control,” IFAC-PapersOnLine, vol. 51, no. 28, pp. 297–302, 2018. | |
dc.relation | T. Goldstein, B. O’Donoghue, S. Setzep, and R. Baraniuk, “Fast alternating direction
optimization methods,” SIAM Journal on Imaging Sciences, vol. 7, no. 3, pp. 1588–
1623, 2014. | |
dc.relation | H. Zhang, C. W. Rowley, E. A. Deem, and L. N. Cattafesta, “Online dynamic mode
decomposition for time-varying systems,” SIAM Journal on Applied Dynamical Systems, vol. 18, no. 3, pp. 1586–1609, 2019. | |
dc.relation | M. Wanner and I. Mezić, “Robust approximation of the stochastic koopman operator,” SIAM Journal on Applied Dynamical Systems, vol. 21, no. 3, pp. 1930–1951,
2022. | |
dc.relation | S. Sinha, B. Huang, and U. Vaidya, “On Robust Computation of Koopman Operator and Prediction in Random Dynamical Systems,” Journal of Nonlinear Science,
vol. 30, no. 5, pp. 2057–2090, 2020. | |
dc.relation | P. Tielens and D. Van Hertem, “The relevance of inertia in power systems,” Renewable
and Sustainable Energy Reviews, vol. 55, no. 2016, pp. 999–1009, 2016. | |
dc.relation | N. Pogaku, M. Prodanović, and T. C. Green, “Modeling, analysis and testing of
autonomous operation of an inverter-based microgrid,” IEEE Transactions on Power
Electronics, vol. 22, no. 2, pp. 613–625, 2007. | |
dc.relation | J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodríguez, “Control of power converters
in ac microgrids,” IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4734–
4749, 2012. | |
dc.relation | S. Anderson, P. Hidalgo-Gonzalez, R. Dobbe, and C. J. Tomlin, “Distributed Model
Predictive Control for Autonomous Droop-Controlled Inverter-Based Microgrids,”
Proceedings of the IEEE Conference on Decision and Control, vol. 2019-Decem,
no. Cdc, pp. 6242–6248, 2019. | |
dc.relation | Q.-C. Zhong and Y. Zeng, “Universal droop control of inverters with different types
of output impedance,” IEEE access, vol. 4, pp. 702–712, 2016. | |
dc.relation | Q. Liu, Y. Tao, X. Liu, Y. Deng, and X. He, “Voltage unbalance and harmonics
compensation for islanded microgrid inverters,” IET Power Electronics, vol. 7, no. 5,
pp. 1055–1063, 2014. | |
dc.relation | J. Schiffer, R. Ortega, A. Astolfi, J. Raisch, and T. Sezi, “Conditions for stability of
droop-controlled inverter-based microgrids,” Automatica, vol. 50, no. 10, pp. 2457–
2469, 2014. | |
dc.relation | J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. De Vicuña, and M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids - A general approach
toward standardization,” IEEE Transactions on Industrial Electronics, vol. 58, no. 1,
pp. 158–172, 2011. | |
dc.relation | J. M. Guerrero, M. Chandorkar, T. Lee, and P. C. Loh, “Advanced Control Architectures for Intelligent Microgrids; Part I: Decentralized and Hierarchical Control,”
Industrial Electronics, IEEE Transactions on, vol. 60, no. 4, pp. 1254–1262, 2013. | |
dc.relation | J. Hu, Y. Shan, J. M. Guerrero, A. Ioinovici, K. W. Chan, and J. Rodriguez, “Model
predictive control of microgrids – An overview,” Renewable and Sustainable Energy
Reviews, vol. 136, no. September 2020, p. 110422, 2021. | |
dc.relation | R. P. Aguilera and D. E. Quevedo, “Predictive control of power converters: Designs
with guaranteed performance,” IEEE Transactions on Industrial Informatics, vol. 11,
no. 1, pp. 53–63, 2015. | |
dc.relation | G. Qu and N. Li, “Optimal Distributed Feedback Voltage Control under Limited
Reactive Power,” IEEE Transactions on Power Systems, vol. 35, no. 1, pp. 315–331,
2020. | |
dc.relation | L. M. Leon, A. S. Bretas, and S. Rivera, “Quadratically constrained quadratic programming formulation of contingency constrained optimal power flow with photovoltaic generation,” Energies, vol. 13, no. 13, 2020. | |
dc.relation | J. Boudreaux, “Design, Simulation, and Construction of an IEEE 14-Bus Power
System,” LSU Master’s Theses, sep 2018. | |
dc.relation | J. Lofberg, “Yalmip : a toolbox for modeling and optimization in matlab,” in
2004 IEEE International Conference on Robotics and Automation (IEEE Cat.
No.04CH37508), pp. 284–289, 2004. | |
dc.relation | P. D. Christofides, R. Scattolini, D. Muñoz de la Peña, and J. Liu, “Distributed model
predictive control: A tutorial review and future research directions,” Computers and
Chemical Engineering, vol. 51, pp. 21–41, 2013. | |
dc.relation | J. Maestre and R. Negenborn, Distributed Model Predictive Control Made Easy,
vol. 69 of Intelligent Systems, Control and Automation: Science and Engineering;
Distributed Model Predictive Control Made Easy. Springer Netherlands, 2014. | |
dc.relation | S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization
and statistical learning via the alternating direction method of multipliers,” Foundations and Trends in Machine Learning, vol. 3, no. 1, pp. 1–122, 2010. | |
dc.relation | P. Šulc, S. Backhaus, and M. Chertkov, “Optimal distributed control of reactive
power via the alternating direction method of multipliers,” IEEE Transactions on
Energy Conversion, vol. 29, no. 4, pp. 968–977, 2014. | |
dc.relation | F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal control. John Wiley & Sons, 2012. | |
dc.relation | C. Conte, C. N. Jones, M. Morari, and M. N. Zeilinger, “Distributed synthesis and
stability of cooperative distributed model predictive control for linear systems,” Automatica, vol. 69, pp. 117–125, 2016. | |
dc.relation | M. Chen, J. Zhao, Z. Xu, Y. Liu, Y. Zhu, and Z. Shao, “Cooperative distributed
model predictive control based on topological hierarchy decomposition,” Control Engineering Practice, vol. 103, no. August, 2020. | |
dc.relation | D. Fu, H.-T. Zhang, A. Dutta, and G. Chen, “A cooperative distributed model
predictive control approach to supply chain management,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, vol. 50, no. 12, pp. 4894–4904, 2020. | |
dc.relation | S. P. Nandanoori, S. Pal, S. Sinha, S. Kundu, K. Agarwal, and S. Choudhury,
“Data-driven Distributed Learning of Multi-agent Systems: A Koopman Operator
Approach,” Proceedings of the IEEE Conference on Decision and Control, vol. 2021-
December, no. Cdc, pp. 5059–5066, 2021. | |
dc.relation | B. T. Stewart, A. N. Venkat, J. B. Rawlings, S. J. Wright, and G. Pannocchia, “Cooperative distributed model predictive control,” Systems & Control Letters, vol. 59,
no. 8, pp. 460–469, 2010. | |
dc.relation | N. Bastianello, A. Simonetto, and R. Carli, “Distributed prediction-correction admm
for time-varying convex optimization,” in 2020 54th Asilomar Conference on Signals,
Systems, and Computers, pp. 47–52, 2020. | |
dc.relation | E. Wei and A. Ozdaglar, “Distributed alternating direction method of multipliers,”
in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pp. 5445–5450,
2012. | |
dc.relation | H. Arbabi and I. Mezić, “Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the Koopman operator,” SIAM Journal on Applied
Dynamical Systems, vol. 16, no. 4, pp. 2096–2126, 2017. | |
dc.relation | W. W. Hager, “Updating the inverse of a matrix,” SIAM Review, vol. 31, no. 2,
pp. 221–239, 1989. | |
dc.relation | X. Zhang, W. Pan, R. Scattolini, S. Yu, and X. Xu, “Robust tube-based model
predictive control with Koopman operators,” Automatica, vol. 137, p. 110114, 2022. | |
dc.relation | M. Akinkunmi, Introduction to Statistical Analysis, pp. 1–13. Cham: Springer International Publishing, 2019. | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Data-driven control of interconnected energy systems | |
dc.type | Trabajo de grado - Doctorado | |