dc.contributor | Velasquéz Márquez, León Mauricio | |
dc.contributor | Estado Sólido y Catálisis Ambiental | |
dc.creator | Quiroga Mateus, William Andrés | |
dc.date.accessioned | 2023-06-01T15:10:41Z | |
dc.date.accessioned | 2023-06-06T23:19:59Z | |
dc.date.available | 2023-06-01T15:10:41Z | |
dc.date.available | 2023-06-06T23:19:59Z | |
dc.date.created | 2023-06-01T15:10:41Z | |
dc.date.issued | 2023 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/83943 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6651229 | |
dc.description.abstract | En este trabajo de investigación se realizó inicialmente una revisión del estado del arte sobre
la reacción de carboxilación directa entre el glicerol y el CO2 para la obtención de carbonato
de glicerol, abarcando aspectos como las problemáticas ambientales, la naturaleza de los
catalizadores empleados, limitaciones cinéticas y termodinámicas. Posteriormente, óxidos de
La y La/Zr fueron sintetizados por el método de coprecipitación convencional y
caracterizados evaluando sus propiedades fisicoquímicas para luego ser empleados en dicha
reacción. Adicionalmente, se realizó un estudio sobre los parámetros que afectan la reacción
como el efecto del agua, temperatura, presión, tiempo, agente desecante y masa de
catalizador. Finalmente, los resultados obtenidos ilustran que el catalizador de La/Zr es
promisorio para la producción de este compuesto de alto interés industrial debido a la
correlación entre su capacidad de captura y liberación de CO2 junto a su actividad catalítica. (Texto tomado de la fuente) | |
dc.description.abstract | In this research work, a review of the state of the art on the direct carboxylation reaction
between glycerol and CO2 to obtain glycerol carbonate was mainly carried out, covering
aspects such as environmental problems, the nature of the catalysts used, kinetic and
thermodynamics limitations. Subsequently, the oxides of La and La/Zr were synthesized by
the conventional coprecipitation method and characterized by evaluating their
physicochemical properties to later be used in this reaction. Additionally, a study was carried
out on the parameters that flourish the reaction such as the effect of water, temperature,
pressure, time, drying agent and catalyst mass. Finally, the results obtained illustrate that the
La/Zr catalyst is promising for the production of this compound of high industrial interest
due to the connection between its capacity to capture and release CO2 together with its
catalytic activity. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Química | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | [1] C. Teodoriu and O. Bello, “A review of cement testing apparatus and methods under CO2
environment and their impact on well integrity prediction – Where do we stand ?,” J. Pet. Sci.
Eng., vol. 187, no. September 2019, p. 106736, 2020. | |
dc.relation | [2] H. Esmaeili, “A critical review on the economic aspects and life cycle assessment of biodiesel
production using heterogeneous nanocatalysts,” Fuel Process. Technol., vol. 230, no. March,
p. 107224, 2022. | |
dc.relation | [3] M. V Semkiv, J. Ruchala, K. V Dmytruk, and A. A. Sibirny, “100 Years Later , What Is New
in Glycerol Bioproduction ?,” Trends Biotechnol., vol. 38, no. 8, pp. 907–916, 2020. | |
dc.relation | [4] J. A. Posada-duque and C. A. Cardona-alzate, “Análisis de la refinación de glicerina obtenida
como coproducto en la producción de biodiésel la producción de biodiésel,” Ing. Univ. Bogotá,
vol. 14, no. 1, pp. 9–27, 2010. | |
dc.relation | [5] International Energy Agency, “CO2 emissions from fuel combustion,” Outlook, pp. 1–92,
2020. | |
dc.relation | [6] S. Lukato, G. N. Kasozi, B. Naziriwo, and E. Tebandeke, “Glycerol carbonylation with CO2 | |
dc.relation | [7] P. de Caro, M. Bandres, M. Urrutigoïty, C. Cecutti, and S. Thiebaud-Roux, “Recent progress
in synthesis of glycerol carbonate and evaluation of its plasticizing properties,” Front. Chem.,
vol. 7, no. MAY, pp. 1–13, 2019. | |
dc.relation | [8] “Global Monitoring Laboratory - Carbon Cycle Greenhouse Gases.” [Online]. Available:
https://gml.noaa.gov/ccgg/trends/global.html. [Accessed: 19-Feb-2022]. | |
dc.relation | [9] S. Chen, G. Zhou, and C. Miao, “Green and renewable bio-diesel produce from oil
hydrodeoxygenation : Strategies for catalyst development and mechanism,” Renew. Sustain.
Energy Rev., vol. 101, no. November 2018, pp. 568–589, 2019. | |
dc.relation | [10] Herrera et all, “Biocombustibles En Colombia,” FedeBiocombustibles, p. 22, 2020. | |
dc.relation | [11] “Federación nacional de biocombustibles de Colombia,” 2021. [Online]. Available:
https://www.fedebiocombustibles.com/nota-web-id-488.htm. [Accessed: 23-Mar-2021]. | |
dc.relation | [12] M. Ripoll and L. Betancor, “Opportunities for the valorization of industrial glycerol via
biotransformations,” Curr. Opin. Green Sustain. Chem., vol. 28, 2021. | |
dc.relation | [13] A. Khosravanipour Mostafazadeh et al., “An insight into an electro-catalytic reactor concept
for high value-added production from crude glycerol: Optimization, electrode passivation,
product distribution, and reaction pathway identification,” Renewable Energy, vol. 172. pp.
130–144, 2021. | |
dc.relation | [14] P. U. Okoye, A. Longoria, P. J. Sebastian, S. Wang, S. Li, and B. H. Hameed, “A review on
recent trends in reactor systems and azeotrope separation strategies for catalytic conversion of
biodiesel-derived glycerol,” Sci. Total Environ., vol. 719, 2020. | |
dc.relation | [15] S. Nomanbhay, M. Y. Ong, K. W. Chew, P. Show, M. K. Lam, and W. Chen, “Organic
Carbonate Production Utilizing Crude Glycerol Derived as By-Product of Biodiesel
Production : A Review,” Energies, vol. 13, no. 1483, pp. 1–23, 2020. | |
dc.relation | [16] M. O. Sonnati, S. Amigoni, T. Darmanin, and O. Choulet, “Glycerol carbonate as a versatile
building block for tomorrow: synthesis, reactivity, properties and applications,” Green Chem.,
no. 2005, pp. 283–306, 2013. | |
dc.relation | [17] S. Christy, A. Noschese, M. Lomelí-Rodriguez, N. Greeves, and J. A. Lopez-Sanchez,
“Recent progress in the synthesis and applications of glycerol carbonate,” Curr. Opin. Green
Sustain. Chem., vol. 14, pp. 99–107, 2018. | |
dc.relation | [18] G. P. Fernandes and G. D. Yadav, “Selective glycerolysis of urea to glycerol carbonate using
combustion synthesized magnesium oxide as catalyst,” Catal. Today, vol. 309, no. March
2017, pp. 153–160, 2018. | |
dc.relation | [19] W. K. Teng, G. C. Ngoh, R. Yusoff, and M. K. Aroua, “A review on the performance of
glycerol carbonate production via catalytic transesterification: Effects of influencing
parameters,” Energy Convers. Manag., vol. 88, pp. 484–497, 2014. | |
dc.relation | [20] S. Sahani, S. N. Upadhyay, and Y. C. Sharma, “Critical Review on Production of Glycerol
Carbonate from Byproduct Glycerol through Transesterification,” Ind. Eng. Chem. Res., vol.
60, no. 1, pp. 67–88, 2021. | |
dc.relation | [21] H. Li et al., “Synthesis of glycerol carbonate from glycerol and CO2 over La2O2CO3/ZnO
36
catalysts,” Catal. Sci. Technol., vol. 0, no. 0, p. 0, 2013. | |
dc.relation | [22] J. Liu and D. He, “Transformation of CO2 with glycerol to glycerol carbonate by a novel
ZnWO4-ZnO catalyst,” J. CO2 Util., vol. 26, no. May, pp. 370–379, 2018. | |
dc.relation | [23] J. Liu, Y. Li, H. Liu, and D. He, “Transformation of CO2 and glycerol to glycerol carbonate
over CeO2 e ZrO2 solid solution effect of Zr doping,” Biomass and Bioenergy, vol. 118, no.
October 2017, pp. 74–83, 2018. | |
dc.relation | [24] H. Li et al., “Synthesis of glycerol carbonate by direct carbonylation of glycerol with CO2
over solid catalysts derived from Zn/Al/La and Zn/Al/La/M (M = Li, Mg and Zr)
hydrotalcites,” Catal. Sci. Technol., vol. 5, no. 2, pp. 989–1005, 2015. | |
dc.relation | [25] J. H. Clements, “Reactive applications of cyclic alkylene carbonates,” Ind. Eng. Chem. Res.,
vol. 42, no. 4, pp. 663–674, 2003. | |
dc.relation | [25] J. H. Clements, “Reactive applications of cyclic alkylene carbonates,” Ind. Eng. Chem. Res.,
vol. 42, no. 4, pp. 663–674, 2003. | |
dc.relation | [26] Huntsman Corp, “JEFFSOL ® Glycerine Carbonate,” p. Technical Bulletin, 2010. | |
dc.relation | [27] R. G. Sotomayor, A. R. Holguín, D. M. Cristancho, D. R. Delgado, and F. Martínez,
“Extended Hildebrand Solubility Approach applied to piroxicam in ethanol + water mixtures,”
J. Mol. Liq., vol. 180, pp. 34–38, 2013. | |
dc.relation | [28] P. Lameiras et al., “Glycerol and glycerol carbonate as ultraviscous solvents for mixture
analysis by NMR,” J. Magn. Reson., vol. 212, no. 1, pp. 161–168, 2011. | |
dc.relation | [29] D. Bégin, M. Moumen, and M. Gérin, “La substitution des solvants par l’alcool benzylique
rapport.” 2005. | |
dc.relation | [30] C. Ursin, C. M. Hansen, J. W. Van Dyk, P. O. Jensen, I. J. Christensen, and J. Ebbehoej,
“Permeability of Commercial Solvents Through Living Human Skin,” Am. Ind. Hyg. Assoc.
J., vol. 56, no. 7, pp. 651–660, 1995. | |
dc.relation | [31] G. Ou, B. He, and Y. Yuan, “Design of biosolvents through hydroxyl functionalization of
compounds with high dielectric constant,” Appl. Biochem. Biotechnol., vol. 166, no. 6, pp.
1472–1479, 2012. | |
dc.relation | [32] M. Benoit, Y. Brissonnet, E. Guélou, K. De-Oliveira-Vigier, J. Barrault, and F. Jérôme, “Acidcatalyzed dehydration of fructose and inulin with glycerol or glycerol carbonate as renewably
sourced co-solvent,” ChemSusChem, vol. 3, no. 11, pp. 1304–1309, 2010. | |
dc.relation | [33] S. Holmiere, R. Valentin, and P. Marechal, “Esters of oligo- ( glycerol carbonate-glycerol ):
new biobased oligomeric,” 2016. | |
dc.relation | [34] J. Britz, W. H. Meyer, and G. Wegner, “Blends of poly(meth)acrylates with 2-oxo-
(1,3)dioxolane side chains and lithium salts as lithium ion conductors,” Macromolecules, vol.
40, no. 21, pp. 7558–7565, 2007. | |
dc.relation | [35] A. S. Kovvali and K. K. Sirkar, “Dendrimer liquid membranes: CO2 separation from gas
mixtures,” Ind. Eng. Chem. Res., vol. 40, no. 11, pp. 2502–2511, 2001. | |
dc.relation | [36] K. Iaych, S. Dumarcay, P. Gérardin, R. Belakhmima, M. Ebn Touhami, and M. Chaouch,
“Non isocyanate route to polyurethanes from polyglycerol five membered polycarbonate,” J.
Mater. Environ. Sci., vol. 6, no. 11, pp. 3245–3250, 2015. | |
dc.relation | [37] R. Bai et al., “One-pot synthesis of glycidol from glycerol and dimethyl carbonate over a
highly efficient and easily available solid catalyst NaAlO2,” Green Chem., vol. 15, no. 10, pp.
2929–2934, 2013. | |
dc.relation | [38] J. Geschwind and H. Frey, “Poly(1,2-glycerol carbonate): A fundamental polymer structure
synthesized from CO2 and glycidyl ethers,” Macromolecules, vol. 46, no. 9, pp. 3280–3287,
2013. | |
dc.relation | [39] Y. Tachibana, X. Shi, D. Graiver, and R. Narayan, “The Use of Glycerol Carbonate in the
Preparation of Highly Branched Siloxy Polymers,” Silicon, vol. 7, no. 1, pp. 5–13, 2015. | |
dc.relation | [40] H. Joo, S. J. Cho, and K. Na, “Control of CO2 absorption capacity and kinetics by MgO-based
dry sorbents promoted with carbonate and nitrate salts,” J. CO2 Util., vol. 19, pp. 194–201,
2017. | |
dc.relation | [41] J. Miranda-Pizarro, A. Perejón, J. M. Valverde, L. A. Pérez-Maqueda, and P. E. SánchezJiménez, “CO2 capture performance of Ca-Mg acetates at realistic Calcium Looping
conditions,” Fuel, vol. 196, pp. 497–507, 2017. | |
dc.relation | [42] N. Azri, R. Irmawati, U. Idris Nda-Umar, M. Izham Saiman, and Y. Hin Taufiq-Yap,
“Promotional Effect of Transition Metals (Cu, Ni, Co, Fe, Zn)–Supported on Dolomite for
Hydrogenolysis of Glycerol into 1,2-propanediol,” Arab. J. Chem., p. 103047, 2021. | |
dc.relation | [43] T. Leungcharoenwattana and S. Jitkarnka, “Bio-based chemical production from glycerol
conversion with ethanol co-feeding over Zr-promoted MgAl-layered double oxide catalysts:
Impact of zirconium location,” J. Clean. Prod., vol. 273, 2020. | |
dc.relation | [44] X. Su et al., “Metal-free catalytic conversion of CO2 and glycerol to glycerol carbonate,”
Green Chem., vol. 19, no. 7, pp. 1775–1781, 2017. | |
dc.relation | [45] H. Li et al., “Direct carbonylation of glycerol with CO2 to glycerol carbonate over Zn/Al/La/X
(X = F, Cl, Br) catalysts: The influence of the interlayer anion,” J. Mol. Catal. A Chem., vol.
402, pp. 71–78, 2015. | |
dc.relation | [46] N. A. Razali, M. Conte, and J. McGregor, “The role of impurities in the La2O3 catalysed
carboxylation of crude glycerol,” Catal. Letters, vol. 149, no. 5, pp. 1403–1414, 2019. | |
dc.relation | [47] V. A. Online, A. B. Halgeri, and G. V Shanbhag, “Glycerol acetins: Fuel additive synthesis
by acetylation and esterification of glycerol using cesium phosphotungstate catalyst,” RSC
Adv., vol. 5, no. 126, pp. 104354–104362, 2015. | |
dc.relation | [48] L. Jyoti et al., “Shape selectivity and acidity effects in glycerol acetylation with acetic
anhydride: Selective synthesis of triacetin over Y-zeolite and sulfonated mesoporous
carbons,” J. Catal., vol. 329, pp. 237–247, 2015. | |
dc.relation | [49] M. Aresta, A. Dibenedetto, F. Nocito, and C. Pastore, “A study on the carboxylation of
glycerol to glycerol carbonate with carbon dioxide: The role of the catalyst, solvent and
reaction conditions,” Atmos. Environ., vol. 41, no. 2, pp. 407–416, 2007. | |
dc.relation | [50] J. George, Y. Patel, S. M. Pillai, and P. Munshi, “Methanol assisted selective formation of
1,2-glycerol carbonate from glycerol and carbon dioxide using nBu2SnO as a catalyst,” J. Mol.
Catal. A Chem., vol. 304, no. 1–2, pp. 1–7, 2009. | |
dc.relation | [51] P. G. Jessop and B. Subramaniam, “Gas-Expanded Liquids,” Chem. Rev., vol. 107, pp. 2666–
2694, 2007. | |
dc.relation | [52] J. Zhang and D. He, “Synthesis of glycerol carbonate and monoacetin from glycerol and
carbon dioxide over Cu catalysts: the role of supports,” Wiley Online Libr., no. April, 2014. | |
dc.relation | [53] J. Liu, Y. Li, J. Zhang, and D. He, “Glycerol carbonylation with CO2 to glycerol carbonate
38
over CeO2 catalyst and the influence of CeO2 preparation methods and reaction parameters,”
Appl. Catal. A Gen., vol. 513, pp. 9–18, 2016. | |
dc.relation | [54] C. yi Park, H. Nguyen-Phu, and E. W. Shin, “Glycerol carbonation with CO2 and
La2O2CO3ZnO catalysts prepared by two different methods: Preferred reaction route
depending on crystalline structure,” Mol. Catal., vol. 435, pp. 99–109, 2017. | |
dc.relation | [55] L. P. Ozorio and C. J. A. Mota, “Direct Carbonation of Glycerol with CO2 Catalyzed by Metal
Oxides,” ChemPubSoc Eur., vol. 909, pp. 3260–3265, 2017. | |
dc.relation | [56] J. Liu, Y. Li, H. Liu, and D. He, “Photo-thermal synergistically catalytic conversion of
glycerol and carbon dioxide to glycerol carbonate over Au/ZnWO4-ZnO catalysts,” Appl.
Catal. B Environ., vol. 244, no. September 2018, pp. 836–843, 2019. | |
dc.relation | [57] Y. Li, H. Liu, L. Ma, J. Liu, and D. He, “Transforming glycerol and CO2 into glycerol
carbonate over La2O2CO3-ZnO catalyst — a case study of the photo-thermal synergism,”
Catal. Sci. Technol., vol. 11, no. 3, pp. 1007–1013, 2021. | |
dc.relation | [58] C. Collett, O. Mašek, N. Razali, and J. McGregor, “Influence of biochar composition and
source material on catalytic performance: the carboxylation of glycerol with CO2 as a case
study,” Catalysts, vol. 10, no. 9, pp. 1–20, 2020. | |
dc.relation | [59] C. Vieville, J. W. Yoo, S. Pelet, and Z. Mouloungui, “Synthesis of glycerol carbonate by direct
carbonatation of glycerol in supercritical CO2 in the presence of zeolites and ion exchange
resins,” Catal. Letters, vol. 56, pp. 245–247, 1998. | |
dc.relation | [60] L. P. Ozorio et al., “Metal-impregnated zeolite Y as efficient catalyst for the direct carbonation
of glycerol with CO2,” Appl. Catal. A Gen., vol. 504, pp. 187–191, 2015. | |
dc.relation | [61] C. Hu, M. Yoshida, H. Chen, S. Tsunekawa, Y. Lin, and J. Huang, “Production of glycerol
carbonate from carboxylation of glycerol with CO2 using ZIF-67 as a catalyst,” Chem. Eng.
Sci., vol. 235, p. 116451, 2021. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Obtención de carbonato de glicerol a partir de glicerol y CO2 empleando óxidos de La y La/Zr | |
dc.type | Trabajo de grado - Maestría | |