dc.contributorZea Ramírez, Hugo Ricardo
dc.contributorArias Monje, Pedro José
dc.contributorGrupo de Investigación en Materiales, Catálisis y Medio Ambiente
dc.creatorGarcía Vargas, Andrés Leonardo
dc.date.accessioned2021-10-19T17:47:59Z
dc.date.accessioned2023-06-06T23:17:04Z
dc.date.available2021-10-19T17:47:59Z
dc.date.available2023-06-06T23:17:04Z
dc.date.created2021-10-19T17:47:59Z
dc.date.issued2021
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/80577
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6651200
dc.description.abstractSistemas de ultrafiltración emplean membranas con poros de 20 – 200 nm. En este trabajo se estudia la producción de membranas de nanotubos de dióxido de titanio y su uso en ultrafiltración. Nanotubos de dióxido de titanio fueron obtenidos por anodización potenciostática de láminas de titanio en etilenglicol con fluoruro de amonio y agua. Se analizaron los efectos del contenido de fluoruro de amonio, voltaje y separación de los electrodos sobre las dimensiones de los nanotubos. Se evidenció que una preanodización mejora el grado de ordenamiento de los nanotubos. Adicionalmente, se encontró correlación entre la presencia de defectos en el arreglo de nanotubos y la relación fluoruro de amonio / agua. Para separar la capa de nanotubos del soporte metálico y así obtener una membrana se evaluaron tres métodos: separación mecánica, disolución con peróxido de hidrógeno y paso de alto voltaje. Empleando el método de paso de alto voltaje, pasando de 60 V a 150 V al final de la anodización, se obtiene una membrana de nanotubos de dióxido de titanio con 68% de poros abiertos, diámetro promedio de poro de 121 nm, 25 µm de espesor, tortuosidad de 1 y superficie hidrofílica; características adecuadas para una membrana de ultrafiltración. Sin embargo, esta membrana se quiebra a presiones superiores a 2448 Pa, indicando que se requiere evaluar un refuerzo mecánico. Se diseñó un soporte para realizar ensayos de difusión a través de la membrana, y se comprobó que esta permite el paso de partículas acorde a su tamaño de poro. (Texto tomado de la fuente).
dc.description.abstractUltrafiltration systems use membranes with pores of 20-200 nm. In this work, the production of titanium dioxide nanotube membranes and their use in ultrafiltration are studied. Titanium dioxide nanotubes were obtained by potentiostatic anodization of titanium foil in ethylene glycol, ammonium fluoride and water mixtures. The effects of ammonium fluoride content, voltage and electrode spacing on the dimensions of the nanotubes were analyzed. It was evidenced that a pre-anodization improves the degree of ordering of the nanotubes. Additionally, a correlation between the presence of defects in the nanotube array and the ammonium fluoride / water ratio was found. To obtain a membrane by separating the nanotube layer from the metallic substrate, three methodologies were evaluated: mechanical separation, dissolution with hydrogen peroxide and high-voltage step. Using the high-voltage step method, going from 60 V to 150 V at the end of the anodization, a titanium dioxide nanotube membrane is obtained with 68% open pores, average pore diameter of 121 nm, 25 µm thick, tortuosity of 1 and hydrophilic surface; suitable characteristics for an ultrafiltration membrane. However, this membrane breaks at pressures higher than 2448 Pa, indicating that it is necessary to evaluate a mechanical reinforcement. A support was designed to carry out diffusion tests through the membrane, and it was found that the membrane let the particles permeate according to its pore size.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.publisherDepartamento de Ingeniería Química y Ambiental
dc.publisherFacultad de Ingeniería
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationDuPontTM, “Titanium Dioxide for Coatings”, pp. 1–28, 2007.
dc.relationM. Janus, Application of Titanium Dioxide. IntechOpen, 2017.
dc.relationP. J. Arias Monje, “Photoelectrocatalytic hydrogen production with TiO2 nanostructures formed by alternating voltage anodization”, Universidad Nacional de Colombia - Sede Bogotá, 2016, Recuperado a partir de http://www.bdigital.unal.edu.co/52732/.
dc.relationJ. Choi, G. Kang, y T. Park, “A Competitive electron transport mechanism in hierarchical homogeneous hybrid structures composed of TiO2 nanoparticles and nanotubes”, Chem. Mater., vol. 27, núm. 4, pp. 1359–1366, 2015, https://doi.org/10.1021/cm504516n.
dc.relationD. H. Yu, X. Yu, C. Wang, X. C. Liu, y Y. Xing, “Synthesis of natural cellulose-templated TiO 2/Ag nanosponge composites and photocatalytic properties”, ACS Appl. Mater. Interfaces, vol. 4, núm. 5, pp. 2781–2787, 2012, https://doi.org/10.1021/am3004363.
dc.relationR. S. C. Nanoscience, Nanotubes and Nanowires. 2007.
dc.relationP. J. Arias, “Degradación de Naranja Ácido 7 con una Capa Fina de TiO2 Formada por Anodización con Voltaje Alternante”, Universidad Nacional de Colombia - Sede Bogotá, 2013.
dc.relationY. Zhao et al., “Efficient photocatalytic degradation of gaseous N,N-dimethylformamide in tannery waste gas using doubly open-ended Ag/TiO 2 nanotube array membranes”, Appl. Surf. Sci., vol. 444, pp. 610–620, 2018, https://doi.org/10.1016/j.apsusc.2018.03.038.
dc.relationL.-L. Li, Y.-J. Chen, H.-P. Wu, N. S. Wang, y E. W.-G. Diau, “Detachment and transfer of ordered TiO2 nanotube arrays for front-illuminated dye-sensitized solar cells”, Energy Environ. Sci., vol. 4, núm. 9, p. 3420, 2011, https://doi.org/10.1039/c0ee00474j.
dc.relationY. Ji et al., “Highly-ordered TiO 2 nanotube arrays with double-walled and bamboo-type structures in dye-sensitized solar cells”, Nano Energy, vol. 1, núm. 6, pp. 796–804, 2012, https://doi.org/10.1016/j.nanoen.2012.08.006.
dc.relationC. A. Grimes y G. K. Mor, TiO2 nanotube arrays: Synthesis, properties, and applications. Boston, MA: Springer US, 2009.
dc.relationM. Assefpour-Dezfuly, C. Vlachos, y E. H. Andrews, “Oxide morphology and adhesive bonding on titanium surfaces”, J. Mater. Sci., vol. 19, núm. 11, pp. 3626–3639, 1984, https://doi.org/10.1007/BF02396935.
dc.relationV. Zwilling, M. Aucouturier, y E. Darque-Ceretti, “Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach”, Electrochim. Acta, vol. 45, núm. 6, pp. 921–929, 1999, https://doi.org/10.1016/S0013-4686(99)00283-2.
dc.relationO. Iglesias, M. J. Rivero, A. M. Urtiaga, y I. Ortiz, “Membrane-based photocatalytic systems for process intensification”, Chem. Eng. J., vol. 305, pp. 136–148, 2016, https://doi.org/10.1016/j.cej.2016.01.047.
dc.relationS. Leong, A. Razmjou, K. Wang, K. Hapgood, X. Zhang, y H. Wang, “TiO2 based photocatalytic membranes: A review”, J. Memb. Sci., vol. 472, pp. 167–184, 2014, https://doi.org/10.1016/j.memsci.2014.08.016.
dc.relationP. Inc., “Guía de aplicaciones de ultrafiltración”, 2014, Recuperado a partir de www.pentairaqua.com.
dc.relationS. S. Biotech, “Conceptos Básicos de Filtración”, Conceptos Básicos Filtr., p. 92, 2016, Recuperado a partir de http://www.bdcint.com.do/wp-content/uploads/2017/06/Conceptos-basicos-de-filtracion_Pharm_vDS_Junio-2016.pdf.
dc.relationF. Keller, M. S. Hunter, y D. L. Robinson, “Structural Features of Oxide Coatings on Aluminum”, J. Electrochem. Soc., vol. 100, núm. 9, p. 411, 1953, https://doi.org/10.1149/1.2781142.
dc.relationZ. Su y W. Zhou, “Porous Anodic Metal Oxides”, Sci. Found. China, vol. 16, núm. 1, pp. 36–53, 2009, https://doi.org/10.1088/1005-0841/16/1/004.
dc.relationD. Regonini, C. R. Bowen, A. Jaroenworaluck, y R. Stevens, “A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes”, Mater. Sci. Eng. R Reports, vol. 74, núm. 12, pp. 377–406, 2013, https://doi.org/10.1016/j.mser.2013.10.001.
dc.relationI. De Graeve, H. Terryn, y G. E. Thompson, “AC-anodising of aluminium: Contribution to electrical and efficiency study”, Electrochim. Acta, vol. 52, núm. 3, pp. 1127–1134, 2006, https://doi.org/10.1016/j.electacta.2006.07.010.
dc.relationN. K. Allam y C. A. Grimes, “Effect of cathode material on the morphology and photoelectrochemical properties of vertically oriented TiO 2 nanotube arrays”, Sol. Energy Mater. Sol. Cells, vol. 92, pp. 1468–1475, 2008, https://doi.org/10.1016/j.solmat.2008.06.007.
dc.relationJ. W. Diggle, T. C. Downie, y C. W. Goulding, “Anodic oxide films on aluminum”, Chem. Rev., vol. 69, núm. 3, pp. 365–405, 1969, https://doi.org/10.1021/cr60259a005.
dc.relationP. Schmuki, H. Tsuchiya, L. Taveira, K. Sirotna, y J. M. Macak, “Anodization of Ti: Formation of Self-Organized Titanium Oxide Nanotube-Layers”, Passiv. Met. Semicond. Prop. Thin Oxide Layers, pp. 179–186, 2006, https://doi.org/10.1016/B978-044452224-5/50030-5.
dc.relationS. D. Kahar, A. Macwan, R. Oza, V. Oza, y S. Shah, “Characterization and Corrosion Study of Titanium Anodized Film Developed in KOH Bath”, J. Eng. Res. Appl. www.ijera.com, vol. 3, núm. 5, pp. 441–445, 2013, Recuperado a partir de www.ijera.com.
dc.relationA. K. Sharma, “Anodizing titanium for space applications”, Thin Solid Films, vol. 208, núm. 1, pp. 48–54, 1992, https://doi.org/10.1016/0040-6090(92)90946-9.
dc.relationD. Gong et al., “Titanium oxide nanotube arrays prepared by anodic oxidation”, J. Mater. Res., vol. 16, núm. 12, pp. 3331–3334, 2001, https://doi.org/10.1557/JMR.2001.0457.
dc.relationH. P. Quiroz, F. Quintero, P. J. Arias, A. Dussan, y H. R. Zea, “Effect of fluoride and water content on the growth of TiO2 nanotubes synthesized via ethylene glycol with voltage changes during anodizing process”, J. Phys. Conf. Ser., vol. 614, núm. 1, p. 012001, 2015, https://doi.org/10.1088/1742-6596/614/1/012001.
dc.relationF. J. Q. Cortes, P. J. Arias-Monje, J. Phillips, y H. Zea, “Empirical kinetics for the growth of titania nanotube arrays by potentiostatic anodization in ethylene glycol”, Mater. Des., vol. 96, núm. February, pp. 80–89, 2016, https://doi.org/10.1016/j.matdes.2016.02.006.
dc.relationJ. M. Macak, S. P. Albu, y P. Schmuki, “Towards ideal hexagonal self-ordering of TiO2 nanotubes”, Phys. Status Solidi - Rapid Res. Lett., vol. 1, núm. 5, pp. 181–183, 2007, https://doi.org/10.1002/pssr.200701148.
dc.relationS. Ozkan, A. Mazare, y P. Schmuki, “Critical parameters and factors in the formation of spaced TiO 2 nanotubes by self-organizing anodization”, Electrochim. Acta, vol. 268, pp. 435–447, 2018, https://doi.org/10.1016/j.electacta.2018.02.120.
dc.relationC. Ruan, M. Paulose, O. K. Varghese, y C. A. Grimes, “Enhanced photoelectrochemical-response in highly ordered TiO2 nanotube-arrays anodized in boric acid containing electrolyte”, Sol. Energy Mater. Sol. Cells, vol. 90, núm. 9, pp. 1283–1295, 2006, https://doi.org/10.1016/j.solmat.2005.08.005.
dc.relationQ. Cai, L. Yang, y Y. Yu, “Investigations on the self-organized growth of TiO2 nanotube arrays by anodic oxidization”, Thin Solid Films, vol. 515, núm. 4, pp. 1802–1806, 2006, https://doi.org/10.1016/j.tsf.2006.06.040.
dc.relationQ. Cai, M. Paulose, O. K. Varghese, y C. A. Grimes, “The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation”, J. Mater. Res., vol. 20, núm. 1, pp. 230–236, 2005, https://doi.org/10.1557/JMR.2005.0020.
dc.relationL. V. Taveira, J. M. Macák, H. Tsuchiya, L. F. P. Dick, y P. Schmuki, “Initiation and Growth of Self-Organized TiO2 Nanotubes Anodically Formed in NH4F∕(NH4)2SO4 Electrolytes”, J. Electrochem. Soc., vol. 152, núm. 10, p. B405, 2005, https://doi.org/10.1149/1.2008980.
dc.relationM. Paulose et al., “Anodic Growth of Highly Ordered TiO 2 Nanotube Arrays to 134 μm in Length”, J. Phys. Chem. B, vol. 110, núm. 33, pp. 16179–16184, 2006, https://doi.org/10.1021/jp064020k.
dc.relationK. Shankar, G. K. Mor, A. Fitzgerald, y C. A. Grimes, “Cation effect on the electrochemical formation of very high aspect ratio TiO2 nanotube arrays in formamide-water mixtures”, J. Phys. Chem. C, vol. 111, núm. 1, pp. 21–26, 2007, https://doi.org/10.1021/jp066352v.
dc.relationS. Yoriya, M. Paulose, O. K. Varghese, G. K. Mor, y C. A. Grimes, “Fabrication of vertically oriented TiO2 nanotube arrays using dimethyl sulfoxide electrolytes”, J. Phys. Chem. C, vol. 111, núm. 37, pp. 13770–13776, 2007, https://doi.org/10.1021/jp074655z.
dc.relationF. Quintero, P. J. Arias, y H. Zea, “Morphological effects of alternating voltage anodizing in the production of Tio2 nanostructures”, Int. J. Appl. Eng. Res., vol. 10, núm. 1, pp. 159–165, 2015.
dc.relationM. Paulose et al., “TiO 2 nanotube arrays of 1000 μm length by anodization of titanium foil: Phenol red diffusion”, J. Phys. Chem. C, vol. 111, núm. 41, pp. 14992–14997, 2007, https://doi.org/10.1021/jp075258r.
dc.relationT. J. Tuaweri, ٭. E. M. Adigio, y P. P. Jombo, “A Study of Process Parameters for Zinc Electrodeposition from a Sulphate Bath”, Int. J. Eng. Sci. Invent. ISSN (Online, vol. 2, núm. 8, pp. 2319–6734, 2013, Recuperado a partir de www.ijesi.orgwww.ijesi.org%0Awww.ijesi.org.
dc.relationY. Dong, J. Feng, D. Lu, H. Zhang, M. Pan, y P. Fang, “Titanate nanotube array membranes filled with polyelectrolyte brushes for proton conduction”, vol. 88, pp. 183–190, 2017.
dc.relationS. Weon, J. Choi, T. Park, y W. Choi, “Freestanding doubly open-ended TiO2 nanotubes for efficient photocatalytic degradation of volatile organic compounds”, Appl. Catal. B Environ., vol. 205, pp. 386–392, 2017, https://doi.org/10.1016/j.apcatb.2016.12.048.
dc.relationJ. Xu et al., “Carbon-Decorated TiO2 Nanotube Membranes: A Renewable Nanofilter for Charge-Selective Enrichment of Proteins”, ACS Appl. Mater. Interfaces, vol. 8, núm. 34, pp. 21997–22004, 2016, https://doi.org/10.1021/acsami.6b06232.
dc.relationT. Zeng, H. Ni, X. Su, Y. Chen, y Y. Jiang, “Highly crystalline Titania nanotube arrays realized by hydrothermal vapor route and used as front-illuminated photoanode in dye sensitized solar cells”, J. Power Sources, vol. 283, pp. 443–451, 2015, https://doi.org/10.1016/j.jpowsour.2015.02.150.
dc.relationJ. Choi, S.-H. Park, Y. Kwon, J. Lim, I. Y. Song, y T. Park, “Facile fabrication of aligned doubly open-ended TiO 2 nanotubes, via a selective etching process, for use in front-illuminated dye sensitized solar cells.pdf”, Chem. comm, vol. 48, núm. 70, pp. 8717–8848, 2012, https://doi.org/10.1039.
dc.relationG. Cha, M. Altomare, N. Nguyen, N. Taccardi, K. Lee, y P. Schmuki, “Double-Side Co-Catalytic Activation of Anodic TiO2 Nanotube Membranes with Sputter-Coated Pt for Photocatalytic H2 Generation from Water-Methanol Mixtures”, Chem. - An Asian J., vol. 12, núm. 3, pp. 276–384, 2017.
dc.relationJ. Lin, X. Liu, S. Zhu, Y. Liu, y X. Chen, “Influence of in situ oxide dissolution on the bottom morphologies of detached TiOnanotube films”, J. Nanomater., vol. 2015, 2015, https://doi.org/10.1155/2015/653192.
dc.relationQ. Chen y D. Xu, “Large-scale, noncurling, and free-standing crystallized TiO2 nanotube arrays for dye-sensitized solar cells”, J. Phys. Chem. C, vol. 113, núm. 15, pp. 6310–6314, 2009, https://doi.org/10.1021/jp900336e.
dc.relationJ. Wawrzyniak et al., “The geometry of free-standing titania nanotubes as a critical factor controlling their optical and photoelectrochemical performance”, Surf. Coatings Technol., vol. 389, núm. December 2019, 2020, https://doi.org/10.1016/j.surfcoat.2020.125628.
dc.relationS. Yoriya, “Effect of inter-electrode spacing on electrolyte properties and morphologies of anodic TiO2 nanotube array films”, Int. J. Electrochem. Sci., vol. 7, núm. 10, pp. 9454–9464, 2012.
dc.relationZ. Y. Luo, D. C. Mo, y S. S. Lu, “The key factor for fabricating through-hole TiO2 nanotube arrays: A fluoride-rich layer between Ti substrate and nanotubes”, J. Mater. Sci., vol. 49, núm. 19, pp. 6742–6749, 2014, https://doi.org/10.1007/s10853-014-8368-z.
dc.relationQ. Chen, D. Xu, Z. Wu, y Z. Liu, “Free-standing TiO(2) nanotube arrays made by anodic oxidation and ultrasonic splitting.”, Nanotechnology, vol. 19, núm. 36, p. 365708, 2008, https://doi.org/10.1088/0957-4484/19/36/365708.
dc.relationZ. F. Cui y H. S. Muralidhara, Membrane Technology. 2010.
dc.relationS. P. Albu, A. Ghicov, J. M. Macak, R. Hahn, y P. Schmuki, “Self-Organized, Free-Standing TiO2 Nanotube Membrane for Flow-through Photocatalytic Applications”, pp. 1–4, 2007.
dc.relationK. Le Li, Z. Bin Xie, y S. Adams, “A reliable TiO 2 nanotube membrane transfer method and its application in photovoltaic devices”, Electrochim. Acta, vol. 62, pp. 116–123, 2012, https://doi.org/10.1016/j.electacta.2011.11.118.
dc.relationZ. Yang, Z. Ma, D. Pan, D. Chen, F. Xu, y S. Chen, “Enhancing the performance of front-illuminated dye-sensitized solar cells with highly [001] oriented, single-crystal-like TiO2 nanotube arrays”, Ceram. Int., vol. 40, núm. 1 PART A, pp. 173–180, 2014, https://doi.org/10.1016/j.ceramint.2013.05.119.
dc.relationA. Hossain, S. Oh, y S. Lim, “Fabrication of dye-sensitized solar cells using a both-ends-opened TiO2 nanotube / nanoparticle hetero-nanostructure”, J. Ind. Eng. Chem., vol. 51, pp. 122–128, 2017, https://doi.org/10.1016/j.jiec.2017.02.022.
dc.relationE. Gerstner, “Nobel Prize 2010: Andre Geim & Konstantin Novoselov”, Nat. Phys., vol. 6, núm. 11, pp. 836–836, 2010, https://doi.org/10.1038/nphys1836.
dc.relationS. So, I. Hwang, F. Riboni, J. E. Yoo, y P. Schmuki, “Robust free standing flow-through TiO2 nanotube membrane of pure anatase”, Chem. Commun., vol. 71, p. submitted, 2016.
dc.relationH. W. Jeong, K. J. Park, Y. Park, D. S. Han, y H. Park, “Exploring the photoelectrocatalytic behavior of free-standing TiO2 nanotube arrays on transparent conductive oxide electrodes: Irradiation direction vs. alignment direction”, Catal. Today, vol. 335, núm. November 2018, pp. 319–325, 2019, https://doi.org/10.1016/j.cattod.2018.12.014.
dc.relationG. Liu, K. Wang, N. Hoivik, y H. Jakobsen, “Progress on free-standing and flow-through TiO 2 nanotube membranes”, Sol. Energy Mater. Sol. Cells, vol. 98, pp. 24–38, 2012, https://doi.org/10.1016/j.solmat.2011.11.004.
dc.relationS. So, I. Hwang, F. Riboni, J. E. Yoo, y P. Schmuki, “Robust free standing flow-through TiO2 nanotube membranes of pure anatase”, Electrochem. commun., vol. 71, pp. 73–78, 2016, https://doi.org/10.1016/j.elecom.2016.08.010.
dc.relationD. Wang y L. Liu, “Continuous fabrication of free-standing TiO2 nanotube array membranes with controllable morphology for depositing interdigitated heterojunctions”, Chem. Mater., vol. 22, núm. 24, pp. 6656–6664, 2010, https://doi.org/10.1021/cm102622x.
dc.relationW. Yuanhao, L. Lin, y Y. Hongxing, “The Fabrication of Barrier Layer Free TiO2 Nanotube Arrays and its Application for Highly Efficient Dye-sensitized Solar Cells”, Energy Procedia, vol. 61, pp. 2608–2612, 2014, https://doi.org/10.1016/j.egypro.2014.12.259.
dc.relationC. Guizard, “Técnicas membranarias de filtración de líquidos: Mucro-, Ultra-, Nanofiltración y Osmosis inversa”, Cuad. FIRP S451P - Modul. enseñanza en fenómenos interfaciales, vol. 2, p. 53, 1999.
dc.relationA. F. Williams, J. D. Baum, y F. A. Glover, “Principles of Ultrafiltration and the Concentration and Fractionation of Cow’s Milk”, Hum. Milk Bank., 1984, Recuperado a partir de https://pdfs.semanticscholar.org/2cc5/d8f7288286286c8678a01d396208ca4ed3b8.pdf.
dc.relationF. Sánchez Font, “Estudio y diseño de una planta de producción de membranas cerámicas de coste reducido”, Esc. Tècnica Super. d’Enginyeria Ind. Barcelona, vol. 2007, núm. pla 94, pp. 1–98, 2007.
dc.relationAmerican Water Works Association, Microfiltration and Ultrafiltration Membranes in Drinking Water: AWWA Manual of Water Supply Practice M57, núm. C. 2005.
dc.relationJ. D. Ferry, “Ferry1936.Pdf”, núm. 3, pp. 373–455, 1936.
dc.relationG. Dhawan, “About Ultrafiltration”, Appl. Membr. Inc, pp. 1–4, Recuperado a partir de http://appliedmembranes.com/media/wysiwyg/pdf/membranes/about_ultrafiltration_technical_article.pdf.
dc.relationD. Mourato, “Microfiltración y nanofiltración en el área de agua potable D. Mourato, Ph.D. ZENON Environmental Inc. Burlington, Ontario, Canadá”, 1998.
dc.relationK. C. Khulbe, C. Y. Feng, y T. Matsuura, Synthetic Polymeric Membranes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.
dc.relationN. D. Koromilas, C. Anastasopoulos, E. K. Oikonomou, y J. K. Kallitsis, “Preparation of porous polymeric membranes based on a pyridine containing aromatic polyether sulfone”, Polymers (Basel)., vol. 11, núm. 1, pp. 1–20, 2019, https://doi.org/10.3390/polym11010059.
dc.relationF. Russo, M. Bulzomì, E. Di Nicolò, C. Ursino, y A. Figoli, “Enhanced anti-fouling behavior and performance of pes membrane by uv treatment”, Processes, vol. 9, núm. 2, pp. 1–17, 2021, https://doi.org/10.3390/pr9020246.
dc.relationB. D. Cassie, A. B. D. Cassie, y S. Baxter, “Of porous surfaces”, Trans. Faraday Soc., vol. 40, núm. 5, pp. 546–551, 1944.
dc.relationJ. Marugán, C. Casado, G. Silverberg, y C. D. Vecitis, “Novel simple method for preparing tailored polymer-titania nanotubes hybrid materials”, Mater. Lett., vol. 174, pp. 95–98, 2016, https://doi.org/10.1016/j.matlet.2016.03.054.
dc.relationS. Nakatsuka, I. Nakate, y T. Miyano, “Drinking water treatment by using ultrafiltration hollow fiber membranes”, Desalination, vol. 106, núm. 1–3, pp. 55–61, 1996, https://doi.org/10.1016/S0011-9164(96)00092-6.
dc.relationP. Completo y D. E. F. D. E. Entrada, “Freshpoint TM sistema de ultrafiltración”.
dc.relationS. L. Polyethersulphone y M. C. Filters, “Single Layer Polyethersulphone Membrane Cartridge Filters Aquafil TM”.
dc.relationM. Safarpour, V. Vatanpour, A. Khataee, y M. Esmaeili, “Development of a novel high flux and fouling-resistant thin film composite nanofiltration membrane by embedding reduced graphene oxide/TiO2”, Sep. Purif. Technol., vol. 154, pp. 96–107, 2015, https://doi.org/10.1016/j.seppur.2015.09.039.
dc.relationZ. Xu et al., “Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment”, J. Memb. Sci., vol. 520, pp. 281–293, 2016, https://doi.org/10.1016/j.memsci.2016.07.060.
dc.relationA. Behboudi, Y. Jafarzadeh, y R. Yegani, “Preparation and characterization of TiO2 embedded PVC ultrafiltration membranes”, Chem. Eng. Res. Des., vol. 114, pp. 96–107, 2016, https://doi.org/10.1016/j.cherd.2016.07.027.
dc.relationM. H. D. A. Farahani y V. Vatanpour, “A comprehensive study on the performance and antifouling enhancement of the PVDF mixed matrix membranes by embedding different nanoparticulates: Clay, functionalized carbon nanotube, SiO2 and TiO2”, Sep. Purif. Technol., vol. 197, núm. October 2017, pp. 372–381, 2018, https://doi.org/10.1016/j.seppur.2018.01.031.
dc.relationM. Lorenzetti, E. Gongadze, M. Kulkarni, I. Junkar, y A. Iglič, “Electrokinetic Properties of TiO2 Nanotubular Surfaces”, Nanoscale Res. Lett., vol. 11, núm. 1, 2016, https://doi.org/10.1186/s11671-016-1594-3.
dc.relationM. Siri, “Estudio de Nanopartículas Proteicas y su posible aplicación como vectores de drogas antitumorales”, Universidad Nacional de Quilmes, 2017.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleElaboración y caracterización de membranas de nanotubos de dióxido de titanio para ultrafiltración
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución