dc.contributor | Arzola de la Peña, Nelson | |
dc.contributor | Diseño Óptimo Multidisciplinario | |
dc.creator | Sierra Daza, Carlos Arturo | |
dc.date.accessioned | 2022-12-13T16:42:43Z | |
dc.date.accessioned | 2023-06-06T23:14:46Z | |
dc.date.available | 2022-12-13T16:42:43Z | |
dc.date.available | 2023-06-06T23:14:46Z | |
dc.date.created | 2022-12-13T16:42:43Z | |
dc.date.issued | 2022-12-12 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/82860 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6651175 | |
dc.description.abstract | El concepto de morfología aplicado a las alas de aeronaves está relacionado con la habilidad de una estructura de cambiar su geometría, para adaptarse a diferentes condiciones de vuelo. Esto con el fin de incrementar el rendimiento, reduciendo la cantidad de combustible y aumentando su tiempo de operación. Este trabajo tiene como propósito describir los procedimientos llevados a cabo para la generación y posterior evaluación del diseño conceptual y detallado de un perfil aerodinámico de morfología variable.
Se toma como punto de inicio diseños creados con anterioridad por diferentes autores y se procede a realizar el desarrollo de conceptos propios de diseño. Después de esto, se realiza un proceso de decisión, utilizando diferentes requerimientos de ingeniería, se determina el concepto global dominante; el cual está basado en un mecanismo flexible para deformar el borde de fuga del perfil aerodinámico, para su posterior análisis por medios numéricos. Se genera una metodología de optimización de dos niveles para el desarrollo del mecanismo flexible. En el primer nivel, la mejor forma del perfil aerodinámico es obtenida por medio de un proceso de optimización multiobjetivo. En el segundo nivel, la mejor configuración estructural es obtenida por medio de optimización topológica. Por último, se realizan varios análisis por medio de dinámica de fluidos computacional usando el software OpenFoam, donde se hace uso del modelo de turbulencia K-Omega SST. (Texto tomado de la fuente) | |
dc.description.abstract | The concept of morphology applied to the wing of an aircraft is related to the capacity of a structure to change its geometry according to different flight conditions. The morphology is used to increase the performance of the aircraft in both, reducing the fuel consumption or increasing the endurance of a mission profile. This work describes the methods to generate and evaluate the conceptual and detailed design of a morphing airfoil.
From a bibliographic review of design concepts previously created by different authors, the development of design concepts is carried out. After that, a decision process takes place; using different engineering requirements, the dominant global concept is determined, which is based on a compliant mechanism to deform the trailing edge of the airfoil, for subsequent numerical analysis. Furthermore, a two-level optimization methodology is elaborated for the development of the compliant mechanism. At the first level, the best aerodynamic shape is obtained through a multi-objective optimization process. At the second level, the best structural configuration is obtained using topological optimization. Finally, several analyzes are performed by means of computational fluid dynamics using the software OpenFoam, where the K-Omega SST turbulence model is used. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Aguirrebeitia, J., Avilés, R., Fernández, I., & Abasolo, M. (2013). Kinematical synthesis of an inversion of the double linked fourbar for morphing wing applications. Frontiers of Mechanical Engineering. https://doi.org/10.1007/s11465-013-0364-5 | |
dc.relation | Anderson, J. D. (1984). Fundamentals of aerodynamics. https://doi.org/10.2514/152157 | |
dc.relation | Anderson, W. K., & Venkatakrishnan, V. (1999). Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation. Computers and Fluids. https://doi.org/10.1016/S0045-7930(98)00041-3 | |
dc.relation | Antunes, A. P., & Azevedo, J. L. F. (2016). An aerodynamic optimization computational framework using genetic algorithms. Journal of the Brazilian Society of Mechanical Sciences and Engineering. https://doi.org/10.1007/s40430-015-0445-y | |
dc.relation | Arena, M., Concilio, A., & Pecora, R. (2019). Aero-servo-elastic design of a morphing wing trailing edge system for enhanced cruise performance. Aerospace Science and Technology. https://doi.org/10.1016/j.ast.2019.01.020 | |
dc.relation | Barbarino, S., Bilgen, O., Ajaj, R. M., Friswell, M. I., & Inman, D. J. (2011). A review of morphing aircraft. Journal of Intelligent Material Systems and Structures. https://doi.org/10.1177/1045389X11414084 | |
dc.relation | Bartl, J., Sagmo, K. F., Bracchi, T., & Sætran, L. (2019). Performance of the NREL S826 airfoil at low to moderate Reynolds numbers—A reference experiment for CFD models. European Journal of Mechanics, B/Fluids. https://doi.org/10.1016/j.euromechflu.2018.10.002 | |
dc.relation | Bashir, M., Longtin-Martel, S., Botez, R. M., & Wong, T. (2021). Aerodynamic design optimization of a morphing leading edge and trailing edge airfoil–application on the uas-s45. Applied Sciences (Switzerland). https://doi.org/10.3390/app11041664 | |
dc.relation | Bendsøe, M. P. (1989). Optimal shape design as a material distribution problem. Structural Optimization. https://doi.org/10.1007/BF01650949 | |
dc.relation | Blank, J., & Deb, K. (2020). Pymoo: Multi-Objective Optimization in Python. IEEE Access. https://doi.org/10.1109/ACCESS.2020.2990567 | |
dc.relation | Boyd Rix, M. (2012). Cross-sectionally Morphing Airfoil. Retrieved from https://lens.org/118-159-656-815-741 | |
dc.relation | Cakmakcioglu, S. C., Sert, I. O., Tugluk, O., & Sezer-Uzol, N. (2014). 2-D and 3-D CFD investigation of NREL S826 airfoil at low Reynolds numbers. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/524/1/012028 | |
dc.relation | Campanile, L. F. (2008). Modal synthesis of flexible mechanisms for airfoil shape control. Journal of Intelligent Material Systems and Structures. https://doi.org/10.1177/1045389X07080638 | |
dc.relation | Campanile, L. F., & Sachau, D. (2000). Belt-rib concept: a structronic approach to variable camber. Journal of Intelligent Material Systems and Structures. https://doi.org/10.1106/6H4B-HBW3-VDJ8-NB8A | |
dc.relation | Coello, C. A. C., & Lamont, G. B. (2004). Applications of Multi-Objective Evolutionary Algorithms. https://doi.org/10.1142/5712 | |
dc.relation | Coutu, D., Brailovski, V., & Terriault, P. (2010). Optimized design of an active extrados structure for an experimental morphing laminar wing. Aerospace Science and Technology. https://doi.org/10.1016/j.ast.2010.01.009 | |
dc.relation | de Castro, L. N. (2007). Fundamentals of natural computing: an overview. Physics of Life Reviews. https://doi.org/10.1016/j.plrev.2006.10.002 | |
dc.relation | De Gaspari, A., & Ricci, S. (2011). A two-level approach for the optimal design of morphing wings based on compliant structures. Journal of Intelligent Material Systems and Structures. https://doi.org/10.1177/1045389X11409081 | |
dc.relation | Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation. https://doi.org/10.1109/4235.996017 | |
dc.relation | Della Vecchia, P., Daniele, E., & D’Amato, E. (2014). An airfoil shape optimization technique coupling PARSEC parameterization and evolutionary algorithm. Aerospace Science and Technology. https://doi.org/10.1016/j.ast.2013.11.006 | |
dc.relation | Du, S., & Ang, H. (2012). Design and Feasibility Analyses of Morphing Airfoil Used to Control Flight Attitude. Strojniski Vestnik, 58, 46–55. https://doi.org/10.5545/sv-jme.2011.189 | |
dc.relation | Fincham, J. H. S., & Friswell, M. I. (2015). Aerodynamic optimisation of a camber morphing aerofoil. Aerospace Science and Technology. https://doi.org/10.1016/j.ast.2015.02.023 | |
dc.relation | Flux, A. W., & Pareto, V. (1897). Cours d’Economie Politique. The Economic Journal. https://doi.org/10.2307/2956966 | |
dc.relation | Fusi, F., Congedo, P. M., Guardone, A., & Quaranta, G. (2018). Shape optimization under uncertainty of morphing airfoils. Acta Mechanica. https://doi.org/10.1007/s00707-017-2049-3 | |
dc.relation | Gamboa, P., Vale, J., Lau, F. J. P., & Suleman, A. (2009). Optimization of a Morphing Wing Based on Coupled Aerodynamic and Structural Constraints. AIAA Journal, 47(9), 2087–2104. https://doi.org/10.2514/1.39016 | |
dc.relation | Gandhi, F. (2010). Variable Chord Morphing Helicopter Rotor. Retrieved from https://lens.org/167-124-962-862-746 | |
dc.relation | Geuzaine, C.; Remacle, J. F. (2009). Gmsh: a Three-Dimensional Finite Element Mesh Generator with Built-in Pre- and Post-Processing. Facilities. Int. J. Numer. Meth. Eng. | |
dc.relation | Grip, R. E., Brown, J. J., Harrison, N. A., Rawdon, B. K., & Vassberg, J. C. (2017). Morphing Airfoil Leading Edge. Retrieved from https://lens.org/083-739-017-820-942 | |
dc.relation | Haase, W., Aupoix, B., Bunge, U., & Schwamborn, D. (2006). FLOMANIA — A European Initiative on Flow Physics Modelling. In FLOMANIA — A European Initiative on Flow Physics Modelling. https://doi.org/10.1007/978-3-540-39507-2 | |
dc.relation | Hassanalian, M., & Abdelkefi, A. (2017). Classifications, applications, and design challenges of drones: A review. Progress in Aerospace Sciences. https://doi.org/10.1016/j.paerosci.2017.04.003 | |
dc.relation | Hetrick, J. A., Osborn, R. F., Kota, S., Flick, P. M., & Paul, D. B. (2007). Flight testing of Mission Adaptive Compliant Wing. Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. https://doi.org/10.2514/6.2007-1709 | |
dc.relation | Hetrick, J., Ervin, G., & Kota, S. (2019). Compliant Structure Design For Varying Surface Contours. Retrieved from https://lens.org/016-903-804-131-910 | |
dc.relation | Howell, L. L., Magleby, S. P., & Olsen, B. M. (2013). Handbook of Compliant Mechanisms. In Handbook of Compliant Mechanisms. https://doi.org/10.1002/9781118516485 | |
dc.relation | IATA. (2019). More Connectivity and Improved Efficiency - 2018 Airline Industry Statistics Released [Comunicado de prensa ]. Retrieved November 26, 2019, from https://www.iata.org/pressroom/pr/Pages/2019-07-31-01.aspx | |
dc.relation | Jaimes, A. L., & Coello, C. A. (2008). An introduction to multi-objective evolutionary algorithms and some of their potential uses in biology. Studies in Computational Intelligence. https://doi.org/10.1007/978-3-540-78534-7_4 | |
dc.relation | Juan-Mauricio, P.-S. (2006). Wing, Particularly Airfoil Of An Aircraft, Having Changeable Profile. Retrieved from https://lens.org/022-862-582-261-697 | |
dc.relation | Khurana, M. (2011). Development and application of an optimisation architecture with adaptive swarm algorithm for airfoil aerodynamic design | |
dc.relation | Kota, S., Ervin, G. F., Lo, J.-H., Lu, K.-J., Maric, D., Trost, M. R., & Tsang, R.-K. K. (2019). Edge Morphing Arrangement For An Airfoil. Retrieved from https://lens.org/018-081-077-068-857 | |
dc.relation | Kudva, J. N. (2004). Overview of the DARPA smart wing project. Journal of Intelligent Material Systems and Structures. https://doi.org/10.1177/1045389X04042796 | |
dc.relation | Kulfan, B. M. (2008). Universal parametric geometry representation method. Journal of Aircraft. https://doi.org/10.2514/1.29958 | |
dc.relation | Kumar, D., Ali, S. F., & Arockiarajan, A. (2018). Structural and Aerodynamics Studies on Various Wing Configurations for Morphing. IFAC-PapersOnLine. https://doi.org/10.1016/j.ifacol.2018.05.084 | |
dc.relation | Leschziner, M. A., & Drikakis, D. (2002). Turbulence modelling and turbulent-flow computation in aeronautics. Aeronautical Journal | |
dc.relation | Li, D., Zhao, S., Da Ronch, A., Xiang, J., Drofelnik, J., Li, Y., … Breuker, R. De. (2018). A review of modelling and analysis of morphing wings. Progress in Aerospace Sciences. https://doi.org/10.1016/j.paerosci.2018.06.002 | |
dc.relation | Lu, K. J., & Kota, S. (2003). Design of compliant mechanisms for morphing structural shapes. Journal of Intelligent Material Systems and Structures. https://doi.org/10.1177/1045389X03035563 | |
dc.relation | Mark Drela. (2000). XFOIL Subsonic Airfoil Development System. | |
dc.relation | Matyushenko, A. A., Kotov, E. V., & Garbaruk, A. V. (2017). Calculations of flow around airfoils using two-dimensional RANS: an analysis of the reduction in accuracy. St. Petersburg Polytechnical University Journal: Physics and Mathematics. https://doi.org/10.1016/j.spjpm.2017.03.004 | |
dc.relation | McGhee, R. J., Walker, B. S., & Millard, B. F. (1988). Experimental results for the Eppler 387 airfoil at low Reynolds numbers in the Langley Low-Turbulence Pressure Tunnel. NASA Technical Memorandum. | |
dc.relation | Meguid, S. A., Su, Y., & Wang, Y. (2017). Complete morphing wing design using flexible-rib system. International Journal of Mechanics and Materials in Design. https://doi.org/10.1007/s10999-015-9323-0 | |
dc.relation | Menter, F R, Kuntz, M., & Langtry, R. (2003). Ten Years of Industrial Experience with the SST Turbulence Model Turbulence heat and mass transfer. Cfd.Spbstu.Ru. | |
dc.relation | Menter, Florian R., & Esch, T. (2001). Elements of Industrial Heat Transfer Predictions. 16th Brazilian Congress of Mechanical Engineering. | |
dc.relation | Molinari, G., Quack, M., Arrieta, A. F., Morari, M., & Ermanni, P. (2015). Design, realization and structural testing of a compliant adaptable wing. Smart Materials and Structures. https://doi.org/10.1088/0964-1726/24/10/105027 | |
dc.relation | Monner, H. P. (2001). Realization of an optimized wing camber by using formvariable flap structures. Aerospace Science and Technology. https://doi.org/10.1016/S1270-9638(01)01118-X | |
dc.relation | Nie, R., Qiu, J., Ji, H., & Li, D. (2016). Aerodynamic characteristic of the active compliant trailing edge concept. International Journal of Modern Physics: Conference Series, 42, 1660173. https://doi.org/10.1142/S2010194516601733 | |
dc.relation | Nygren, K. P., & Schulz, R. R. (1996). Breguet’s formulas for aircraft range & endurance an application of integral calculus. ASEE Annual Conference Proceedings. https://doi.org/10.18260/1-2--5901 | |
dc.relation | Ohtake, T., Nakae, Y., & Motohashi, T. (2007). Nonlinearity of the Aerodynamic Characteristics of NACA0012 Aerofoil at Low Reynolds Numbers. JOURNAL OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, 55(644), 439–445. https://doi.org/10.2322/jjsass.55.439 | |
dc.relation | Oliver, J., Yago, D., Cante, J., & Lloberas-Valls, O. (2019). Variational approach to relaxed topological optimization: Closed form solutions for structural problems in a sequential pseudo-time framework. Computer Methods in Applied Mechanics and Engineering. https://doi.org/10.1016/j.cma.2019.06.038 | |
dc.relation | Osyczka, A. (1985). Multicriteria optimization for engineering design. In Design Optimization. https://doi.org/10.1016/b978-0-12-280910-1.50012-x | |
dc.relation | Poonsong, P. (2004). Design and analysis of multi-section variable camber wing. ProQuest Dissertations and Theses. | |
dc.relation | Rodriguez, D. L., Aftosmis, M. J., Nemec, M., & Anderson, G. R. (2015). Optimized Off-Design Performance of Flexible Wings with Continuous Trailing-Edge Flaps. https://doi.org/10.2514/6.2015-1409 | |
dc.relation | Rogalsky, T., Derksen, R. W., & Kocabiyik, S. (1999). Differential Evolution in Aerodynamic Optimization. | |
dc.relation | Sakurai, S., Fox, S. J., Beyer, K. W., Lacy, D. S., Johnson, P. L., Wells, S. L., … Gronenthal, E. W. (2007). Multi-function Trailing Edge Devices And Associated Methods. Retrieved from https://lens.org/143-768-204-159-624 | |
dc.relation | Sheldahl, R. E., & Klimas, P. C. (1981). Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines. | |
dc.relation | Smart Intelligent Aircraft Structures (SARISTU). (2016). In M. Papadopoulos & P. C. Wölcken (Eds.), Smart Intelligent Aircraft Structures (SARISTU). https://doi.org/10.1007/978-3-319-22413-8 | |
dc.relation | Sobieczky, H. (1999). Parametric Airfoils and Wings. https://doi.org/10.1007/978-3-322-89952-1_4 | |
dc.relation | Sofla, A. Y. N., Meguid, S. A., Tan, K. T., & Yeo, W. K. (2010). Shape morphing of aircraft wing: Status and challenges. Materials and Design. https://doi.org/10.1016/j.matdes.2009.09.011 | |
dc.relation | Spirlet, G. B. (2015). Design of Morphing Leading and Trailing Edge Surfaces for Camber and Twist Control. University of Delft. | |
dc.relation | Sun, J., Scarpa, F., Liu, Y., & Leng, J. (2016). Morphing thickness in airfoils using pneumatic flexible tubes and Kirigami honeycomb. Journal of Intelligent Material Systems and Structures. https://doi.org/10.1177/1045389X15580656 | |
dc.relation | Tian, Y., Quan, J., Liu, P., Li, D., & Kong, C. (2018). Mechanism/structure/aerodynamic multidisciplinary optimization of flexible high-lift devices for transport aircraft. Aerospace Science and Technology. https://doi.org/10.1016/j.ast.2018.09.045 | |
dc.relation | Ullman, G. (2020). The Mechanical Design Process Case Studies, 2nd Edition. Retrieved from https://books.google.com.co/books?id=7W-YzQEACAAJ | |
dc.relation | Urnes, J., & Nguyen, N. (2013). A Mission Adaptive Variable Camber Flap Control System to Optimize High Lift and Cruise Lift to Drag Ratios of Future N+3 Transport Aircraft. https://doi.org/10.2514/6.2013-214 | |
dc.relation | Van Dijk, N. P., Maute, K., Langelaar, M., & Van Keulen, F. (2013). Level-set methods for structural topology optimization: A review. Structural and Multidisciplinary Optimization. https://doi.org/10.1007/s00158-013-0912-y | |
dc.relation | Versteeg, H. K., & Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics. In Pearson Education Limited. | |
dc.relation | Wang, Y. (2015). Development of flexible rib morphing wing system. University of Toronto. | |
dc.relation | Weller, H. G., Tabor, G., Jasak, H., & Fureby, C. (1998). A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics. https://doi.org/10.1063/1.168744 | |
dc.relation | Woods, B. K., Bilgen, O., & Friswell, M. I. (2014). Wind tunnel testing of the fish bone active camber morphing concept. Journal of Intelligent Material Systems and Structures. https://doi.org/10.1177/1045389X14521700 | |
dc.relation | Woods, B. K. S., Parsons, L., Coles, A. B., Fincham, J. H. S., & Friswell, M. I. (2016). Morphing elastically lofted transition for active camber control surfaces. Aerospace Science and Technology. https://doi.org/10.1016/j.ast.2016.06.017 | |
dc.relation | Xie, Y. M., & Steven, G. P. (1993). A simple evolutionary procedure for structural optimization. Computers and Structures. https://doi.org/10.1016/0045-7949(93)90035-C | |
dc.relation | Xinxing, T., Wenjie, G., Chao, S., & Xiaoyong, L. (2014). Topology optimization of compliant adaptive wing leading edge with composite materials. Chinese Journal of Aeronautics. https://doi.org/10.1016/j.cja.2014.10.015 | |
dc.relation | Yago, D., Cante, J., Lloberas-Valls, O., & Oliver, J. (2021). Topology optimization using the unsmooth variational topology optimization (UNVARTOP) method: an educational implementation in MATLAB. Structural and Multidisciplinary Optimization. https://doi.org/10.1007/s00158-020-02722-0 | |
dc.relation | Zhang, S., Li, H., & Abbasi, A. A. (2019). Design methodology using characteristic parameters control for low Reynolds number airfoils. Aerospace Science and Technology. https://doi.org/10.1016/j.ast.2019.01.003 | |
dc.relation | Zhang, W., Yuan, J., Zhang, J., & Guo, X. (2016). A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model. Structural and Multidisciplinary Optimization. https://doi.org/10.1007/s00158-015-1372-3 | |
dc.relation | Zhang, X., & Zhu, B. (2018). Topology Optimization of Compliant Mechanisms. https://doi.org/10.1007/978-981-13-0432-3 | |
dc.relation | Zhao, A., Zou, H., Jin, H., & Wen, D. (2019). Structural design and verification of an innovative whole adaptive variable camber wing. Aerospace Science and Technology. https://doi.org/10.1016/j.ast.2019.02.032 | |
dc.relation | Zhao, L., Di, C., Li, K., Li, J., & Liu, J. (2018). Compliant mechanism design of multiphase material wing leading edge. Proceedings - 2017 10th International Symposium on Computational Intelligence and Design, ISCID 2017, 2, 437–440. https://doi.org/10.1109/ISCID.2017.189 | |
dc.relation | Zitzler, E., Brockhoff, D., & Thiele, L. (2007). The hypervolume indicator revisited: On the design of pareto-compliant indicators via weighted integration. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-540-70928-2_64 | |
dc.rights | Reconocimiento 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Diseño de un perfil aerodinámico morfológicamente variable | |
dc.type | Trabajo de grado - Maestría | |