dc.contributor | Bermeo Clavijo, Leonardo Enrique | |
dc.creator | Maldonado Pedraza, Juan Felipe | |
dc.date.accessioned | 2023-01-12T18:58:16Z | |
dc.date.accessioned | 2023-06-06T23:13:05Z | |
dc.date.available | 2023-01-12T18:58:16Z | |
dc.date.available | 2023-06-06T23:13:05Z | |
dc.date.created | 2023-01-12T18:58:16Z | |
dc.date.issued | 2022-12 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/82899 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6651158 | |
dc.description.abstract | En este documento se describe el desarrollo de un sistema de calibración de instrumentos acústicos de conformidad con las normas internacionales IEC 60942 e IEC 61672–3. Se inicia con una breve revisión de los sistemas desarrollados hasta ahora, analizando sus ventajas y oportunidades de mejora. En seguida se hace un estudio del marco normativo y de la naturaleza de los equipos bajo prueba, y se determina la instrumentación necesaria para el sistema de calibración. El sistema de calibración de sonómetros es controlado por una aplicación que emplea reconocimiento de imágenes, por lo que después del marco normativo se explica el método diseñado para el reconocimiento de caracteres numéricos, y se incluyen resultados del procesamiento y
desempeño del clasificador. Luego, se introduce una sección en la que se describen los detalles de implementación de las aplicaciones de software codificadas en Python; particularmente, se presenta el modelo GRAFCET que fue la base del desarrollo de la aplicación para calibradores acústicos. A continuación, se explica el diseño e implementación del método propuesto para modelar la variabilidad de un valor de medición como un proceso estocástico usando cadenas de Markov y se muestra un ejemplo de una matriz de transición obtenida y el cálculo del valor esperado. Se concluye el documento subrayando los logros alcanzados, las recomendaciones de uso del sistema de calibración y sugerencias de trabajo futuro. (Texto tomado de la fuente) | |
dc.description.abstract | This document describes the development of a calibration system for acoustic instruments in accordance with the international standards IEC 60942 and IEC 61672–3. It begins with a brief review of the systems developed so far, analyzing their advantages and opportunities for improvement. Next, a study of the regulatory framework and the nature of the equipment under test is made, and the necessary instrumentation for the calibration system is determined. The sound level meter calibration system is controlled by an application that uses image recognition, so after the normative framework, the method designed for the recognition of numerical characters is explained, and processing results and performance of the classifier are included. Then, a section is introduced describing the implementation details of software applications coded in Python. In particular, the GRAFCET model is presented, which was the basis for the development of the application for acoustic calibrators. Next, the design and implementation of the proposed method to model the variability of a measurement value as a stochastic process using Markov chains is explained, and an example of a transition matrix obtained and the calculation of the expected value is shown. The document is concluded highlighting the achievements, the recommendations for the use of the calibration system, and suggestions for future
work. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrial | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Beyers, C. (2014). Calibration methodologies and the accuracy of acoustic data. En INTERNOISE 2014 - 43rd International Congress on Noise Control Engineering: Improving the World Through Noise Control, Melbourne, Australia. | |
dc.relation | Brüel Kjær (2000). Sound level meter calibration system. | |
dc.relation | Brüel & Kjær (2016). Instruction Manual, Hand-held Analyzer Types 2250, 2250-L and 2270. Brüel & Kjær Sound & Vibration Measurement A/S, Nærum, Denmark. | |
dc.relation | Brüel & Kjær (2021). What is a Sound Level Meter? https://www.bksv.com/en/knowledge/blog/sound/what-is-a-sound-level-meter. En línea: consultada en marzo del 2022. | |
dc.relation | Committee on conformity assessment (2017). General requirements for the competence of testing and calibration laboratories. Standard ISO/IEC 17025, International Standard Organization, Geneva, Switzerland. | |
dc.relation | Dobrow, R. P. (2016). Introduction to Stochastic Processes With R. John Wiley & Sons, Inc., Hoboken, New Jersey, 1 edición. | |
dc.relation | Fletcher, H. y Munson, W. A. (1933). Loudness, Its Definition, Measurement and Calculation. The Journal of the Acoustical Society of America, 5(2):82–108. | |
dc.relation | Gubner, J. A. (2006). Probability and Random Processes for Electrical and Computer Engineers. Cambridge University Press, New York, 1 edición. | |
dc.relation | IEC technical committee 29: Electroacoustics (2013a). Electroacoustics – sound level meters - part 1: Specifications. Standard IEC 61672-1, International Electrotechnical Commission, Geneva, Switzerland. | |
dc.relation | IEC technical committee 29: Electroacoustics (2013b). Electroacoustics – sound level meters - part 2: Pattern evaluation tests. Standard IEC 61672-2, International Electrotechnical Commission, Geneva, Switzerland. | |
dc.relation | IEC technical committee 29: Electroacoustics (2013c). Electroacoustics – sound level meters - part 3: Periodic tests. Standard IEC 61672-3, International Electrotechnical Commission, Geneva, Switzerland. | |
dc.relation | IEC technical committee 29: Electroacoustics (2017). Electroacoustics – sound calibrators. Standard IEC 60942, International Electrotechnical Commission, Geneva, Switzerland. | |
dc.relation | ISO Technical Advisory Group 4 (2008). Uncertainty of measurement. Part 3: Guide to the expression of uncertainty in measurement (GUM:1995). Standard ISO/IEC 98-3, International Organization for Standarization, Geneva, Switzerland. | |
dc.relation | Keysight Technologies (2015). Keysight Trueform Series Waveform Generator Operation and Service Guide. Keysight Technologies, Inc., Loveland, CO 80537 USA, 3 edición. | |
dc.relation | Keysight Technologies (2022). IO Libraries Suite Downloads. https://www.keysight.com/zz/en/lib/software-detail/computer-software/io-libraries-suite-downloads-2175637.html. En línea: consultada en marzo del 2022. | |
dc.relation | Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2):91–110. | |
dc.relation | MHJ-Software GmbH & Co. KG (2020). Book Grafcet-Workbook. https://www.mhj-wiki.de/en/grafcet-workbook/introduction/. En línea: consultada en abril del 2022. | |
dc.relation | Otsu, N. (1979). A Tlreshold Selection Method from Gray-Level Histograms. IEEE Trans Syst Man Cybern, SMC-9(1):62–66. | |
dc.relation | Podgórski, A. (2016). Accredited Calibration Laboratory for Sound Measurements. Measurement Automation Monitoring, 62(08):250–253. | |
dc.relation | PyVISA (2022). PyVISA: Control your instruments with Python. https://pyvisa.readthedocs.io/en/latest/index.html. En línea: consultada en marzo del 2022. | |
dc.relation | Richard, S. (2011). Algorithms and Applications: Computer vision. Springer, London, 2 edición. | |
dc.relation | Schölkopf, B., Smola, A., y Müller, K. R. (1997). Kernel principal component analysis, volumen 1327. Springer, Alemania. | |
dc.relation | Scikit-learn developers (2022). 1.9. Naive Bayes. https://scikit-learn.org/stable/modules/naive_bayes.html#gaussian-naive-bayes. En línea: consultada en marzo del 2022. | |
dc.relation | Zhong, B., Xu, H., Sun, Q., He, L., Niu, F., Bai, Y., y Yang, P. (2010). An automatic calibration system for frequency weighting functions of sound level meter. En 2010 IEEE International Conference on Mechatronics and Automation, ICMA 2010. | |
dc.rights | Atribución-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados al autor, 2022 | |
dc.title | Desarrollo de un procedimiento de calibración de sonómetros y calibradores acústicos de conformidad con las normas IEC 61672–3 e IEC 60942 | |
dc.type | Trabajo de grado - Maestría | |