dc.contributorCuervo Andrade, Jairo Leonardo
dc.contributorMartínez Cordón, María José
dc.contributorSISTEMAS INTEGRADOS DE PRODUCCIÓN AGRICOLA Y FORESTAL
dc.contributorLABORATORIO DE INVESTIGACIÓN EN COMBUSTIBLES Y ENERGÍA
dc.creatorRivera, Julio César
dc.date.accessioned2021-10-12T21:04:57Z
dc.date.accessioned2023-06-06T23:06:02Z
dc.date.available2021-10-12T21:04:57Z
dc.date.available2023-06-06T23:06:02Z
dc.date.created2021-10-12T21:04:57Z
dc.date.issued2021-10-11
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/80523
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6651086
dc.description.abstractEl biocarbón actualmente es un material de interés, rico en carbono que cuenta con propiedades potenciales para uso como enmienda de suelos y remediación de la contaminación con metales pesados. Se obtiene por pirólisis (descomposición térmica en ausencia de oxígeno) a partir de residuos de biomasas. Esta investigación utilizó biocarbones producidos con raquis de palma (BRP), cuesco de palma (BCP), poda de árboles (BP), pulpa de café (BC) y tallos de rosa (BTR), con el objetivo de caracterizarlos, evaluarlos como enmiendas sobre el crecimiento de lechuga (Lactuca sativa) y determinar su efecto en propiedades físico-químicas de suelos disímiles (Ferralsol, Umbrisol, Andosoles y Tecnosol) contaminados con cadmio. Después establecer las propiedades físicas y químicas de las biocarbones; en cinco ensayos en matera se evaluaron los tratamientos 0, 3, 6, 9 y 12 ton ha-1 de biocarbón y fertilización convencional durante dos ciclos de siembra. Se encontró que BTR, BC y BRP presentan potencial para uso agrícola, mientras que BCP y BP tienen potencial ambiental. BC y BTR muestran una alta correlación negativa en la concentración de cadmio en el tejido foliar de plantas de lechuga frente al aumento de las dosis de biocarbón aplicadas, indicando que mitiga el efecto fitotóxico del cadmio en las plantas; se encontró que el uso de biocarbón mejora la densidad aparente y real, porosidad, capacidad de retención de humedad. Finalmente, se encontró que el pH y Capacidad de Intercambio Catiónico, aumentaron con la aplicación de los biocarbones. Los biocarbones en estudio permiten la enmienda de suelos, mitigar los efectos de la contaminación con cadmio y el aprovechamiento de biomasas contaminantes. (Texto tomado de la fuente)
dc.description.abstractCurrently biochar is a material of interest, rich in carbon with potential properties that allow its use as soil amendment and remediation for heavy metals contamination. The Biochars were obtained by pyrolysis (thermal decomposition in the absence of oxygen) using biomass residues. This research used palm rachis (BRP), palm kernel (BCP), wood waste (BP), coffee pulp (BC) and rose stems (BTR) biochars in order to characterize them and evaluate them as amendments in the growth of lettuce (Lactuca sativa), and determine its effect on physicochemical properties of dissimilar soils (Ferralsols, Umbrisols, Andosols, and Technosols) contaminated with cadmium. In five pot trials, treatments 0, 3, 6, 9 & 12- ton ha-1 of biochar and conventional fertilization were evaluated during two lettuce planting cycles. BTR, BC and BRP were found to have potential for agricultural use, while BCP and BP have environmental potential. BC and BTR show a high negative correlation in cadmium concentration in the leaf tissue of lettuce plants compared to the increase in the doses of biochar applied, indicating that it mitigates the phytotoxic effect of cadmium in plants. It was found that the use of biochar improves bulk and real density, porosity, water holding capacity. Finally, pH, cationic exchange capacity, increased with the application of biochar. The biochar under study allow the amendment of soils, mitigate the effects of cadmium contamination and the use of polluting biomass.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.publisherEscuela de posgrados
dc.publisherFacultad de Ciencias Agrarias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAbenza, D. P., 2012. Evaluación de efectos de varios tipos de biochar en suelo y planta, 111.
dc.relationAlloway, B.J., Steinnes, E., 1999. Anthropogenic Additions of Cadmium to Soils. Cadmium in Soils and Plants 97–123. https://doi.org/10.1007/978-94-011-4473-5_5
dc.relationBiswas, B., Pandey, N., Bisht, Y., Singh, R., Kumar, J., Bhaskar, T., 2017. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour. Technol. 237, 57–63. https://doi.org/10.1016/j.biortech.2017.02.046
dc.relationCadavid, L., Bolaños, I., 2015. Aprovechamiento de residuos orgánicos para la producción de energía renovable en una ciudad colombiana. Energética 0, 23–28.
dc.relationCooper, J., Greenberg, I., Ludwig, B., Hippich, L., Fischer, D., Glaser, B., Kaiser, M., 2020. Effect of biochar and compost on soil properties and organic matter in aggregate size fractions under field conditions. Agriculture, Ecosystems and Environment, 295. 9 pp.
dc.relationCuervo, G., Gomeéz, C., 2003. Vista de La desertificación en Colombia y el cambio global.pdf.
dc.relationEscalante, A., Pérez, G. Hidalgo, C., López J., Campo J., Valtierra, E., Etchevers, J., 2016. Biocarbón (Biochar) I: Naturaleza, fabricación y uso en el suelo. Red de Revistas Científicas de América Latina, Volumen 34, numero3, 367– 382.
dc.relationEspinoza, Jorge, and Yolanda Rubiano. 2015. “Procesos Específicos De Formación En Andisoles, Alfisoles Y Ultisoles En Colombia.” Revista EIA (spe2): 85–97.
dc.relationFAO. 2014. Actualización 2015 Base Referencial Mundial Del Recurso Suelo 2014: Sistema Internacional de Clasificación de Suelos. https://www.iec.cat/mapasols/DocuInteres/PDF/Llibre59.pdf.
dc.relationFAO, 2015. World’ s Soil Resources. Food and Agriculture Organization of the United Nations (FAO).
dc.relationGarcía, Clara Roa et al. 2021. “Relationship of Soil Water Retention Characteristics and Soil Properties: A Case Study from the Colombian Andes.” Canadian Journal of Soil Science 101(1): 144–56.
dc.relationGlaser B, Lehmann J, and Zech W. 2002. Ameliorating pHysical and chemical properties of highly weathered soils in the tropics with charcoal: a review. Biol Fert Soils 35: 219–30.
dc.relationHernandez-Mena, L.E., Pecora, A. a B., Beraldo, A.L., 2014. Slow pyrolysis of bamboo biomass: Analysis of biochar properties. Chem. Eng. Trans. 37, 115–120. https://doi.org/10.3303/CET1437020.
dc.relationIDEAM, U.D.C.A 2015. Síntesis del estudio nacional de la degradación de suelos por erosión en Colombia. IDEAM - MADS. Bogotá D.C., Colombia. Publicación aprobada por el IDEAM, Diciembre de 2015, pp. 25. Bogotá D.C., Colombia.
dc.relationKubier, A., Wilkin, R.T., Pichler, T., 2019. Cadmium in soils and groundwater: A review. Appl. Geochemistry 108. https://doi.org/10.1016/j.apgeochem.2019.104388
dc.relationLeguédois, S., Sèéré, G., Auclrec, A., Cortet, J., Huot, H., Ouvrard, S., Watteau, F., Schwartz, C., Morel, J. 2016. “Modelling Pedogenesis of Technosols.” Geoderma 262: 199–212. http://dx.doi.org/10.1016/j.geoderma.2015.08.008.
dc.relationLEHMANN, J. 2009 Biochar for Environmental Management: Science and Technology. Ed Earthscan, London, UK, 404
dc.relationLiu, X., Zhong, L., Meng, J., Wang, F., Zhang, J., Zhi, Y., Zeng, Z., Tang, X., Xu, J., 2018. A multi-medium chain modeling approach to estimate the cumulative effects of cadmium pollution on human health. Environmental Pollution, 239. 302 - 317 Pp.
dc.relationMahecha, J., Trujillo-gonzález, J.M., Torres-mora, M.A., 2017. Analysis of Studies in Heavy Metals in Agricultural Areas of Colombia. Revista Orinoquia Vol. 21 83–9.
dc.relationMalagón Castro, Dimas. 2003. “Ensayo Sobre Tipología De Suelos Colombianos - Énfasis En Génesis Y Aspectos Ambientales.” Rev. Acad. Colomb. Cienc. 27(104): 319–41.
dc.relationMarrugo, G., Valdés, C.F., Chejne, F., 2016. Characterization of Colombian Agroindustrial Biomass Residues as Energy Resources. Energy and Fuels 30, 8386–8398. https://doi.org/10.1021/acs.energyfuels.6b01596
dc.relationMoreno, J., Moral, R., Garcia, J., Pascual, J and Bernal M., 2014. De residuo a recurso el camino hacia la sostenibilidad. Edisiones mundi prensa Madrid, España pp. aña pp. 62-85.
dc.relationParedes, M., Silva-Agredo, J., Torres-Palma, R.A., 2018. Removal of norfloxacin in deionized, municipal water and urine using rice (Oryza sativa) and coffee (Coffea arabica) husk wastes as natural adsorbents. J. Environ. Manage. 213, 98–108. https://doi.org/10.1016/j.jenvman.2018.02.047
dc.relationPhiri, S., E. Amézquita, I. M. Rao, and B. R. Singh. 2001. “Disc Harrowing Intensity and Its Impact on Soil Properties and Plant Growth of Agropastoral Systems in the Llanos of Colombia.” Soil and Tillage Research 62(3–4): 131–43.
dc.relationQuevedo, B., Narváez-Rincón, P.C., Pedroza-Rodríguez, A.M., Velásquez-Lozano, M.E., 2015. Production of lignocellulolytic enzymes from floriculture residues using Pleurotus ostreatus. Univ. Sci. 20, 117–127. https://doi.org/10.11144/Javeriana.SC20-1.eple
dc.relationSohi, S. P., Krull, E., Lopez-Capel, E., and Bol, R. 2010. A review of biochar and its use and function in soil. Advances in Agronomy (1st ed., Vol. 105). Elsevier Inc. https://doi.org/10.1016/S0065-2113(10)05002-9
dc.relationTan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., Yang, Z., 2015. Application of biochar for the removal of pollutants from aqueous solutions. ChemospHere 125, 70–85. https://doi.org/10.1016/j.chemospHere.2014.12.058
dc.relationTsai, C.C.; Chen, Z.S.; Kao, C.I.; Ottner, F;, Kao, S.J.; Zehetner,F. (2010). Pedogenic Development of Volcanic Ash Soils.
dc.relationVan Ranst, E., Doube, M., Mees, F., Dumon, M., Ye, L., Delvaux, B., 2019. Andosolization of ferrallitic soils in the Bambouto Mountains, West Cameroon. Geoderma 340, 81–93. https://doi.org/10.1016/j.geoderma.2018.12.024
dc.relationYazdi, M., Kolahi, M., Mohajel, E., Goldson, A., 2019. Study of the contamination rate and change in growth features of lettuce (Lactuca sativa Linn.) in response to cadmium and a survey of its pHytochelatin synthase gene. Ecotoxicology and Environmental Safety, 180. 295 - 308 Pp.
dc.relationZhang, D., Pan, G., Wu, G., Kibue, G. W., Li, L., Zhang, X., Liu, X., 2015. Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility Umbrisol. ChemospHere. https://doi.org/10.1016/j.chemospHere.2015.04.088
dc.relationAgronet. 2020. Red de información y comunicación del sector agro-pecuario colombiano (Agronet). Área cosechada, producción y rendimiento de Rosa 2007-2018. URL: http://www.agronet.gov.co (accessed 10 May 2020).
dc.relationAmin, F.R., Huang, Y., He, Y., Zhang, R., Liu, G., Chen, C., 2016. Biochar applications and modern techniques for characterization. Clean Technol. Environ. Policy 18, 1457–1473. https://doi.org/10.1007/s10098-016-1218-8
dc.relationAmonette, J.E., & Joseph, S. (2009). Characteristics of biochar: microchemical properties. In: Lehmann J, Joseph S, Eds. Biochar for environmental management: science and technology., Earthscan: London. p. 33-52.
dc.relationAsocolflores. (2002). Guía Ambiental para la Floricultura. DOI: 10.1088/0957- 4484/24/32/325602.
dc.relationASTM, D1762.-84, 2013. Standard test method for chemical analysis of wood charcol. Am. Soc. Test. Mater. 84, 1–2. https://doi.org/10.1520/D1762-84R13.2
dc.relationASTM, D.-87, 2007. ASTM D4749-87 Standard Test Methods for Performing the Sieve Analysis of Coal and Designating Coal Size. ASTM D4749-87 Stand. Test Methods Perform. Sieve Anal. Coal Des. Coal Size 87, 1–10. https://doi.org/10.1520/D4749-87R12.Copyright
dc.relationASTM, D., 2000. D854 - Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. Astm D854 2458000, 1–7. https://doi.org/10.1520/D0854-10.2
dc.relationBerek, A.K., Hue, N. V., 2016. Characterization of biochars and their use as an amendment to acid soils. Soil Sci. 181, 412–426. https://doi.org/10.1097/SS.0000000000000177
dc.relationBeusch, C., Cierjacks, A., Böhm, J., Mertens, J., Bischoff, W.A., de Araújo Filho, J.C., Kaupenjohann, M., 2019. Biochar vs. clay: Comparison of their effects on nutrient retention of a tropical Arenosol. Geoderma 337, 524–535. https://doi.org/10.1016/j.geoderma.2018.09.043
dc.relationBiswas, B., Pandey, N., Bisht, Y., Singh, R., Kumar, J., Bhaskar, T., 2017. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour. Technol. 237, 57–63. https://doi.org/10.1016/j.biortech.2017.02.046
dc.relationBrassard, P., Godbout, S., Raghavan, V., 2016. Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved. J. Environ. Manage. 181, 484–497. https://doi.org/10.1016/j.jenvman.2016.06.063
dc.relationBray RH, Kurtz LT. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59:39–46.
dc.relationBrockhoff, S.R., Christians, N.E., Killorn, R.J., Horton, R., Davis, D.D., 2010. Physical and mineral-nutrition properties of sand-based turfgrass root zones amended with biochar. Agron. J. 102, 1627–1631. https://doi.org/10.2134/agronj2010.0188
dc.relationBuss, W., Shepherd, J.G., Heal, K. V, 2018. Geoderma Spatial and temporal microscale pH change at the soil-biochar interface 331, 50–52.
dc.relationCadavid, L., Bolaños, I., 2015. Aprovechamiento de residuos orgánicos para la producción de energía renovable en una ciudad colombiana. Energética 0, 23–28.
dc.relationCheng, F., Bayat, H., Jena, U., Brewer, C.E., 2020. Impact of feedstock composition on pyrolysis of low-cost, protein- and lignin-rich biomass: A review. J. Anal. Appl. Pyrolysis 147, 104780. https://doi.org/10.1016/j.jaap.2020.104780
dc.relationColantoni, A., Evic, N., Lord, R., Retschitzegger, S., Proto, A.R., Gallucci, F., Monarca, D., 2016. Characterization of biochars produced from pyrolysis of pelletized agricultural residues. Renew. Sustain. Energy Rev. 64, 187–194. https://doi.org/10.1016/j.rser.2016.06.003
dc.relationCrombie, K., Mašek, O., Sohi, S.P., Brownsort, P., Cross, A., 2013. The effect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenergy 5, 122–131. https://doi.org/10.1111/gcbb.12030
dc.relationCzajczyńska, D., Nannou, T., Anguilano, L., Krzyzyńska, R., Ghazal, H., Spencer, N., Jouhara, H., 2017. Potentials of pyrolysis processes in the waste management sector. Energy Procedia 123, 387–394. https://doi.org/10.1016/j.egypro.2017.07.275
dc.relationCzajka, K.M., 2018. Proximate analysis of coal by micro-TG method. J. Anal. Appl. Pyrolysis 133, 82–90. https://doi.org/10.1016/j.jaap.2018.04.017
dc.relationEl-Naggar, A., Lee, S.S., Rinklebe, J., Farooq, M., Song, H., Sarmah, A.K., Zimmerman, A.R., Ahmad, M., Shaheen, S.M., Ok, Y.S., 2019. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma 337, 536–554. https://doi.org/10.1016/j.geoderma.2018.09.034
dc.relationElkhalifa, S., Al-Ansari, T., Mackey, H.R., McKay, G., 2019. Food waste to biochars through pyrolysis: A review. Resour. Conserv. Recycl. 144, 310–320. https://doi.org/10.1016/j.resconrec.2019.01.024
dc.relationElkhalifa, S., Al-Ansari, T., Mackey, H.R., McKay, G., 2019. Food waste to biochars through pyrolysis: A review. Resour. Conserv. Recycl. 144, 310–320. https://doi.org/10.1016/j.resconrec.2019.01.024
dc.relationF1815-11, A., 2020. Standard Test Methods for Saturated Hydraulic Conductivity , Water Retention , Porosity , and Bulk Density of Athletic Field Rootzones 1 i, 1–6. https://doi.org/10.1520/F1815-11R18.2
dc.relationFerreira, S.D., Manera, C., Silvestre, W.P., Pauletti, G.F., Altafini, C.R., Godinho, M., 2019. Use of Biochar Produced from Elephant Grass by Pyrolysis in a Screw Reactor as a Soil Amendment. Waste and Biomass Valorization 10, 3089–3100. https://doi.org/10.1007/s12649-018-0347-1
dc.relationFerreira, M.F.P., Oliveira, B.F.H., Pinheiro, W.B.S., Correa, N.F., França, L.F., Ribeiro, N.F.P., 2020. Generation of biofuels by slow pyrolysis of palm empty fruit bunches: Optimization of process variables and characterization of physical-chemical products. Biomass and Bioenergy 140. https://doi.org/10.1016/j.biombioe.2020.105707
dc.relationGiffin, S., Littke, R., Klaver, J., Urai, J.L., 2013. Application of BIB-SEM technology to characterize macropore morphology in coal. Int. J. Coal Geol. 114, 85–95. https://doi.org/10.1016/j.coal.2013.02.009
dc.relationGuo, X. xia, Liu, H. tao, Zhang, J., 2020. The role of biochar in organic waste composting and soil improvement: A review. Waste Manag. 102, 884–899. https://doi.org/10.1016/j.wasman.2019.12.003
dc.relationHale, S.E., Nurida, N.L., Jubaedah, Mulder, J., Sørmo, E., Silvani, L., Abiven, S., Joseph, S., Taherymoosavi, S., Cornelissen, G., 2020. The effect of biochar, lime and ash on maize yield in a long-term field trial in a Ultisol in the humid tropics. Sci. Total Environ. 719. https://doi.org/10.1016/j.scitotenv.2020.137455
dc.relationHan, G., Meng, J., Zhang, W., Chen, W., 2013. Effect of biochar on microorganisms quantity and soil physicochemical property in rhizosphere of spinach (Spinacia oleracea L.). Appl. Mech. Mater. 295–298, 210–219. https://doi.org/10.4028/www.scientific.net/AMM.295-298.210
dc.relationHarvey, O.R., Kuo, L.J., Zimmerman, A.R., Louchouarn, P., Amonette, J.E., Herbert, B.E., 2012. An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars). Environ. Sci. Technol. 46, 1415–1421. https://doi.org/10.1021/es2040398
dc.relationHe, P., Liu, Y., Shao, L., Zhang, H., Lü, F., 2018. Particle size dependence of the physicochemical properties of biochar. Chemosphere 212, 385–392. https://doi.org/10.1016/j.chemosphere.2018.08.106
dc.relationHuong, P.T., Lee, B.K., Kim, J., Lee, C.H., Chong, M.N., 2016. Acid activation pine cone waste at differences temperature and selective removal of Pb2+ ions in water. Process Saf. Environ. Prot. 100, 80–90. https://doi.org/10.1016/j.psep.2015.12.002
dc.relationKeiluweit, M., Nico, P.S., Johnson, M.G., KLEBER, M., 2010. Dynamic Molecular Structure of Plant Biomass-derived Black Carbon(Biochar)- Supporting Information -. Environ. Sci. Technol. 44, 1247–1253.
dc.relationKlasson, K.T., 2017. Biochar characterization and a method for estimating biochar quality from proximate analysis results. Biomass and Bioenergy 96, 50–58. https://doi.org/10.1016/j.biombioe.2016.10.011
dc.relationKung, C.C., Kong, F., Choi, Y., 2015. Pyrolysis and biochar potential using crop residues and agricultural wastes in China. Ecol. Indic. 51, 139–145. https://doi.org/10.1016/j.ecolind.2014.06.043
dc.relationKung, C.C., Zhang, N., 2015. Renewable energy from pyrolysis using crops and agricultural residuals: An economic and environmental evaluation. Energy 90, 1532–1544. https://doi.org/10.1016/j.energy.2015.06.114
dc.relationLEHMANN, J. 2009 Biochar for Environmental Management: Science and Technology. Ed Earthscan, London, UK, 404
dc.relationLeng, L., Huang, H., 2018. An overview of the effect of pyrolysis process parameters on biochar stability. Bioresour. Technol. 270, 627–642. https://doi.org/10.1016/j.biortech.2018.09.030
dc.relationLi, H., Li, Y., Xu, Y., Lu, X., 2020. Biochar phosphorus fertilizer effects on soil phosphorus availability. Chemosphere 244, 125471. https://doi.org/10.1016/j.chemosphere.2019.125471
dc.relationLi, S., Harris, S., Anandhi, A., Chen, G., 2019. Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses. J. Clean. Prod. 215, 890–902. https://doi.org/10.1016/j.jclepro.2019.01.106
dc.relationLin, Y., Munroe, P., Joseph, S., Kimber, S., Van Zwieten, L., 2012. Nanoscale organo-mineral reactions of biochars in ferrosol: An investigation using microscopy. Plant Soil 357, 369–380. https://doi.org/10.1007/s11104-012-1169-8
dc.relationLuo, L., Xu, C., Chen, Z., Zhang, S., 2015. Properties of biomass-derived biochars: Combined effects of operating conditions and biomass types. Bioresour. Technol. 192, 83–89. https://doi.org/10.1016/j.biortech.2015.05.054
dc.relationMa, Z., Yang, Y., Ma, Q., Zhou, H., Luo, X., Liu, X., Wang, S., 2017. Evolution of the chemical composition, functional group, pore structure and crystallographic structure of bio-char from palm kernel shell pyrolysis under different temperatures. J. Anal. Appl. Pyrolysis. https://doi.org/10.1016/j.jaap.2017.07.015
dc.relationMa, Q., Song, W., Wang, R., Zou, J., Yang, R., Zhang, S., 2018. Physicochemical properties of biochar derived from anaerobically digested dairy manure. Waste Manag. 79, 729–734. https://doi.org/10.1016/j.wasman.2018.08.023
dc.relationManjarrés, J.K., 2019. PRODUCCIÓN BIOTECNOLÓGICA DE XILITOL A PARTIR DE HIDROLIZADOS DE RAQUIS DE PALMA CON LEVADURAS DEL GÉNERO Candida sp. Univ. Nac. Colomb.
dc.relationMarrugo, G., Valdés, C.F., Chejne, F., 2016. Characterization of Colombian Agroindustrial Biomass Residues as Energy Resources. Energy and Fuels 30, 8386–8398. https://doi.org/10.1021/acs.energyfuels.6b01596
dc.relationMartínez C., M.J., España A., J.C., Díaz V., J. de J., 2017. Efecto de la adición de biocarbonizados de Eucalyptus globullus en la disponibilidad de fósforo en suelos ácidos. Agron. Colomb. 35, 75–81. https://doi.org/10.15446/agron.colomb.v35n1.58671
dc.relationMohanty, P., Nanda, S., Pant, K.K., Naik, S., Kozinski, J.A., Dalai, A.K., 2013. Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: Effects of heating rate. J. Anal. Appl. Pyrolysis 104, 485–493. https://doi.org/10.1016/j.jaap.2013.05.022
dc.relationMunera, J.L., Martinsen, V., Strand, L.T., Zivanovic, V., Cornelissen, G., Mulder, J., 2018. Science of the Total Environment Cation exchange capacity of biochar : An urgent method modification 642, 190–197.
dc.relationParedes, M., Silva-Agredo, J., Torres-Palma, R.A., 2018. Removal of norfloxacin in deionized, municipal water and urine using rice (Oryza sativa) and coffee (Coffea arabica) husk wastes as natural adsorbents. J. Environ. Manage. 213, 98–108. https://doi.org/10.1016/j.jenvman.2018.02.047
dc.relationPark, Y.K., Yoo, M.L., Lee, H.W., Park, S.H., Jung, S.C., Park, S.S., Kim, S.C., 2012. Effects of operation conditions on pyrolysis characteristics of agricultural residues. Renew. Energy 42, 125–130. https://doi.org/10.1016/j.renene.2011.08.050
dc.relationQin, C., Wang, H., Yuan, X., Xiong, T., Zhang, Jingjing, Zhang, Jin, 2020. Understanding structure-performance correlation of biochar materials in environmental remediation and electrochemical devices. Chem. Eng. J. 382, 122977. https://doi.org/10.1016/j.cej.2019.122977
dc.relationQuevedo, B., Narváez-Rincón, P.C., Pedroza-Rodríguez, A.M., Velásquez-Lozano, M.E., 2015. Production of lignocellulolytic enzymes from floriculture residues using Pleurotus ostreatus. Univ. Sci. 20, 117–127. https://doi.org/10.11144/Javeriana.SC20-1.eple
dc.relationQuosai, B.P., 2017. Characterization of biocarbon generated by high and low temperature pyrolysis of soy hulls and coffee chaff Check.
dc.relationRajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A.R., Lehmann, J., 2012. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil. Soils 48, 271–284. https://doi.org/10.1007/s00374-011-0624-7.
dc.relationRehrah, D., Reddy, M.R., Novak, J.M., Bansode, R.R., Schimmel, K.A., Yu, J., Watts, D.W., Ahmedna, M., 2014. Production and characterization of biochars from agricultural by-products for use in soil quality enhancement. J. Anal. Appl. Pyrolysis 108, 301–309. https://doi.org/10.1016/j.jaap.2014.03.008
dc.relationSchimmelpfennig, S., Glaser, B., 2012. One Step Forward toward Characterization: Some Important Material Properties to Distinguish Biochars. J. Environ. Qual. 41, 1001–1013. https://doi.org/10.2134/jeq2011.0146
dc.relationSchmidt, P., Agroscope, T., Kamman, C., 2015. European Biochar Certificate - Guidelines for a Sustainable Production of Biochar’. Eur. Biochar Found. (EBC), Arbaz, Switzerland. Version 6.1 19th June, 1–22. https://doi.org/10.13140/RG.2.1.4658.7043
dc.relationSeo, D.K., Park, S.S., Kim, Y.T., Hwang, J., Yu, T.U., 2011. Study of coal pyrolysis by thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species. J. Anal. Appl. Pyrolysis 92, 209–216. https://doi.org/10.1016/j.jaap.2011.05.012
dc.relationSetter, C., Silva, F.T.M., Assis, M.R., Ataíde, C.H., Trugilho, P.F., Oliveira, T.J.P., 2020. Slow pyrolysis of coffee husk briquettes: Characterization of the solid and liquid fractions. Fuel 261. https://doi.org/10.1016/j.fuel.2019.116420
dc.relationSun, X., Shan, R., Li, X., Pan, J., Liu, X., Deng, R., Song, J., 2017. Characterization of 60 types of Chinese biomass waste and resultant biochars in terms of their candidacy for soil application. GCB Bioenergy 9, 1423–1435. https://doi.org/10.1111/gcbb.12435
dc.relationTripathi, M., Sahu, J.N., Ganesan, P., 2016. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sustain. Energy Rev. 55, 467–481. https://doi.org/10.1016/j.rser.2015.10.122
dc.relationVeiga, P.A. da S., Schultz, J., Matos, T.T. da S., Fornari, M.R., Costa, T.G., Meurer, L., Mangrich, A.S., 2020. Production of high-performance biochar using a simple and low-cost method: Optimization of pyrolysis parameters and evaluation for water treatment. J. Anal. Appl. Pyrolysis 148. https://doi.org/10.1016/j.jaap.2020.104823
dc.relationWang, J., Wang, S., 2019. Preparation, modification and environmental application of biochar: A review. J. Clean. Prod. 227, 1002–1022. https://doi.org/10.1016/j.jclepro.2019.04.282
dc.relationWindeatt, J.H., Ross, A.B., Williams, P.T., Forster, P.M., Nahil, M.A., Singh, S., 2014. Characteristics of biochars from crop residues: Potential for carbon sequestration and soil amendment. J. Environ. Manage. 146, 189–197. https://doi.org/10.1016/j.jenvman.2014.08.003
dc.relationXiang, A., Qi, R., Wang, M., Zhang, K., Jiang, E., Ren, Y., Hu, Z., 2020. Study on the infiltration mechanism of molten urea and biochar for a novel fertilizer preparation. Ind. Crops Prod. 153. https://doi.org/10.1016/j.indcrop.2020.112558
dc.relationXu, J., Liu, J., Ling, P., Zhang, X., Xu, K., He, L., Wang, Y., Su, S., Hu, S., Xiang, J., 2020. Raman spectroscopy of biochar from the pyrolysis of three typical Chinese biomasses: A novel method for rapidly evaluating the biochar property. Energy 202, 1–10. https://doi.org/10.1016/j.energy.2020.117644
dc.relationYargicoglu, E.N., Sadasivam, B.Y., Reddy, K.R., Spokas, K., 2015. Physical and chemical characterization of waste wood derived biochars. Waste Manag. 36, 256–268. https://doi.org/10.1016/j.wasman.2014.10.029
dc.relationYi, S., Chang, N.Y., Imhoff, P.T., 2020. Predicting water retention of biochar-amended soil from independent measurements of biochar and soil properties. Adv. Water Resour. 142. https://doi.org/10.1016/j.advwatres.2020.103638
dc.relationYu, K.L., Lau, B.F., Show, P.L., Ong, H.C., Ling, T.C., Chen, W.H., Ng, E.P., Chang, J.S., 2017. Recent developments on algal biochar production and characterization. Bioresour. Technol. 246, 2–11. https://doi.org/10.1016/j.biortech.2017.08.009
dc.relationZhang, C., Lin, Y., Tian, X., Xu, Q., Chen, Z., Lin, W., 2017. Tobacco bacterial wilt suppression with biochar soil addition associates to improved soil physiochemical properties and increased rhizosphere bacteria abundance. Appl. Soil Ecol. 112, 90–96. https://doi.org/10.1016/j.apsoil.2016.12.005
dc.relationZhang, K., Mao, J., Chen, B., 2019. Reconsideration of heterostructures of biochars: Morphology, particle size, elemental composition, reactivity and toxicity. Environ. Pollut. 254, 113017. https://doi.org/10.1016/j.envpol.2019.113017
dc.relationZhao, L., Cao, X., Wang, Q., Yang, F., Xu, S., 2013. Mineral Constituents Profile of Biochar Derived from Diversified Waste Biomasses: Implications for Agricultural Applications. J. Environ. Qual. 42, 545–552. https://doi.org/10.2134/jeq2012.0232
dc.relationZhu, X., Li, Y., Wang, X., 2019. Machine learning prediction of biochar yield and carbon contents in biochar based on biomass characteristics and pyrolysis conditions. Bioresour. Technol. 288, 121527. https://doi.org/10.1016/j.biortech.2019.121527
dc.relationAbideen, Z., Koiro, H., Huchzermeyer, B., Bilquees, G., Ajmal, K., 2020. Impact of a Biochar or a Compost-Biochar Mixture on Water relation, Nutrient uptake & PHotosynthesis of PHragmites karka. PedospHere, 30(4). 466 - 477 Pp.
dc.relationAdeyemi, O., Grove, I., Peets, S., Domun, Y., Norton, T., 2018. Dynamic modelling of the baseline temperatures for computation of the crop water stress index (CWSI) of a greenhouse cultivated lettuce crop. Comput. Electron. Agric. 153, 102–114. https://doi.org/10.1016/j.compag.2018.08.009.
dc.relationAdnan, P., Shan, L., Anjum, S., Din Khan, W., Ronggui, H., Iqbal, M., Abbas, Z., Kausar, S., 2017. Improved quinoa growth, pHysiological response, & seed nutritional quality in three soils having different stresses by the application of acidified biochar & compost. Plant PHysiology & Biochemistry, 116. 127 - 138 Pp.
dc.relationAhmed, A., Kurian, J., Raghavan, V., 2016. Biochar influences on agricultural soils, crop production, & the environment: A review. Environmental Reviews, 24(4). 495 - 502 Pp.
dc.relationAmjad, M., Khan, S., Khan, A., Alam, M., 2017. Soil contamination with cadmium, consequences & remediation using organic amendments. Science of the Total Environment, 601 - 602. 1591 - 1606 Pp.
dc.relationAgegnehu, G.,Bass, A., Nelson, P., Bird, M., 2016. Benefits of biochar, compost & biochar–compost for soil quality, maize yield & greenhouse gas emissions in a tropical agricultural soil. Science of the Total Environment, 543. 295 - 306 Pp.
dc.relationAgegnehu, G., Srivastav, A., Bird, M., 2017. The role of biochar & biochar-compost in improving soil quality & crop performance: A review. Applied Soil Ecology, 119. 156 - 170 Pp.
dc.relationAlbuquerque, J., Salazar, P., Barrón, V., Torrent, J., Campillo, M., Gallardo, A., Villar, R., 2013. Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agronomy for Sustainable Development, 33. 475 - 484 Pp.
dc.relationAlloway, B.J., Steinnes, E., 1999. Anthropogenic Additions of Cadmium to Soils. Cadmium in Soils & Plants 97–123. https://doi.org/10.1007/978-94-011-4473-5_5
dc.relationAlloway, B.J., Steinnes, E., 1999. Anthropogenic Additions of Cadmium to Soils. Cadmium in Soils & Plants 97–123. https://doi.org/10.1007/978-94-011-4473-5_5
dc.relationAlves, R., Fernandez, M., Cocco, S., Ruello, M., Fornasier, F., Corti, G., 2019. Benefits of Biochars & NPK Fertilizers for Soil Quality & Growth of Cowpea (Vigna unguiculata L. Walp.) in an Acid Arenosol. PedospHere, 29(1). 82 - 94 Pp.
dc.relationAzzi, V., Kanso, A., Kazpard, V., Kobeissi, A., Lartiges, B., El Samrani, A., 2017. Lactuca sativa growth in compacted & non-compacted semi-arid alkaline soil under pHospHate fertilizer treatment & cadmium contamination. Soil & tillage, 165. 1 - 10 Pp.
dc.relationBeesley, L., Moreno, E., Gomez, J., Harris, E., Robinson, B., Sizmur, T., 2011. A review of biochars’ potential role in the remediation, revegetation & restoration of contaminated soils. Environmental Pollution, 159(12). 3269 - 3282 Pp.
dc.relationBeluri, K., Pullagurala, L., Bojeong, K., Sang, L., Sudhir, P., Ki-Hyun, K., 2018. Benefits & limitations of biochar amendment in agricultural soils: A review. Journal of Environmental Management. 227. 146 - 154 Pp.
dc.relationBi, Y., Cai, S., Wang, Y., Xia, Y., Zhao, X., Wang, S., Xing, G., 2019. Assessing the viability of soil successive straw biochar amendment based on a five-year column trial with six different soils: Views from crop production, carbon sequestration & net ecosystem economic benefits. Journal of Environmental Management, 245,173-186 Pp.
dc.relationBindraban, P., Van der Velde, M., Ye, L., Van der Berg, M., Materechera, S., Innocent, D., Tamene, L., Vala, K., Jongschaap, R., Hoogmoed, M., Hoogmoed, W., Van Beek., Van Lynden, G., 2012. Assessing the impact of soil degradation on food production. Current opinion in environmental sustainability, 4(5), 478-488.
dc.relationBorchard, N., Siemens, J., Ladd, B., Molller, A., Amelung, W., 2014. Application of biochars to sandy & silty soil failed to increase maize yield under common agricultural practice. Soil & Tillage Research, 144. 184 - 194
dc.relationCampos, P., Miller, A., Knicker, H., Costa, M., Merino, A., De la Rosa, J., 2020. Chemical, pHysical & morpHological properties of biochars produced from agricultural residues: Implications for their use as soil amendment. Waste Management, 105. 256 - 267 Pp.
dc.relationCaporale, A., Pigna, M., Sommella, A., Conte, P., 2014. Effect of pruning-derived biochar on heavy metals removal & water dynamics. Biology & Fertility of the Soils, 50. 1211 - 1222 Pp.
dc.relationCervera, A., Navarro, M., Delgado, G., Pastoriza, S., Montilla, J., Llopis, J., Sanchez, C., Rufian, J., 2019. Spent coffee grounds improve the nutritional value in elements of lettuce (Lactuca sativa L.) & are an ecological alternative to inorganic fertilizers. Food Chemistry, 282(1). 1 - 8 Pp.
dc.relationCooper, J., Greenberg, I., Ludwig, B., Hippich, L., Fischer, D., Glaser, B., Kaiser, M., 2020. Effect of biochar & compost on soil properties & organic matter in aggregate size fractions under field conditions. Agriculture, Ecosystems & Environment, 295. 9 Pp.
dc.relationDahnke, W.C., & D.A. Whitney. 1988. Measurement of soil salinity. p. 32-34. In Recommended chemical soil test procedures for the North Central Region. North Central Reg. Publ. 221. Revised. North Dakota Agric. Exp. Stn. Bull. 499. Fargo, ND.
dc.relationDaza, M. (2014). Aplicación de compost de residuos de flores en suelos ácidos cultivados con maíz. Revista Ciencias Técnicas Agropecuarias, ISSN -1010-2760, RNPS-0111, Vol. 23, No. 3 pp. 22-30.
dc.relationDe Sousa., J, de Moraes, W., de Medeiros, E., Pereira, G., Metri, M., Martins, A., Clermont, C., Dantas, A., Hammecker, D, 2018. Effect of biochar on pHysicochemical properties of a sandy soil & maize growth in a greenhouse experiment. Agricultural Water Management. 217. 168 - 178 Pp.
dc.relationDeenik, J., McClellan, T., Uehara, G., Antal, M., S. Campbell, S., 2010. Charcoal volatile matter content influences plant growth & soil nitrogen transformations. Soil Science Society of America Journal, 74. 1259 - 1270 Pp.
dc.relationDi, Wu., Yanfang, F., Lihong, X., Manqiang, L., Bei, Y., Feng, H., Linzhang Y., 2019. Biochar Combined with Vermicompost Increases Crop Production While Reducing Ammonia & Nitrous Oxide Emissions from a Paddy Soil. PedospHere, 29. 82 - 94 Pp.
dc.relationDominguez, E., Uttran, A., Loh S., Manero, M., Upperton, R., Tanimu, M., Bachmann, T., 2020. Characterisation of industrially produced oil palm kernel shell biochar & its potential as slow release nitrogen-pHospHate fertilizer & carbon sink. Materials Today, 31. 221 - 227 Pp.
dc.relationFaloye, O., Alatise, M., Ajayi, A., Ewulo, B., 2019. Effects of biochar & inorganic fertilizer applications on growth, yield & water use efficiency of maize under deficit irrigation. Agricultural Water Management, 217. 165 - 178 Pp.
dc.relationFang, H., Shuang, W., Tu, S., Ding, Y., Gang, R., Rensing, C., Li, Y., Fneg, R., 2019. Differences in cadmium absorption by 71 leaf vegetable varieties from different families & genera & their health risk assessment. Ecotoxicology & Environmental Safety, 184.
dc.relationFarhangi., S., Torabian, S., 2017. Antioxidant enzyme & osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicology & Environmental Safety, 137. 64 - 70 Pp.
dc.relationFischer, D., Glaser, B., 2012. Synergisms between compost & biochar for sustainable soil amelioration. En: Kumar, S., Bharti, A. Management of Organic Waste. Intech. Rijeka, Croacia. 167 - 198 Pp.
dc.relationFranco, O., Sánchez, r., Gómez, C., Otero, J., Salamanca, J., 2015. Estudio nacional de la degradación de suelos por erosión en Colombia. IDEAM. Bogotá, 62 Pp.
dc.relationFrench, E., Lyer, A., 2018. A role for the gibberellin pathway in biochar mediated growth promotion. Scientific Report, 8. 10 Pp.
dc.relationGale, N., Thomas, S., 2019. Dose-dependence of growth & ecopHysiological responses of plants to biochar. Science of the Total Environment, 658. 1344 - 1354 Pp.
dc.relationGalieni, A., Di Mattia, C., De Gregorio, M., Speca, S., Mastrocola, D., Pisante, M., Stagnari, F., 2015. Effects of nutrient deficiency & abiotic environmental stresses on yield, pHenolic compounds & antiradical activity in lettuce (Lactuca sativa L.). Scientia Horticulturae, 187. 93 - 101 Pp.
dc.relationGao, Y., Shao, G., Lu, J., Zhang, K., Wu, S., Wang, Z., 2020. Effects of biochar application on crop water use efficiency depend on experimental conditions: A meta-analysis. Field Crops Research, 249, 16 Pp.
dc.relationGheshm, R., Brown, R.N., 2018. Organic mulch effects on high tunnel lettuce in Southern New England. Horttechnology 28, 485–491. https://doi.org/10.21273/HORTTECH04056-18
dc.relationGlaser, B., Birk, J., 2012. State of the scientific knowledge on properties & genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Indio). Geochimica et Cosmochimica Acta, 82. 39 - 51 Pp.
dc.relationGünal, E., Erdem, H., Çelik, I., 2018. Effects of three different biochars amendment on water retention of silty loam & loamy soils. Agricultural Water Management, 208. 232 - 244 Pp.
dc.relationHamid, Y., Tang, L., Irfan, M., Cao, X., Hussain, B., Zahir, M., Usman, M., He, Z., Yang, X., 2019. An explanation of soil amendments to reduce cadmium phytoavailability & transfer to the food chain. Science of The Total Environment, 660. 80 - 96 Pp.
dc.relationHamid, Y., Tang, L., Hussain, B., Usman, M., Lin, Q., Saqib, M., He, Z., Yang, X , 2020. Organic soil additives for the remediation of cadmium contaminated soils & their impact on the soil-plant system: A review. Science of The Total Environment, 707.
dc.relationHagemann, N., JosepH, S., Schmidt, H., Kammann, C., Harter, J., Borch, T., Young, R., Varga, K., Taherymoosavi, S., Wade, K., Mckenna, A., Albu, M., Mayrhofer, C., Obst, M., Conte, P., Dieguez, A., Orsetti, S., Subdiaga, E., Behrens, S., Kappler, S., 2017. Organic coating on biochar explains its nutrient retention & stimulation of soil fertility. Nature Communications, 8.
dc.relationHuang, L., Wang, Q., Zhou, Q., Ma, L., Wu, Y., Liu, Q., Wang, S., Feng, Y., 2020. Cadmium uptake from soil & transport by leafy vegetables: A meta-analysis. Environmental Pollution, 264.
dc.relationIbañez, P., Sanchez, M., Sanchez, M., Cayuela, M., Moreno, D., 2020. Olive tree pruning derived biochar increases glucosinolate concentrations in broccoli. Scientia Horticulturae, 267. 6 Pp.
dc.relationIbrahim, M., Li, G., Shun, L., Kay, P., Liu, X., Firbank, L., Xu, Y., 2019. Biochars effects potentially toxic elements & antioxidant enzymes in Lactuca sativa L. grown in multi-metals contaminated soil. Environmental Technology & Innovation, 15.
dc.relationIdrovo, J., Gavilanes, I., Angeles, M., Paredes, C., 2018. Composting as a method to recycle renewable plant resources back to the ornamental plant industry: Agronomic & economic assessment of composts. Process Safety & Environmental Protection, 116. 388 – 395 Pp.
dc.relationIdrovo, J., Gavilanes, I., Veloz, N., Erazo, R., Paredes, C., 2019. Closing the cycle for the cut rose industry by the reuse of its organic wastes: A case study in Ecuador. Journal of Cleaner Production, 2020. 910 – 918 Pp.
dc.relationIGAC, 2016. Política para la gestión sostenible del suelo. Ministerio de Ambiente y Desarrollo Sostenible de Colombia. Primera edición. 27 Pp.
dc.relationIBI, 2014. Standardized Product Definition and Product Testing Guidelines for BiocharThat Is Used in Soi. Int. BIOCHAR Initiat. 1–60.
dc.relationIrfan, M., Hayata, S., Ahmada, A., Nasser, M., 2013. Soil cadmium enrichment: Allocation & plant pHysiological manifestations. Saudi Journal of Biological Sciences, 20(1). 1 - 10 Pp.
dc.relationJing, Y., Zhang, Y., Han, I., Wang, P., Mei, Q., Huang, Y., 2020. Effects of different straw biochars on soil organic carbon, nitrogen, available pHospHorus, & enzyme activity in paddy soil. Scientific Reports, 10.
dc.relationJung, S., Park, Y., Kwon, E., 2019. Benefits & limitations of biochar amendment in agricultural soils: A review. Journal of Environmental Management, 227. 146 - 154 Pp.
dc.relationKolahi, M., Kazemib, M., Yazdic, M., Goldson, A., 2020. Oxidative stress induced by cadmium in lettuce (Lactuca sativa Linn.): Oxidative stress indicators & prediction of their genes. Plant PHysiology & Biochemistry, 146.
dc.relationKopéc, M., Baran, A., Mierzwa, M., Gondek, K., Chemiel, M., 2018. Effect of the Addition of Biochar & Coffee Grounds on the Biological Properties & Ecotoxicity of Composts. Waste Biomass Valor, 9. 1389 - 1398 Pp.
dc.relationKubier, A., Wilkin, R.T., Pichler, T., 2019. Cadmium in soils & groundwater: A review. Appl. Geochemistry 108. https://doi.org/10.1016/j.apgeochem.2019.104388
dc.relationLi, J., Heb, F., Shen, X., Hu, D., Huang, Q., 2020a. Pyrolyzed fabrication of N/P co-doped biochars from (NH4)3 PO4 pretreated coffee shells & appraisement for remedying aqueous Cr (VI) contaminants. Bioresource Technology, 315. 8 Pp.
dc.relationLi, Y., Dong, S., Qiao, J., Liang, S., Wu, X., Wang, M., Zhao, H., Liu, W., 2020b. Impact of nanominerals on the migration & distribution of cadmium on soil aggregates. Journal of Cleaner Production, 262.
dc.relationLiu, X., Zhong, L., Meng, J., Wang, F., Zhang, J., Zhi, Y., Zeng, Z., Tang, X., Xu, J., 2018. A multi-medium chain modeling approach to estimate the cumulative effects of cadmium pollution on human health. Environmental Pollution, 239. 302 - 317 Pp.
dc.relationLoi, N., Sanzharova, N., Ssxhagina, N., Mironova, M., 2018. The Effect of Cadmium Toxicity on the Development of Lettuce Plants on Contaminated Sod-Podzolic Soil. Russian Agricultural Sciences, 44(1). 49 - 52 Pp.
dc.relationLora, R., Bonilla, H., 2010. Remediación de un suelo de la cuenca alta del río Bogotá contaminado con los metales pesados cadmio y cloro. Actualidad y divergencia científica, 13(2). 61 - 70 Pp.
dc.relationLynch, J, 2016. Preface. En: Sik, Y., Tsang, D., Bolan, M., Novak, J., Biochar from Biomass & Waste, primera edición, Elsevier, Países bajos.
dc.relationMacKenna, I., Chaney, R., Williams, F., 2017. The effects of cadmium & zinc interactions on the accumulation & tissue distribution of zinc & cadmium in lettuce & spinach. Environmental Pollution, 79(2). 113 - 120 Pp.
dc.relationMahecha, J., Trujillo, J., Torres, M., 2015. Contenido de metales pesados en suelos agrícolas de la región del Ariari, Departamento del Meta. Revista Orinoquía, 19(1). 6 Pp.
dc.relationManeechakr , P., Mongkollertlop, S., 2020. Investigation on adsorption behaviors of heavy metal ions (Cd2+, Cr3+, Hg2+ & Pb2+) through low-cost/active manganese dioxide-modified magnetic biochar derived from palm kernel cake residue. Journal of Environmental Chemical Engineering, 9 Pp.
dc.relationMajid, M., Khan, J., Ahmad, Q., Masoodi, K., Afroza, B., Parvaze, S., 2021. Evaluation of hydroponic systems for the cultivation of Lettuce (Lactuca sativa L., var. Longifolia) & comparison with protected soil-based cultivation. Agricultural Water Management, 245.
dc.relationMajor, J., Rondón, M., Molina, D., Riha, S., Lehmann, J., 2010. Maize yield & nutrition during 4 years after biochar application to a Colombian savanna Ferralsol. Plant Soil, 333. 117 - 128 Pp.
dc.relationMatraszek, R., Hawrylak, B., Chwil, S., Chwil, M., 2016. Macroelemental composition of cadmium stressed lettuce plants grown under conditions of intensive sulpHur nutrition, Journal of Environmental Management. 180. 24 - 34 Pp.
dc.relationMiranda, D., Carranza, C., Rojas, C., Jerez, C., Fischer, G., Zurita, J., 2008. Acumulación de metales pesados en suelo y plantas de cuatro cultivos hortícolas regados con aguas del río Bogotá. Revista Colombiana de Ciencias Hortícolas, 2(2). 180 - 191 Pp.
dc.relationNieto, A., Gascó, G., Paz, J., Fernandez, J., Plaza, C., Mendez, A., 2016. The effect of pruning waste & biochar addition on brown peat based growing media properties. Scientia Horticulturae, 199. 142 - 148 Pp.
dc.relationNieto, J., 2017. Uso inadecuado del suelo en Colombia: un generador de Gases Efecto Invernadero. En: Instituto Geológico Agustín Codazzi.
dc.relationPaneque, M., De la Rosa, J., Franco, J., Colmenero, J., Knicker, H., 2016. Effect of biochar amendment on morpHology, productivity & water relations of sunflower plants under non-irrigation conditions. Catena, 147. 280 - 287.
dc.relationPelaez, M., Busamante, J., Gomez, E., 2016. Presencia de cadmio y plomo en suelos y su bioacumulación en tejidos vegetales en especies de Brachiaria en el Magdalena medio Colombiano. Luna Azul, 43. 82 - 101 Pp.
dc.relationPinto, E., Almeida, A., Aguiar, A., Ferreira, I., 2014. Changes in macrominerals, trace elements & pigments content during lettuce (Lactuca sativa L.) growth: Influence of soil composition. Food Chemistry, 152. 603 - 611 Pp.
dc.relationQuezada-Hinojosa, R.P., Föllmi, K.B., Verrecchia, E., Adatte, T., Matera, V., 2015. Speciation & multivariable analyses of geogenic cadmium in soils at Le Gurnigel, Swiss Jura Mountains. Catena 125, 10–32. https://doi.org/10.1016/j.catena.2014.10.003
dc.relationRadin, R., Bakar, R., Ishak, C., Ahmad, S., Tsong, L., 2017. Biochar-compost mixture as amendment for improvement of polybag-growing media & oil palm seedlings at main nursery stage. International Journal of Recycling of Organic Waste in Agriculture, 7. 11 - 23 Pp.
dc.relationRodriguez, H., 2017. Dinámica del cadmio en suelos con niveles altos de elementos, en zonas productoras de cacao en Nilo y Yacopí, Cundinamarca.
dc.relationRuíz, J., 2011. Evaluación de tratamientos para disminuir cadmio en lechuga (Lactuca sativa L.) regada con agua del río Bogotá. Agronomía Colombiana, 5(2). 233 – 244 Pp.
dc.relationSafahani, A., Campiglia, E., Mancinelli, R., Radicetti, E., 2019. Can biochar improve pumpkin productivity & its pHysiological characteristics under reduced irrigation regimes?. Scientia Horticulturae, 247. 195 - 204 Pp.
dc.relationSajjadi, B., Chen, W.Y., Mattern, D.L., Hammer, N., Dorris, A., 2020. Low-temperature acoustic-based activation of biochar for enhanced removal of heavy metals. J. Water Process Eng. 34. https://doi.org/10.1016/j.jwpe.2020.101166
dc.relationSalinas, 2013. Introducción de cinco variedades de lechuga (Lactuca sativa L.) en el barrio Santa Fe de la Parroquia Atahualpa en el Cantón Ambato. Tesis Universidad Técnica de Ambato. 25 Pp.
dc.relationSaxena, J., Rana, G., Pandey, M., 2013. Impact of addition of biochar along with Bacillus sp. on growth & yield of French beans. Scientia Horticulturae. 162. 351 - 356 Pp.
dc.relationSchmidt, H., Kammannb, C., Nigglia, C., Evangelou, M., Mackie, K., Abivenealthak, s., 2014. Biochar & biochar-compost as soil amendments to a vineyard soil: Influences on plant growth, nutrient uptake, plant health & grape quality. Agriculture, Ecosystems & Environment, 191. 117 - 123 Pp.
dc.relationSehar, A., Aziz, R., Rafiq, M.T., Hussain, M.M., Rizwan, M., Sehrish, A.K., Rafiq, M.K., Din, J. ud, Hussain, Q., Al-Wabel, M.I., Ali, S., 2018. Synthesis of biochar from sugarcane filter-cake and its impacts on physiological performance of lettuce (Lettuce sativa) grown on cadmium contaminated soil. Arab. J. Geosci. 11. https://doi.org/10.1007/s12517-018-4006-4
dc.relationShin, H., Tiwarib, d., Kimad., 2020. PHospHate adsorption/desorption kinetics & P bioavailability of Mg-biochar from ground coffee waste. Journal of Water Process Engineering, 37. 7 Pp.
dc.relationSilva, M., Oliveira, P., de Jesus, J., Ganassali, L., 2019. Biochar increases plant water use efficiency & biomass production while reducing Cu concentration in Brassica juncea L. in a Cu-contaminated soil. Ecotoxicology & Environmental Safety, 183. 6 Pp.
dc.relationSimón, M., García, I., Diez, M., Gonzalez, V., 2018. Biochar from Different Carbonaceous Waste Materials: Ecotoxicity & Effectiveness in the Sorption of Metal(loid)s. Water Air Soil Pollut, 224. 223- 229 Pp.
dc.relationSomerville, P., Farrel, C., May, P., Livesley, S., 2019. Tree water use strategies & soil type determine growth responses to biochar & compost organic amendments. Soil & Tillage Research, 192. 12 - 21 Pp.
dc.relationTang, X., Yan, P.. Ji, P., Gao, P., Hung, T., Tong, Y., 2016. Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.). Ecotoxicology & Environmental Safety, 125. 102 – 106 Pp.
dc.relationTang, Y., Xie, Y., Sun, G., Tan, H., Lin, L., Li, H., Liao, M., Wang, Z., Lv, D., Liang, D., Xia, H., Wang, X., Wang, J., Xiong, B., Zheng, Y., He, Z., Tu, L., 2018. Cadmium-accumulator straw application alleviates cadmium stress of lettuce (Lactuca sativa) by promoting pHotosynthetic activity & antioxidative enzyme activities, Environmental Sciences & Pollution Research, 25.
dc.relationTangmankongworakoon, N., 2019. An approach to produce biochar from coffee residue for fuel & soil amendment purposes. International Journal of Recycling of Organic Waste in Agriculture, 8. 37 - 44 Pp.
dc.relationTrupiano, D., Cocozza, C., Baronti, S., Amendola, C., Vaccari, F., Lustrato, G., Di Lonardo, S., Fantasma, F., Tognetti, R., Scippa, S., 2017. The effects of biochar & its combination with compost on lettuce (Lactuca sativa L.) growth, soil properties,and soil microbial activity & abundance. International Journal of Agronomy, 2017. 12 Pp.
dc.relationUNEP, 2010. Final review of scientific information on cadmium. En: United Nations of Environmental Programme, http://wedocs.unep.org/bitstream/handle/20.500.11822/27636/Cadmium_Review.pdf; consulta: Abril de 2020
dc.relationUsman, A., Sallam, A., Zhang, M., Vithanage, M., Ahmad, M., Al Farraj, A., Sik, Y., Abduljabbar, A., Al Wabel, M., 2016. Sorption Process of Date Palm Biochar for Aqueous Cd (II) Removal: Efficiency & Mechanisms. Water, Air, & Soil Pollution, 22. 16 Pp.
dc.relationVargas, O., Prieto, G., Gonzalez, L., Matamoros, A., 2004. Geoquímica de metales pesados de la cuenca del río Bogotá. IGAC, primera edición. Bogotá D.C. 136 Pp.
dc.relationVan Zwieten, L., Kimber, S., Morris, S., Chan, K., Downie, A., Rust, J., 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance & soil fertility. Plant & Soil, 327. 235 - 246 Pp.
dc.relationWahid, F., Baig, S., Faraz, M., Manzoor, M., Ahmed, I., Arshad, M., 2021. Growth responses & rubisco activity influenced by antibiotics & organic amendments used for stress alleviation in Lactuca sativa. ChemospHere, 263.
dc.relationWoldetsadik, D., Drechsel, P., Keraita, B., Marschner, B., Itanna, F., Gebrekidan, H., 2016. Effects of biochar & alkaline amendments on cadmium immobilization, selected nutrient & cadmium concentrations of lettuce (Lactuca sativa) in two contrasting soils. Springer Plus, 397(5).
dc.relationXiao, Q., Zhua, L., Shena, Y., Lia, S., 2016. Sensitivity of soil water retention & availability to biochar addition in rainfed semi-arid farmland during a three-year field experiment. Field Crops Research, 196. 284 - 293 Pp.
dc.relationYazdi, M., Kolahi, M., Mohajel, E., Goldson, A., 2019. Study of the contamination rate & change in growth features of lettuce (Lactuca sativa Linn.) in response to cadmium & a survey of its pHytochelatin synthase gene. Ecotoxicology & Environmental Safety, 180. 295 - 308 Pp.
dc.relationZheng, R., Sun, G., Li, C., Reid, B., Xie, Z., Zhang, B., Wang, Q., 2017. Mitigating cadmium accumulation in greenhouse lettuce production using biochar. Environmental Science & Pollution Research, 24
dc.relationZolezzi, M., Abarca, P., Saavedra, G., Corradini. F., Felmer, Sofia., 2017., Manual de producción de L echuga. Instituto de Investigaciones Agropecuarias (INIA). Boletín INIA Nº 3
dc.relationAbu Zied Amin, A.E.E., 2016. Impact of Corn Cob Biochar on Potassium Status and Wheat Growth in a Calcareous Sandy Soil. Commun. Soil Sci. Plant Anal. 47, 2026–2033. https://doi.org/10.1080/00103624.2016.1225081
dc.relationAgegnehu, G., Jemal, K., Abebe, A., Lulie, B., 2019. Plant Growth and Oil Yield Response of Lemon Grass (Cymbopogon citratuc L.) to Biochar Application. Ethiop. J. Agric. Sci. 29, 1–12.
dc.relationAkhtar, S.S., Andersen, M.N., Liu, F., 2015. Biochar Mitigates Salinity Stress in Potato. J. Agron. Crop Sci. 201, 368–378. https://doi.org/10.1111/jac.12132
dc.relationAlburquerque, J.A., Calero, J.M., Barrón, V., Torrent, J., del Campillo, M.C., Gallardo, A., Villar, R., 2014. Effects of biochars produced from different feedstocks on soil properties and sunflower growth. J. Plant Nutr. Soil Sci. 177, 16–25. https://doi.org/10.1002/jpln.201200652
dc.relationAltaf, K., Younis, A., Ramzan, Y., Ramzan, F., 2020. Effect of composition of agricultural wastes and biochar as a growing media on the growth of potted Stock (Matthiola incana) and Geranium (Pelargonium spp). J. Plant Nutr. https://doi.org/10.1080/01904167.2020.1862205
dc.relationAlvarez, J.M., Pasian, C., Lal, R., López, R., Fernández, M., 2016. Physiological Plant Answer When Biochar and Vermicompost Are Used As Peat Replacement for Ornamental-Plant Production 16–18.
dc.relationAngin, D., 2013. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour. Technol. 128, 593–597. https://doi.org/10.1016/j.biortech.2012.10.150
dc.relationAnyaoha, K.E., Sakrabani, R., Patchigolla, K., Mouazen, A.M., 2018. Critical evaluation of oil palm fresh fruit bunch solid wastes as soil amendments: Prospects and challenges. Resour. Conserv. Recycl. 136, 399–409. https://doi.org/10.1016/j.resconrec.2018.04.022
dc.relationBaiamonte, G., Crescimanno, G., Parrino, F., De Pasquale, C., 2019. Effect of biochar on the physical and structural properties of a desert sandy soil. Catena 175, 294–303. https://doi.org/10.1016/j.catena.2018.12.019
dc.relationBaronti, S., Alberti, G., Vedove, G.D., di Gennaro, F., Fellet, G., Genesio, L., Miglietta, F., Peressotti, A., Vaccari, F.P., 2010. The biochar option to improve plant yields: First results from some field and pot experiments in Italy. Ital. J. Agron. 5, 3–11. https://doi.org/10.4081/ija.2010.3
dc.relationBeck, M.A., Robarge, W.P., Buol, S.W., 1999. Phosphorus retention and release of anions and organic carbon by two Andisols. Eur. J. Soil Sci. 50, 157–164. https://doi.org/10.1046/j.1365-2389.1999.00213.x
dc.relationBennardi, D., Gorostegui, A., Millan, G., Pellegrini, A., Vázquez, M., 2018. EVALUACIÓN DE LA CAPACIDAD BUFFER DE SUELOS ÁCIDOS DE LA REGIÓN PAMPEANA. Asoc. argentina Cienc. del suelo 36, 124–137.
dc.relationBilgili, A.V., Aydemir, S., Altun, O., Sayğan, E.P., Yalçın, H., Schindelbeck, R., 2019. The effects of biochars produced from the residues of locally grown crops on soil quality variables and indexes. Geoderma 345, 123–133. https://doi.org/10.1016/j.geoderma.2019.03.010
dc.relationBonilla, G., Sarmiento Pérez, G., Gaviria Melo, S., 2011. Proveniencia y transformacion diagenética de minerales arcillosos Del Maastrichtiano - Paleoceno al norte de Bogotá, Cordillera Oriental de Colombia. Geol. Colomb. - An Int. J. Geosci. 36, 179–196.
dc.relationBray RH, Kurtz LT. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59:39–46.
dc.relationBrockamp, R., Sharon, W., 2021. Biochar amendments show potential for restoration of degraded, contaminated, and infertile soils in agricultural and forested landscapes, Soils and Landscape Restoration.
dc.relationBudianta, D., Wiralaga, A.Y.A., Lestari, W., 2010. Changes in Some Soil Chemical Properties of Ultisol Applied by Mulch from Empty Fruit Bunches in an Oil Palm Plantation. J. TANAH Trop. (Journal Trop. Soils) 15, 111–118. https://doi.org/10.5400/jts.2010.15.2.111
dc.relationCaicedo, B., Mendoza, C., López, F., Lizcano, A., 2018. Behavior of diatomaceous soil in lacustrine deposits of Bogotá, Colombia. J. Rock Mech. Geotech. Eng. 10, 367–379. https://doi.org/10.1016/j.jrmge.2017.10.005
dc.relationCampos, P., Miller, A.Z., Knicker, H., Costa-Pereira, M.F., Merino, A., De la Rosa, J.M., 2020. Chemical, physical and morphological properties of biochars produced from agricultural residues: Implications for their use as soil amendment. Waste Manag. 105, 256–267. https://doi.org/10.1016/j.wasman.2020.02.013
dc.relationCervera, A., Navarro-Alarcón, M., Rufián-Henares, J.Á., Pastoriza, S., Montilla-Gómez, J., Delgado, G., 2020. Phytotoxicity and chelating capacity of spent coffee grounds: Two contrasting faces in its use as soil organic amendment. Sci. Total Environ. 717. https://doi.org/10.1016/j.scitotenv.2020.137247
dc.relationChen, C.Y., Hu, B.L., Liu, L., 2008. Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM D2216 Am. Soc. Test. Mater. 1–5. https://doi.org/10.1109/WiCom.2008.1574
dc.relationChen, X., Lewis, S., Heal, K. V., Lin, Q., Sohi, S.P., 2021. Biochar engineering and ageing influence the spatiotemporal dynamics of soil pH in the charosphere. Geoderma 386. https://doi.org/10.1016/j.geoderma.2020.114919
dc.relationChintala, R., Mollinedo, J., Schumacher, T.E., Malo, D.D., Julson, J.L., 2014. Effect of biochar on chemical properties of acidic soil. Arch. Agron. Soil Sci. 60, 393–404. https://doi.org/10.1080/03650340.2013.789870
dc.relationCuervo, G., Gomeéz, C., 2003. Vista de La desertificación en Colombia y el cambio global.pdf.
dc.relationDahal, N., Bajracharya, R.M., Wagle, L.M., 2018. Biochar Effects on Carbon Stocks in the Coffee Agroforestry Systems of the Himalayas. Sustain. Agric. Res. 7, 103. https://doi.org/10.5539/sar.v7n4p103
dc.relationDai, Y., Zheng, H., Jiang, Z., Xing, B., 2020. Combined effects of biochar properties and soil conditions on plant growth: A meta-analysis. Sci. Total Environ. 713. https://doi.org/10.1016/j.scitotenv.2020.136635
dc.relationDari, B., Nair, V.D., Harris, W.G., Nair, P.K.R., Sollenberger, L., Mylavarapu, R., 2016. Relative influence of soil- vs. biochar properties on soil phosphorus retention. Geoderma 280, 82–87. https://doi.org/10.1016/j.geoderma.2016.06.018
dc.relationDe la Rosa, J.M., Rosado, M., Paneque, M., Miller, A.Z., Knicker, H., 2018. Effects of aging under field conditions on biochar structure and composition: Implications for biochar stability in soils. Sci. Total Environ. 613–614, 969–976. https://doi.org/10.1016/j.scitotenv.2017.09.124
dc.relationDemisie, W., Liu, Z., Zhang, M., 2014. Effect of biochar on carbon fractions and enzyme activity of red soil. Catena 121, 214–221. https://doi.org/10.1016/j.catena.2014.05.020
dc.relationEmbrandiri, A., Singh, R.P., Ibrahim, H.M., Ramli, A.A., 2012. Land application of biomass residue generated from palm oil processing: Its potential benefits and threats. Environmentalist 32, 111–117. https://doi.org/10.1007/s10669-011-9367-0
dc.relationEscalante, A., Pérez, G. Hidalgo, C., López J., Campo J., Valtierra, E., Etchevers, J., 2016. Biocarbón (Biochar) I: Naturaleza, fabricación y uso en el suelo. Red de Revistas Científicas de América Latina, Volumen 34, numero3, 367– 382.
dc.relationFAO, 2010. Soil erosion, Geomorphological Hazards and Disaster Prevention. Food and Agriculture Organization of the United Nations (FAO). https://doi.org/10.1017/CBO9780511807527.014
dc.relationFAO. 2014. Actualización 2015 Base Referencial Mundial Del Recurso Suelo 2014: Sistema Internacional de Clasificación de Suelos. https://www.iec.cat/mapasols/DocuInteres/PDF/Llibre59.pdf.
dc.relationFAO, 2015. World’ s Soil Resources. Food and Agriculture Organization of the United Nations (FAO).
dc.relationFernández Linares, L.C., Rojas Avelizapa, N.G., Roldán Carrillo, T.G., Ramírez Islas, M.E., Zegarra Martínez, H.G., Uribe Hernández, R., Reyes Ávila, R.J., Flores Hernández, D., Arce Ortega, J.M. (2006): Manual de técnicas de análisis de suelos aplicadas a la remediación de sitios contaminados. https://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/Libros2011/CG008215.pdf
dc.relationFinetti, P., Bekhouche, I., Rousselet, E., 2011. Phosphorus Sorption and Availability from Biochars and Soil/Biochar Mixtures Accept e d Preprint Accept e d Preprint 33, 1–47.
dc.relationFonseca, A.A., Santos, D.A., Passos, R.R., Andrade, F.V., Rangel, O.J.P., 2020. Phosphorus availability and grass growth in biochar-modified acid soil: A study excluding the effects of soil pH. Soil Use Manag. https://doi.org/10.1111/sum.12609
dc.relationGabhi, R.S., Kirk, D.W., Jia, C.Q., 2017. Preliminary investigation of electrical conductivity of monolithic biochar. Carbon N. Y. 116, 435–442. https://doi.org/10.1016/j.carbon.2017.01.069
dc.relationGao, S., DeLuca, T.H., 2018. Wood biochar impacts soil phosphorus dynamics and microbial communities in organically-managed croplands. Soil Biol. Biochem. 126, 144–150. https://doi.org/10.1016/j.soilbio.2018.09.002
dc.relationGarbuz, S., Camps-Arbestain, M., Mackay, A., DeVantier, B., Minor, M., 2020. The interactions between biochar and earthworms, and their influence on soil properties and clover growth: A 6-month mesocosm experiment. Appl. Soil Ecol. 147. https://doi.org/10.1016/j.apsoil.2019.103402
dc.relationGaskin, J.W., Speir, R.A., Harris, K., Das, K.C., Lee, R.D., Morris, L.A., Fisher, D.S., 2010. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron. J. 102, 623–633. https://doi.org/10.2134/agronj2009.0083
dc.relationGuo, Y., Niu, G., Starman, T., Volder, A., Gu, M., 2018. Poinsettia growth and development response to container root substrate with biochar. Horticulturae 4, 1–14. https://doi.org/10.3390/horticulturae4010001
dc.relationHailegnaw, N.S., Mercl, F., Pračke, K., Száková, J., Tlustoš, P., 2019. Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. J. Soils Sediments 19, 2405–2416. https://doi.org/10.1007/s11368-019-02264-z
dc.relationHe, P., Liu, Y., Shao, L., Zhang, H., Lü, F., 2018. Particle size dependence of the physicochemical properties of biochar. Chemosphere 212, 385–392. https://doi.org/10.1016/j.chemosphere.2018.08.106
dc.relationHerath, H.M.S.K., Camps-Arbestain, M., Hedley, M., 2013. Effect of biochar on soil physical properties in two contrasting soils: An Alfisol and an Andisol. Geoderma 209–210, 188–197. https://doi.org/10.1016/j.geoderma.2013.06.016
dc.relationHussain, R., Kumar Ghosh, K., Ravi, K., 2021. Impact of biochar produced from hardwood of mesquite on the hydraulic and physical properties of compacted soils for potential application in engineered structures. Geoderma 385. https://doi.org/10.1016/j.geoderma.2020.114836
dc.relationIbrahim, M., Cao, CG., Zhan, M. et al. Changes of CO2 emission and labile organic carbon as influenced by rice straw and different water regimes. Int. J. Environ. Sci. Technol. 12, 263–274 (2015). https://doi.org/10.1007/s13762-013-0429-3
dc.relationIbrahim, M., Cao, CG., Zhan, M. et al. Changes of CO2 emission and labile organic carbon as influenced by rice straw and different water regimes. Int. J. Environ. Sci. Technol. 12, 263–274 (2015). https://doi.org/10.1007/s13762-013-0429-3
dc.relationIGAC. 2006. Métodos analíticos del laboratorio de suelos. Instituto Geográfico Agustín Codazzi. 2006. 6ª Ed. Bogotá. Colombia.
dc.relationIslam, A.K.M.S., Edwards, D.G., Asher, C.J., 1980. pH optima for crop growth. Plant Soil 54, 339–357. https://doi.org/10.1007/bf02181830
dc.relationJeffery, S., Abalos, D., Prodana, M., Bastos, A.C., Van Groenigen, J.W., Hungate, B.A., Verheijen, F., 2017. Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. 12. https://doi.org/10.1088/1748-9326/aa67bd
dc.relationJien, S.H., 2018. Physical characteristics of biochars and their effects on soil physical properties. Biochar from Biomass Waste Fundam. Appl. 21–35. https://doi.org/10.1016/B978-0-12-811729-3.00002-9
dc.relationJoseph, S., Pow, D., Dawson, K., Rust, J., Munroe, P., Taherymoosavi, S., Mitchell, D.R.G., Robb, S., Solaiman, Z.M., 2020. Biochar increases soil organic carbon, avocado yields and economic return over 4 years of cultivation. Sci. Total Environ. 724. https://doi.org/10.1016/j.scitotenv.2020.138153
dc.relationKarabay, U., Toptas, A., Yanik, J., Aktas, L., 2021. Does Biochar Alleviate Salt Stress Impact on Growth of Salt-Sensitive Crop Common Bean. Commun. Soil Sci. Plant Anal. https://doi.org/10.1080/00103624.2020.1862146
dc.relationKarhu, K., Mattila, T., Bergström, I., Regina, K., 2011. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity - Results from a short-term pilot field study. Agric. Ecosyst. Environ. 140, 309–313. https://doi.org/10.1016/j.agee.2010.12.005
dc.relationKim, H.S., Kim, K.R., Kim, H.J., Yoon, J.H., Yang, J.E., Ok, Y.S., Owens, G., Kim, K.H., 2015. Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil. Environ. Earth Sci. 74, 1249–1259. https://doi.org/10.1007/s12665-015-4116-1
dc.relationKloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M.H., Soja, G., 2012. Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties. J. Environ. Qual. 41, 990–1000. https://doi.org/10.2134/jeq2011.0070
dc.relationLee, C.H., Wang, C.C., Lin, H.H., Lee, S.S., Tsang, D.C., Jien, S.H., et al., 2018. In-situ biochar application conserves nutrients while simultaneously mitigating runoff and erosion of an Fe-oxide-enriched tropical soil. Sci. Total Environ 619620, 665671.
dc.relationLi, X., Shen, Q., Zhang, D., Mei, X., Ran, W., Xu, Y., Yu, G., 2013. Functional Groups Determine Biochar Properties (pH and EC) as Studied by Two-Dimensional 13C NMR Correlation Spectroscopy. PLoS One 8. https://doi.org/10.1371/journal.pone.0065949
dc.relationLi, S., Harris, S., Anandhi, A., Chen, G., 2019. Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses. J. Clean. Prod. 215, 890–902. https://doi.org/10.1016/j.jclepro.2019.01.106
dc.relationLi, H., Li, Y., Xu, Y., Lu, X., 2020. Biochar phosphorus fertilizer effects on soil phosphorus availability. Chemosphere 244, 125471. https://doi.org/10.1016/j.chemosphere.2019.125471
dc.relationLiang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O’Neill, B., Skjemstad, J.O., Thies, J., Luizão, F.J., Petersen, J., Neves, E.G., 2006. Black Carbon Increases Cation Exchange Capacity in Soils. Soil Sci. Soc. Am. J. 70, 1719–1730. https://doi.org/10.2136/sssaj2005.0383
dc.relationLimwikran, T., Kheoruenromne, I., Suddhiprakarn, A., Prakongkep, N., Gilkes, R.J., 2018. Dissolution of K, Ca, and P from biochar grains in tropical soils. Geoderma 312, 139–150. https://doi.org/10.1016/j.geoderma.2017.10.022
dc.relationLiu, J., Schulz, H., Brandl, S., Miehtke, H., Huwe, B., Glaser, B., 2012. Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions. J. Plant Nutr. Soil Sci. 175, 698–707. https://doi.org/10.1002/jpln.201100172
dc.relationLiu, X., Zhang, A., Ji, C., Joseph, S., Bian, R., Li, L., Pan, G., Paz-Ferreiro, J., 2013. Biochar’s effect on crop productivity and the dependence on experimental conditions-a meta-analysis of literature data. Plant Soil 373, 583–594. https://doi.org/10.1007/s11104-013-1806-x
dc.relationLusiba, S., Odhiambo, J., Ogola, J., 2017. Effect of biochar and phosphorus fertilizer application on soil fertility: soil physical and chemical properties. Arch. Agron. Soil Sci. 63, 477–490. https://doi.org/10.1080/03650340.2016.1218477
dc.relationMartínez C., M.J., España A., J.C., Díaz V., J. de J., 2017. Efecto de la adición de biocarbonizados de Eucalyptus globullus en la disponibilidad de fósforo en suelos ácidos. Agron. Colomb. 35, 75–81. https://doi.org/10.15446/agron.colomb.v35n1.58671
dc.relationMulvaney RL (1996) Nitrogen-inorganic forms. In: Soil Science society of America and America Society of Agronomy (ed) Methods of soils analysis, part 3, chemical methods. SSSA Books
dc.relationMurrell, T.S., Mikkelsen, R.L., Sulewski, G., Norton, R., 2021. Improving Potassium Recommendations for Agricultural Crops, Improving Potassium Recommendations for Agricultural Crops. https://doi.org/10.1007/978-3-030-59197-7
dc.relationNigussie, A., Kissi, E., Misganaw, M., Ambaw, G., 2012. Effect of Biochar Application on Soil Properties and Nutrient Uptake of Lettuces (Lactuca sativa) Grown in Chromium Polluted Soils. Environ. Sci 12, 369376.
dc.relationPandian, K., Subramaniayan, P., Gnasekaran, P., Chitraputhirapillai, S., 2016. Effect of biochar amendment on soil physical, chemical and biological properties and groundnut yield in rainfed Alfisol of semi-arid tropics. Arch. Agron. Soil Sci. 62, 1293–1310. https://doi.org/10.1080/03650340.2016.1139086
dc.relationPeake, L.R., Reid, B.J., Tang, X., 2014. Quantifying the influence of biochar on the physical and hydrological properties of dissimilar soils. Geoderma 235–236, 182–190. https://doi.org/10.1016/j.geoderma.2014.07.002
dc.relationPenn, C.J., Camberato, J.J., 2019. A critical review on soil chemical processes that control how soil ph affects phosphorus availability to plants. Agric. 9, 1–18. https://doi.org/10.3390/agriculture9060120
dc.relationPrakongkep, N., Gilkes, R.J., Wisawapipat, W., Leksungnoen, P., Kerdchana, C., Inboonchuay, T., Delbos, E., Strachan, L.-J., Ariyasakul, P., Ketdan, C., Hammecker, C., 2020. Effects of Biochar on Properties of Tropical Sandy Soils Under Organic Agriculture. J. Agric. Sci. 13, 1. https://doi.org/10.5539/jas.v13n1p1
dc.relationRajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A.R., Lehmann, J., 2012. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil. Soils 48, 271–284. https://doi.org/10.1007/s00374-011-0624-7
dc.relationRehrah, D., Reddy, M.R., Novak, J.M., Bansode, R.R., Schimmel, K.A., Yu, J., Watts, D.W., Ahmedna, M., 2014. Production and characterization of biochars from agricultural by-products for use in soil quality enhancement. J. Anal. Appl. Pyrolysis 108, 301–309. https://doi.org/10.1016/j.jaap.2014.03.008
dc.relationRens, H., Bera, T., Alva, A.K., 2018. Effects of Biochar and Biosolid on Adsorption of Nitrogen, Phosphorus, and Potassium in Two Soils. Water. Air. Soil Pollut. 229. https://doi.org/10.1007/s11270-018-3925-8
dc.relationRochette, P., Angers, D.A., Chantigny, M.H., Gasser, M.-O., MacDonald, J.D., Pelster, D.E., Bertrand, N., 2013. Ammonia Volatilization and Nitrogen Retention: How Deep to Incorporate Urea? J. Environ. Qual. 42, 1635–1642. https://doi.org/10.2134/jeq2013.05.0192
dc.relationSadasivam, B.Y., Reddy, K.R., 2015. Engineering properties of waste wood-derived biochars and biochar-amended soils. Int. J. Geotech. Eng. 9, 521–535. https://doi.org/10.1179/1939787915Y.0000000004
dc.relationSänger, A., Reibe, K., Mumme, J., Kaupenjohann, M., Ellmer, F., Roß, C.L., Meyer-Aurich, A., 2017. Biochar application to sandy soil: effects of different biochars and N fertilization on crop yields in a 3-year field experiment. Arch. Agron. Soil Sci. 63, 213–229. https://doi.org/10.1080/03650340.2016.1223289
dc.relationSchomberg, H.H., Gaskin, J.W., Harris, K., Das, K.C., Novak, J.M., Busscher, W.J., Watts, D.W., Woodroof, R.H., Lima, I.M., Ahmedna, M., Rehrah, D., Xing, B., 2012. Influence of Biochar on Nitrogen Fractions in a Coastal Plain Soil. J. Environ. Qual. 41, 1087–1095. https://doi.org/10.2134/jeq2011.0133
dc.relationSg, L., Jjo, O., R, A., St, M., 2021. The potential of biochar to enhance concentration and utilization of selected macro and micro nutrients for chickpea (Cicer arietinum) grown in three contrasting soils. Rhizosphere. https://doi.org/10.1016/j.rhisph.2020.100289
dc.relationSomerville, P.D., Farrell, C., May, P.B., Livesley, S.J., 2020. Biochar and compost equally improve urban soil physical and biological properties and tree growth, with no added benefit in combination. Sci. Total Environ. 706. https://doi.org/10.1016/j.scitotenv.2019.135736
dc.relationSteinbeiss, S., Gleixner, G., Antonietti, M., 2009. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol. Biochem. 41, 1301–1310. https://doi.org/10.1016/j.soilbio.2009.03.016
dc.relationTahir, A.H.F., Al-Obaidy, A.H.M.J., Mohammed, F.H., 2020. Biochar from date palm waste, production, characteristics and use in the treatment of pollutants: A Review. IOP Conf. Ser. Mater. Sci. Eng. 737. https://doi.org/10.1088/1757-899X/737/1/012171
dc.relationWallace, J (2000): Increasing agricultural water use efficiency to meet future food production. Agr Ecosyst Environ 82(1–3), 105–119.
dc.relationWang, L., Xue, C., Nie, X., Liu, Y., Chen, F., 2018. Effects of biochar application on soil potassium dynamics and crop uptake. J. Plant Nutr. Soil Sci. 181, 635–643. https://doi.org/10.1002/jpln.201700528
dc.relationWidowati, W., Asnah, a, Utomo, W.H., 2014. The use of biochar to reduce nitrogen and potassium leaching from soil cultivated with maize. J. Degrad. Min. Lands Manag. 2, 211–218. https://doi.org/10.15243/jdmlm.2014.021.211
dc.relationXu, C.Y., Bai, S.H., Hao, Y., Rachaputi, R.C.N., Xu, Z., Wallace, H.M., 2015. Peanut shell biochar improves soil properties and peanut kernel quality on a red Ferrosol. J. Soils Sediments 15, 2220–2231. https://doi.org/10.1007/s11368-015-1242-z
dc.relationXu, W., Whitman, W.B., Gundale, M.J., Chien, C.C., Chiu, C.Y., 2021. Functional response of the soil microbial community to biochar applications. GCB Bioenergy 13, 269–281. https://doi.org/10.1111/gcbb.12773
dc.relationYang, C.D., Lu, S.G., 2021. Effects of five different biochars on aggregation, water retention and mechanical properties of paddy soil: A field experiment of three-season crops. Soil Tillage Res. https://doi.org/10.1016/j.still.2020.104798
dc.relationYao, Y., Gao, B., Zhang, M., Inyang, M., Zimmerman, A.R., 2012. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89, 1467–1471. https://doi.org/10.1016/j.chemosphere.2012.06.002
dc.relationYu, O.Y., Raichle, B., Sink, S., 2013. Impact of biochar on the water holding capacity of loamy sand soil. Int. J. Energy Environ. Eng. 4, 1–9. https://doi.org/10.1186/2251-6832-4-44
dc.relationZemanová, V., Břendová, K., Pavlíková, D., Kubátová, P., Tlustoš, P., 2017. Effect of biochar application on the content of nutrients(Ca, Fe, K, Mg, Na, P) and amino acids in subsequently growing spinach and mustard. Plant, Soil Environ. 63, 322–327. https://doi.org/10.17221/318/2017-PSE
dc.relationZhang, A., Liu, Y., Pan, G., Hussain, Q., Li, L., Zheng, J., Zhang, X., 2012. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant Soil 351, 263–275. https://doi.org/10.1007/s11104-011-0957-x
dc.relationZhang, C., Li, X., Yan, H., Ullah, I., Zuo, Z., Li, L., Yu, J., 2020. Effects of irrigation quantity and biochar on soil physical properties, growth characteristics, yield and quality of greenhouse tomato. Agric. Water Manag. 241. https://doi.org/10.1016/j.agwat.2020.106263
dc.relationZhao, B., Connor, D.O., Zhang, J., Peng, T., Shen, Z., Daniel, C.W., 2017. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. Clean. Prod. https://doi.org/10.1016/j.jclepro.2017.11.013.This
dc.relationZulfiqar, F., Younis, A., Chen, J., 2019. Biochar or biochar-compost amendment to a peat-based substrate improves growth of syngonium podophyllum. Agronomy 9, 1–12. https://doi.org/10.3390/agronomy9080460
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados al autor, 2021
dc.titleEfecto de enmiendas con biocarbones sobre propiedades físicas, químicas y Fitoabsorción de Cadmio en suelos disímiles sembrados con lechuga
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución