dc.contributor | Torres Cerón, Darwin Augusto | |
dc.contributor | Restrepo-Parra, Elisabeth | |
dc.contributor | Laboratorio de Física de Plasma | |
dc.contributor | Vargas Villanueva, Steven [0000-0001-5542-5776] | |
dc.creator | Vargas Villanueva, Steven | |
dc.date.accessioned | 2023-02-20T21:32:00Z | |
dc.date.accessioned | 2023-06-06T22:51:57Z | |
dc.date.available | 2023-02-20T21:32:00Z | |
dc.date.available | 2023-06-06T22:51:57Z | |
dc.date.created | 2023-02-20T21:32:00Z | |
dc.date.issued | 2022 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/83532 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6650932 | |
dc.description.abstract | En esta investigación se realizó la síntesis de recubrimientos de TiO2/SO42- mediante oxidación electrolítica por plasma (OEP), para su aplicación en la reducción de Cr (VI) presente en agua residual de la industria del cromado, a Cr (III) por medio del proceso de fotocatálisis heterogénea. Durante el proceso OEP se utilizaron láminas de Ti de 99% de pureza y como solución electrolítica H2SO4 al 0,1M, se realizaron variaciones de ciclo útil de 2%, 10%, 30% y 50%, durante un tiempo de síntesis de 7 min a condiciones ambientales de temperatura y presión. La caracterización fisicoquímica de los recubrimientos obtenidos se realizó mediante XRD, espectroscopía Raman, AFM, SEM, XPS y DRS.
Los XRD mostraron la combinación de las fases de anatasa y rutilo del TiO2, y que, a mayor ciclo útil, la fase rutilo aumenta mientras que la fase anatasa decrece, esto debido a la energía que adquiere el sistema lámina y solución electrolítica durante el proceso OEP. En tanto, a la caracterización por Raman se corroboró lo encontrado mediante XRD pues se evidencia la presencia de los modos vibracionales de las fases anatasa y rutilo en las láminas de 2% y 50% respectivamente. Por otro lado, en las micrografías AFM se visualizó que, a mayor ciclo útil, se incrementa la rugosidad del recubrimiento.
En las micrografías obtenidas por SEM se observan microcavidades sobre la superficie de los recubrimientos, calotas (esferas) que son las huellas digitales del mismo, además, se observan los canales de descarga y regiones nodulares que son zonas ricas en solución electrolítica, y en los resultados obtenidos por XPS se observa la presencia de S en los recubrimientos en forma de SO42-. En las pruebas de absorción óptica del material por DRS se observa un corrimiento de la banda de absorción de 420 nm (ciclo útil de 2%) a 606 nm (ciclo útil del 50%), lo que indica que la muestra obtenida al 50% ha desplazado la banda de absorción hacia el visible y una disminución en el valor del gap. En la muestra al 2% se estimó el valor del gap en 2,96 eV y para la muestra del 50% de ciclo útil el gap fue de 2,05 eV.
Adicionalmente, todos los recubrimientos de TiO2/SO42- mostraron reducciones de Cr
(VI) de agua residual mayores al 50 % a 3 horas para las muestras con la adición de EDTA. El proceso fue mejorado en tiempo y en porcentaje de reducción una vez cerrado el circuito, lo que brindó mejores rendimientos (96% para ciclo útil de 2% en 2 horas a 4ppm). Finalmente, el recubrimiento de TiO2/SO 2- obtenido al 2%, logró un rendimiento promedio en la reducción de Cr (VI) de 96.14 ± 2.7 para un promedio de 7 reúsos, lo que favorece dichos procesos evitando operaciones unitarias de filtración y separación en comparación de polvos. (Texto tomado de la fuente) | |
dc.description.abstract | In this research, the synthesis of TiO2/SO 4 2- coatings was carried out by Plasma Electrolytic Oxidation (PEO), for its application in the reduction of Cr (VI) present in wastewater from the chromium plating industry to Cr (III), using heterogeneous photocatalysis process. During the PEO synthesis, 99% purity Ti films and 0.1M H2SO4 as electrolyte solution were used. Duty cycle variations of 2%, 10%, 30% and 50% were performed during a synthesis time of 7 min at ambient temperature and pressure conditions. The physicochemical characterization of the obtained coatings was performed by XRD, Raman spectroscopy, AFM, SEM, XPS and DRS.
The XRD results showed the combination of the anatase and rutile phases of TiO2, and as the duty cycle increases, the rutile phase increases while the anatase phase decreases, due to the energy acquired by the coating - electrolyte solution system during the PEO process. The Raman characterization corroborated what was found by XRD, since the presence of the vibrational modes of the anatase and rutile phases is evidenced in the 2% and 50% duty cycle coating, respectively. On the other hand, in the AFM micrographs it was visualized that the roughness of the coating increases as the duty cycle increases.
In the micrographs obtained by SEM, microcavities are observed on the surface of the coatings and the calottes (spheres), which are the fingerprints of the coatings. In addition, the discharge channels and nodular regions that are rich in electrolyte solution are observed and, in the results obtained by XPS the presence of S is observed in the coatings in the form of SO 2-. In the optical absorption tests of the material by DRS, a shift of the absorption band from 420 nm (duty cycle of 2%) to 606 nm (duty cycle of 50%) is observed, which indicates that the coating obtained at 50% has shifted the absorption band towards the visible and a decrease in the gap value. In the 2% duty cycle coating the gap value was estimated in 2.96 eV and for the 50% duty cycle coating the gap was 2.05 eV.
Additionally, all TiO2/SO 2- coatings showed Cr (VI) reduction in wastewater greater than 80% at 3 hours with the addition of EDTA. The process was improved in time and in efficiency percentage once the circuit was closed, which gave better yields (96% for 2% duty cycle in 2 hours at 4ppm). Finally, the TiO2/SO42- coating obtained at 2% duty cycle, achieved an average yield in Cr (VI) reduction of 96.14 ± 2.7% for an average of 7 reuses, which favors such processes avoiding unitary operations of filtration and separation compared to powders. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Manizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Física | |
dc.publisher | Facultad de Ciencias Exactas y Naturales | |
dc.publisher | Manizales, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Manizales | |
dc.relation | [1] M. Dharwal, D. Parashar, M. Shehu Shuaibu, S. Garba Abdullahi, S. Abubakar, and B. Baba Bala, “Water pollution: Effects on health and environment of Dala LGA, Nigeria,” Mater Today Proc, vol. 49, pp. 3036–3039, 2022, doi: 10.1016/j.matpr.2020.10.496. | |
dc.relation | [2] J. M. Costa and J. Grisente, “Journal of Water Process Engineering Techniques of nickel ( II ) removal from electroplating industry wastewater : Overview and trends,” vol. 46, no. December 2021, 2022. | |
dc.relation | [3] E. De Beni et al., “Chemosphere Graphene-based nanomaterials in the electroplating industry : A suitable choice for heavy metal removal from wastewater,” Chemosphere, vol. 292, no. November 2021, p. 133448, 2022, doi: 10.1016/j.chemosphere.2021.133448. | |
dc.relation | [4] Z. Yao, F. Jia, Y. Jiang, C. X. Li, Z. Jiang, and X. Bai, “Photocatalytic reduction of potassium chromate by Zn-doped TiO 2 /Ti film catalyst,” Appl Surf Sci, vol. 256, no. 6, pp. 1793–1797, 2010, doi: 10.1016/j.apsusc.2009.10.005. | |
dc.relation | [5] D. A. Torres Ceron, F. Gordillo Delgado, and J. Plazas Saldaña, “Formation of TiO2 nanostructure by plasma electrolytic oxidation for Cr(VI) reduction,” J Phys Conf Ser, vol. 755, no. 1, p. 11001, Oct. 2016, doi: 10.1088/1742- 6596/755/1/011001. | |
dc.relation | [6] Y. Cheng, Z. Zhu, Q. Zhang, X. J. Zhuang, and Y. Cheng, “Plasma electrolytic oxidation of brass,” Surf Coat Technol, vol. 385, p. 125366, 2020, doi: 10.1016/j.surfcoat.2020.125366. | |
dc.relation | [7] M. Pelaez et al., “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl Catal B, vol. 125, pp. 331– 349, 2012, doi: 10.1016/j.apcatb.2012.05.036. | |
dc.relation | [8] S. Stojadinović, N. Tadić, N. Radić, B. Grbić, and R. Vasilić, “CdS particles modified TiO2 coatings formed by plasma electrolytic oxidation with enhanced photocatalytic activity,” Surf Coat Technol, vol. 344, pp. 528–533, 2018, doi: 10.1016/j.surfcoat.2018.03.080. | |
dc.relation | [9] S. G. Kumar and L. G. Devi, “Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics,” Journal of Physical Chemistry A, vol. 115, no. 46, pp. 13211–13241, 2011, doi: 10.1021/jp204364a. | |
dc.relation | [10] X. Lu, M. Schieda, C. Blawert, K. U. Kainer, and M. L. Zheludkevich, “Formation of photocatalytic plasma electrolytic oxidation coatings on magnesium alloy by incorporation of TiO2 particles,” Surf Coat Technol, vol. 307, pp. 287–291, 2016, doi: 10.1016/j.surfcoat.2016.09.006. | |
dc.relation | [11] S. Stojadinović et al., “Photocatalytic properties of TiO 2/WO 3 coatings formed by plasma electrolytic oxidation of titanium in 12-tungstosilicic acid,” Appl Catal B, vol. 126, pp. 334–341, 2012, doi: 10.1016/j.apcatb.2012.07.031. | |
dc.relation | [12] M. Shokouhfar, C. Dehghanian, M. Montazeri, and A. Baradaran, “Applied Surface Science Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance : Part II,” Appl Surf Sci, vol. 258, no. 7, pp. 2416–2423, 2012, doi: 10.1016/j.apsusc.2011.10.064. | |
dc.relation | [13] Q. Wu, J. Zhao, G. Qin, C. Wang, X. Tong, and S. Xue, “Photocatalytic reduction of Cr(VI) with TiO2 film under visible light,” Appl Catal B, vol. 142– 143, pp. 142–148, 2013, doi: 10.1016/j.apcatb.2013.04.056. | |
dc.relation | [14] S. Stojadinović et al., “Structural, photoluminescent and photocatalytic properties of TiO 2 :Eu 3+ coatings formed by plasma electrolytic oxidation,” Appl Surf Sci, vol. 370, pp. 218–228, 2016, doi: 10.1016/j.apsusc.2016.02.131. | |
dc.relation | [15] P. Dulian, W. Nachit, J. Jaglarz, P. Zięba, J. Kanak, and W. Żukowski, “Photocatalytic methylene blue degradation on multilayer transparent TiO2 coatings,” Opt Mater (Amst), vol. 90, no. January, pp. 264–272, 2019, doi: 10.1016/j.optmat.2019.02.041. | |
dc.relation | [16] H. Qin, Y. Bian, Y. Zhang, L. Liu, and Z. Bian, “Effect of Ti (III) Surface Defects on the Process of Photocatalytic Reduction of Hexavalent Chromium,” Chin J Chem, vol. 35, no. 2, pp. 203–208, 2017, doi: 10.1002/cjoc.201600578. | |
dc.relation | [17] D. Chen et al., “Photocatalytic degradation of organic pollutants using TiO2- based photocatalysts: A review,” J Clean Prod, p. 121725, 2020, doi: 10.1016/j.jclepro.2020.121725. | |
dc.relation | [18] K. Tian, L. Hu, L. Li, Q. Zheng, Y. Xin, and G. Zhang, “Recent advances in persulfate-based advanced oxidation processes for organic wastewater treatment,” Chinese Chemical Letters, 2021, doi: 10.1016/j.cclet.2021.12.042. | |
dc.relation | [19] N. Sharotri, D. Sharma, and D. Sud, “Experimental and theoretical investigations of Mn-N-co-doped TiO2 photocatalyst for visible light induced degradation of organic pollutants,” Journal of Materials Research and Technology, vol. 8, no. 5, pp. 3995–4009, 2019, doi: 10.1016/j.jmrt.2019.07.008. | |
dc.relation | [20] S. K. Khore et al., “Green sol-gel route for selective growth of 1D rutile N-TiO2: A highly active photocatalyst for H2 generation and environmental remediation under natural sunlight,” RSC Adv, vol. 7, no. 52, pp. 33029–33042, 2017, doi: 10.1039/c7ra01648d. | |
dc.relation | [21] D. Tekin, H. Kiziltas, and H. Ungan, “Kinetic evaluation of ZnO/TiO2 thin film photocatalyst in photocatalytic degradation of Orange G,” J Mol Liq, vol. 306, p.112905, 2020, doi: 10.1016/j.molliq.2020.112905. | |
dc.relation | [22] S. I. Mogal, M. Mishra, V. G. Gandhi, and R. J. Tayade, “Metal doped titanium dioxide: Synthesis and effect of metal ions on physico-chemical and photocatalytic properties,” Materials Science Forum, vol. 734, pp. 364–378, 2013, doi: 10.4028/www.scientific.net/MSF.734.364. | |
dc.relation | [23] F. Gordillo-Delgado, S. Moya-Betancourt, A. Parra-López, J. A. Garcia-Giraldo, and D. Torres-Cerón, “S-incorporated TiO 2 coatings grown by plasma electrolytic oxidation for reduction of Cr(VI)-EDTA with sunlight,” Environmental Science and Pollution Research, vol. 26, no. 5, pp. 4253–4259, 2019, doi: 10.1007/s11356-018-2695-6. | |
dc.relation | [24] Naciones Unidas, “Objetivo 6: Garantizar la disponibilidad de agua y su gestión sostenible y el saneamiento para todos - Objetivos de Desarrollo Sostenible.” https://www.un.org/sustainabledevelopment/es/water-and-sanitation/ (accessed Sep. 28, 2022). | |
dc.relation | [25] N. Khatri and S. Tyagi, “Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas,” https://doi.org/10.1080/21553769.2014.933716, vol. 8, no. 1, pp. 23–39, Jan. 2015, doi: 10.1080/21553769.2014.933716. | |
dc.relation | [26] Ministerio de Ambiente y Desarrollo Sostenible, “Vertimientos y Reúso de Aguas Residuales .” https://www.minambiente.gov.co/gestion-integral-del- recurso-hidrico/vertimientos-y-reuso-de-aguas-residuales/ (accessed Sep. 28, 2022). | |
dc.relation | [27] Naciones Unidas, “Objetivos y metas de desarrollo sostenible - Desarrollo Sostenible.” https://www.un.org/sustainabledevelopment/es/sustainable- development-goals/ (accessed Sep. 28, 2022). | |
dc.relation | [28] M. Lucia Ramírez De Rincón et al., “Misión internacional de sabios para el avance de la Ciencia, la Tecnología y la Innovación. Pacto por la Ciencia, la Tecnología y la Innovación: Un sistema para construir el conocimiento del futuro Presidencia de la República Iván Duque Márquez Vicepresidencia de la República”. | |
dc.relation | [29] M. I. Vélez Agudelo, “Libro Verde 2030: Política Nacional de Ciencia e Innovación para el Desarrollo Sostenible,” 2018. https://minciencias.gov.co/sites/default/files/libroverde2030-5julio-web.pdf (accessed Oct. 12, 2022). | |
dc.relation | [30] T. E. I.-M. MINISTERIO DE CIENCIA, “Demandas Territoriales.” https://minciencias.gov.co/sites/default/files/upload/convocatoria/anexo_9._dema ndas_territoriales.pdf (accessed Oct. 12, 2022). | |
dc.relation | [31] M. J. Muñoz-Batista and R. Luque, “Heterogeneous Photocatalysis,” ChemEngineering 2021, Vol. 5, Page 26, vol. 5, no. 2, p. 26, May 2021, doi: 10.3390/CHEMENGINEERING5020026. | |
dc.relation | [32] M. Rizwan, R. Alias, U. Z. Zaidi, R. Mahmoodian, and M. Hamdi, “Surface modification of valve metals using plasma electrolytic oxidation for antibacterial applications: A review,” J Biomed Mater Res A, vol. 106, no. 2, pp. 590–605, Feb. 2018, doi: 10.1002/JBM.A.36259. | |
dc.relation | [33] A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, “Plasma electrolysis for surface engineering,” Surf Coat Technol, vol. 122, no. 2–3, pp. 73–93, 1999, doi: 10.1016/S0257-8972(99)00441-7. | |
dc.relation | [34] R. Jobby, P. Jha, A. K. Yadav, and N. Desai, “Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review,” Chemosphere, vol. 207, pp. 255–266, Sep. 2018, doi: 10.1016/J.CHEMOSPHERE.2018.05.050. | |
dc.relation | [35] R. D. Y. Away, C. Takai-Yamashita, T. Ban, and Y. Ohya, “Photocatalytic properties of TiO2-SiO2 sandwich multilayer films prepared by sol-gel dip- coating,” Thin Solid Films, vol. 720, p. 138522, Feb. 2021, doi: 10.1016/J.TSF.2021.138522. | |
dc.relation | [36] F. Gordillo-Delgado, S. Moya-Betancourt, A. Parra-López, J. A. Garcia-Giraldo, and D. Torres-Cerón, “S-incorporated TiO2 coatings grown by plasma electrolytic oxidation for reduction of Cr(VI)-EDTA with sunlight,” Environmental Science and Pollution Research, Jul. 2018, doi: 10.1007/s11356- 018-2695-6. | |
dc.relation | [37] M. R. Al-Mamun, S. Kader, M. S. Islam, and M. Z. H. Khan, “Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review,” J Environ Chem Eng, vol. 7, no. 5, 2019, doi: 10.1016/j.jece.2019.103248. | |
dc.relation | [38] S. Stojadinović, N. Tadić, N. Radić, B. Grbić, and R. Vasilić, “Effect of Tb3+doping on the photocatalytic activity of TiO2 coatings formed by plasma electrolytic oxidation of titanium,” Surf Coat Technol, vol. 337, no. October 2017, pp. 279–289, 2018, doi: 10.1016/j.surfcoat.2018.01.033. | |
dc.relation | [39] S. Stojadinovic et al., “Structural, photoluminescent and photocatalytic properties of TiO2:Eu3+ coatings formed by plasma electrolytic oxidation,” Appl Surf Sci, vol. 370, pp. 218–228, 2016, doi: 10.1016/j.apsusc.2016.02.131. | |
dc.relation | [40] S. Stojadinović, N. Tadić, N. Radić, B. Grbić, and R. Vasilić, “CdS particles modified TiO2 coatings formed by plasma electrolytic oxidation with enhanced photocatalytic activity,” Surf Coat Technol, vol. 344, no. March, pp. 528–533, Jun. 2018, doi: 10.1016/j.surfcoat.2018.03.080. | |
dc.relation | [41] F. Gordillo-Delgado, S. Moya-Betancourt, A. Parra-López, J. A. Garcia-Giraldo, and D. Torres-Cerón, “S-incorporated TiO2 coatings grown by plasma electrolytic oxidation for reduction of Cr(VI)-EDTA with sunlight,” Environmental Science and Pollution Research, Jul. 2018, doi: 10.1007/s11356- 018-2695-6 | |
dc.relation | [42] C. C. Pan and J. C. S. Wu, “Visible-light response Cr-doped TiO2-XNX photocatalysts,” Mater Chem Phys, vol. 100, no. 1, pp. 102–107, Nov. 2006, doi: 10.1016/j.matchemphys.2005.12.013. | |
dc.relation | [43] G. Qin, Z. Sun, Q. Wu, L. Lin, M. Liang, and S. Xue, “Dye-sensitized TiO2 film with bifunctionalized zones for photocatalytic degradation of 4-cholophenol,” J Hazard Mater, vol. 192, no. 2, pp. 599–604, 2011, doi: 10.1016/j.jhazmat.2011.05.059. | |
dc.relation | [44] Z. Yao, F. Jia, Y. Jiang, C. Li, Z. Jiang, and X. Bai, “Photocatalytic reduction of potassium chromate by Zn-doped TiO2/Ti film catalyst,” Appl Surf Sci, vol. 256, no. 6, pp. 1793–1797, 2010, doi: 10.1016/j.apsusc.2009.10.005. | |
dc.relation | [45] D. A. Torres, F. Gordillo-Delgado, and J. Plazas-Saldaña, “Formation of TiO2 nanostructure by plasma electrolytic oxidation for Cr(VI) reduction,” J Phys Conf Ser, vol. 786, no. 1, 2017, doi: 10.1088/1742-6596/786/1/012046. | |
dc.relation | [46] M. Brumovský et al., “Sulfidated nano-scale zerovalent iron is able to effectively reduce in situ hexavalent chromium in a contaminated aquifer,” J Hazard Mater, vol. 405, p. 124665, Mar. 2021, doi: 10.1016/J.JHAZMAT.2020.124665. | |
dc.relation | [47] J. Zhou, Y. Wang, J. Wang, W. Qiao, D. Long, and L. Ling, “Effective removal of hexavalent chromium from aqueous solutions by adsorption on mesoporous carbon microspheres,” J Colloid Interface Sci, vol. 462, pp. 200–207, Jan. 2016, doi: 10.1016/J.JCIS.2015.10.001. | |
dc.relation | [48] “Chromium in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality,” 2003. | |
dc.relation | [49] C. C. Alvarez, M. E. Bravo Gómez, and A. Hernández Zavala, “Hexavalent chromium: Regulation and health effects,” Journal of Trace Elements in Medicine and Biology, vol. 65, p. 126729, May 2021, doi: 10.1016/J.JTEMB.2021.126729. | |
dc.relation | [50] S. S. Kerur, S. Bandekar, M. S. Hanagadakar, S. S. Nandi, G. M. Ratnamala, and
P. G. Hegde, “Removal of hexavalent Chromium-Industry treated water and Wastewater: A review,” Mater Today Proc, vol. 42, pp. 1112–1121, Jan. 2021, doi: 10.1016/J.MATPR.2020.12.492. | |
dc.relation | [51] J. Saien, A. Azizi, and A. R. Soleymani, “Parameter evaluation, kinetics, and energy consumption for Cr(VI) photocatalytic reduction under mild conditions,”Journal of the Iranian Chemical Society 2014 11:5, vol. 11, no. 5, pp. 1439–
1448, Jan. 2014, doi: 10.1007/S13738-014-0419-5. | |
dc.relation | [52] A. Fattah-Alhosseini, M. K. Keshavarz, M. Molaei, and S. O. Gashti, “Plasma Electrolytic Oxidation (PEO) Process on Commercially Pure Ti Surface: Effects of Electrolyte on the Microstructure and Corrosion Behavior of Coatings,” Metallurgical and Materials Transactions A 2018 49:10, vol. 49, no. 10, pp. 4966–4979, Jul. 2018, doi: 10.1007/S11661-018-4824-8. | |
dc.relation | [53] M. S. Vasilyeva et al., “FeOx,SiO2,TiO2/Ti composites prepared using plasma electrolytic oxidation as photo-Fenton-like catalysts for phenol degradation,” J Photochem Photobiol A Chem, vol. 356, pp. 38–45, Apr. 2018, doi: 10.1016/J.JPHOTOCHEM.2017.12.007. | |
dc.relation | [54] P. Sane, S. Chaudhari, P. Nemade, and S. Sontakke, “Photocatalytic reduction of chromium (VI) using combustion synthesized TiO2,” J Environ Chem Eng, vol. 6, no. 1, pp. 68–73, Feb. 2018, doi: 10.1016/J.JECE.2017.11.060. | |
dc.relation | [55] I. Ali and J. O. Kim, “Visible-light-assisted photocatalytic activity of bismuth- TiO2 nanotube composites for chromium reduction and dye degradation,” Chemosphere, vol. 207, pp. 285–292, Sep. 2018, doi: 10.1016/J.CHEMOSPHERE.2018.05.075. | |
dc.relation | [56] H. Esteban Benito, T. del Ángel Sánchez, R. García Alamilla, J. M. Hernández Enríquez, G. Sandoval Robles, and F. Paraguay Delgado, “Synthesis and physicochemical characterization of titanium oxide and sulfated titanium oxide obtained by thermal hydrolysis of titanium tetrachloride,” Brazilian Journal of Chemical Engineering, vol. 31, no. 3, pp. 737–745, Jul. 2014, doi: 10.1590/0104- 6632.20140313S00002506. | |
dc.relation | [57] R. A. Pratika, K. Wijaya, and W. Trisunaryanti, “Hydrothermal treatment of SO4/TiO2 and TiO2/CaO as heterogeneous catalysts for the conversion of Jatropha oil into biodiesel,” J Environ Chem Eng, vol. 9, no. 6, p. 106547, Dec. 2021, doi: 10.1016/J.JECE.2021.106547. | |
dc.relation | [58] E. Ortiz-Islas, T. López, J. Navarrete, X. Bokhimi, and R. Gómez, “High selectivity to isopropyl ether over sulfated titania in the isopropanol decomposition,” J Mol Catal A Chem, vol. 228, no. 1–2, pp. 345–350, Mar. 2005, doi: 10.1016/J.MOLCATA.2004.09.029. | |
dc.relation | [59] C. Meng et al., “Structure of the SO4 2−/TiO2 solid acid catalyst and its catalytic activity in cellulose acetylation,” Reaction Kinetics, Mechanisms and Catalysis 2017 121:2, vol. 121, no. 2, pp. 719–734, Feb. 2017, doi: 10.1007/S11144-017- 1165-3. | |
dc.relation | [60] Y. Jiang, J. Wang, B. Hu, Z. Yao, Q. Xia, and Z. Jiang, “Preparation of a novel yellow ceramic coating on Ti alloys by plasma electrolytic oxidation,” Surf CoatTechnol, vol. 307, pp. 1297–1302, Dec. 2016, doi: 10.1016/J.SURFCOAT.2016.05.027. | |
dc.relation | [61] Z. Shi, G. Song, and A. Atrens, “Influence of anodising current on the corrosion resistance of anodised AZ91D magnesium alloy,” Corros Sci, vol. 48, no. 8, pp. 1939–1959, Aug. 2006, doi: 10.1016/J.CORSCI.2005.08.004. | |
dc.relation | [62] X. Lu et al., “Plasma electrolytic oxidation coatings with particle additions – A review,” Surf Coat Technol, vol. 307, pp. 1165–1182, Dec. 2016, doi: 10.1016/J.SURFCOAT.2016.08.055. | |
dc.relation | [63] M. Molaei, A. Fattah-Alhosseini, and M. K. Keshavarz, “Influence of different sodium-based additives on corrosion resistance of PEO coatings on pure Ti,” Journal of Asian Ceramic Societies, vol. 7, no. 2, pp. 247–255, 2019, doi: 10.1080/21870764.2019.1604609. | |
dc.relation | [64] X. Lu et al., “Plasma electrolytic oxidation coatings with particle additions – A review,” Surf Coat Technol, vol. 307, pp. 1165–1182, 2016, doi: 10.1016/j.surfcoat.2016.08.055. | |
dc.relation | [65] M. Coto et al., “Optimization of the microstructure of TiO2 photocatalytic surfaces created by Plasma Electrolytic Oxidation of titanium substrates,” Surf Coat Technol, vol. 411, no. February, p. 127000, 2021, doi: 10.1016/j.surfcoat.2021.127000. | |
dc.relation | [66] M. Aliofkhazraei et al., “Review of plasma electrolytic oxidation of titanium substrates: Mechanism, properties, applications and limitations,” Applied Surface Science Advances, vol. 5, no. June, p. 100121, 2021, doi: 10.1016/j.apsadv.2021.100121. | |
dc.relation | [67] D. A. Torres-Cerón, E. Restrepo-Parra, and R. Ospina-Ospina, “Producción de recubrimientos de TiO2 mediante oxidación electrolítica por plasma (PEO), para posibles aplicaciones tecnológicas,” p. 91, 2020. | |
dc.relation | [68] M. Rizwan, R. Alias, U. Z. Zaidi, R. Mahmoodian, and M. Hamdi, “Surface modification of valve metals using plasma electrolytic oxidation for antibacterial applications: A review,” J Biomed Mater Res A, vol. 106, no. 2, pp. 590–605, Feb. 2018, doi: 10.1002/JBM.A.36259. | |
dc.relation | [69] T. Anto and C. R. Rejeesh, “Investigations into the tribological properties of Titanium-dioxide alumina coated mild steel,” Mater Today Proc, vol. 47, no. xxxx, pp. 5386–5390, 2021, doi: 10.1016/j.matpr.2021.06.099. | |
dc.relation | [70] C. X. Shan, X. Hou, and K. L. Choy, “Corrosion resistance of TiO2 films grown on stainless steel by atomic layer deposition,” Surf Coat Technol, vol. 202, no. 11, pp. 2399–2402, 2008, doi: 10.1016/j.surfcoat.2007.08.066. | |
dc.relation | [71] P. Alulema-Pullupaxi et al., “Photoelectrocatalytic degradation of glyphosate on titanium dioxide synthesized by sol-gel/spin-coating on boron doped diamond (TiO2/BDD) as a photoanode,” Chemosphere, vol. 278, 2021, doi: 10.1016/j.chemosphere.2021.130488. | |
dc.relation | [72] S. Li et al., “Advanced oxidation process based on hydroxyl and sulfate radicals to degrade refractory organic pollutants in landfill leachate,” Chemosphere, vol. 297, no. February, p. 134214, 2022, doi: 10.1016/j.chemosphere.2022.134214. | |
dc.relation | [73] J. Wu, W. Zheng, and Y. Chen, “ScienceDirect Definition of photocatalysis : Current understanding and perspectives,” Curr Opin Green Sustain Chem, vol. 33, p. 100580, 2022, doi: 10.1016/j.cogsc.2021.100580. | |
dc.relation | [74] V. Srivastava, P. K. Singh, and P. P. Singh, “C : Photochemistry Reviews Recent advances of visible-light photocatalysis in the functionalization of organic compounds,” Journal of Photochemistry & Photobiology, C: Photochemistry Reviews, vol. 50, no. September 2021, p. 100488, 2022, doi: 10.1016/j.jphotochemrev.2022.100488. | |
dc.relation | [75] P. Z. Araujo, P. J. Morando, E. Martínez, and M. A. Blesa, “Time evolution of surface speciation during heterogeneous photocatalysis: Gallic acid on titanium dioxide,” Appl Catal B, vol. 125, pp. 215–221, Aug. 2012, doi: 10.1016/J.APCATB.2012.05.035. | |
dc.relation | [76] J. B. Islam, M. Furukawa, I. Tateishi, S. Kawakami, H. Katsumata, and S. Kaneco, “Enhanced photocatalytic reduction of toxic Cr(VI) with Cu modified ZnO nanoparticles in presence of EDTA under UV illumination,” SN Appl Sci, vol. 1, no. 10, pp. 1–11, Oct. 2019, doi: 10.1007/S42452-019-1282- X/FIGURES/10. | |
dc.relation | [77] H. G. Völz et al., “Pigments, Inorganic,” in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. doi: 10.1002/14356007.a20_243.pub2. | |
dc.relation | [78] S. Durdu, Ö. F. Deniz, I. Kutbay, and M. Usta, “Characterization and formation of hydroxyapatite on Ti6Al4V coated by plasma electrolytic oxidation,” J Alloys Compd, vol. 551, pp. 422–429, 2013, doi: 10.1016/j.jallcom.2012.11.024. | |
dc.relation | [79] H. Wang et al., “A review on heterogeneous photocatalysis for environmental remediation : From semiconductors to modification strategies,” Chinese Journal of Catalysis, vol. 43, no. 2, pp. 178–214, 2022, doi: 10.1016/S1872- 2067(21)63910-4. | |
dc.relation | [80] M. Owlad, M. K. Aroua, W. A. W. Daud, and S. Baroutian, “Removal of Hexavalent Chromium-Contaminated Water and Wastewater: A Review,” Water, Air, and Soil Pollution 2008 200:1, vol. 200, no. 1, pp. 59–77, Nov. 2008, doi: 10.1007/S11270-008-9893-7. | |
dc.relation | [81] R. Saha, R. Nandi, and B. Saha, “Sources and toxicity of hexavalent chromium,” https://doi.org/10.1080/00958972.2011.583646, vol. 64, no. 10, pp. 1782–1806, May 2011, doi: 10.1080/00958972.2011.583646. | |
dc.relation | [82] X. Xing, N. S. Alharbi, X. Ren, and C. Chen, “A comprehensive review on emerging natural and tailored materials for chromium-contaminated water treatment and environmental remediation,” J Environ Chem Eng, vol. 10, no. 2, p. 107325, 2022, doi: 10.1016/j.jece.2022.107325. | |
dc.relation | [83] R. Djellabi et al., “Strategies to reduce mass and photons transfer limitations in heterogeneous photocatalytic processes : Hexavalent chromium reduction studies,” vol. 217, pp. 555–564, 2018, doi: 10.1016/j.jenvman.2018.04.003. | |
dc.relation | [84] L. S. McNeill, J. E. McLean, J. L. Parks, and M. A. Edwards, “Hexavalent chromium review, part 2: Chemistry, occurrence, and treatment,” J Am Water Works Assoc, vol. 104, no. 7, pp. E395–E405, Jul. 2012, doi: 10.5942/JAWWA.2012.104.0092. | |
dc.relation | [85] Z. Samadi, K. Yaghmaeian, S. Mortazavi-derazkola, and R. Khosravi, “Bioorganic Chemistry Facile green synthesis of zero-valent iron nanoparticles using barberry leaf extract ( GnZVI @ BLE ) for photocatalytic reduction of hexavalent chromium,” Bioorg Chem, vol. 114, no. June, p. 105051, 2021, doi: 10.1016/j.bioorg.2021.105051. | |
dc.relation | [86] D. A. Torres-Ceron, E. Restrepo-Parra, C. D. Acosta-Medina, D. Escobar- Rincon, and R. Ospina-Ospina, “Study of duty cycle influence on the band gap energy of TiO2/P coatings obtained by PEO process,” Surf Coat Technol, vol. 375, pp. 221–228, Oct. 2019, doi: 10.1016/J.SURFCOAT.2019.06.021. | |
dc.relation | [87] Bruker, “D8 ADVANCE Plus .” https://www.bruker.com/es/products-and- solutions/diffractometers-and-scattering-systems/x-ray-diffractometers/d8- advance-family/d8-advance-plus.html (accessed Sep. 29, 2022). | |
dc.relation | [88] Horiba, “LabRAM HR Evolution.” https://www.horiba.com/int/scientific/products/detail/action/show/Product/labra m-hr-evolution-1083/ (accessed Sep. 29, 2022). | |
dc.relation | [89] Hitachi, “General-purpose Small Unit AFM5100N.” https://www.hitachi- hightech.com/global/science/products/microscopes/afm/units/afm5100n.html (accessed Sep. 29, 2022). | |
dc.relation | [90] Biocompare, “ZEISS SIGMA VP Field Emission Scanning Electron Microscopes (FE-SEM) from Carl Zeiss Microscopy .” https://www.biocompare.com/22559- Scanning-Electron-Microscopes-SEM/3046499-SIGMA/ (accessed Sep. 29, 2022). | |
dc.relation | [91] ThermoFisher Scientific, “K-Alpha X-ray Photoelectron Spectrometer (XPS) System.” https://www.thermofisher.com/order/catalog/product/IQLAADGAAFFACVMA HV (accessed Sep. 29, 2022). | |
dc.relation | [92] Cromtek, “Espectrofotómetros UV-Vis Shimadzu UV-2600/2700 - Cromtek.” https://www.cromtek.cl/producto/espectrofotometros-uv-vis-shimadzu-uv-2600- 2700/ (accessed Sep. 29, 2022). | |
dc.relation | [93] E. W. Rice, R. B. Baird, and A. D. Eaton, “Standard Methods for the Examination of Water and Wastewater, 23rd Edition”. | |
dc.relation | [94] D. A. Torres-Ceron, E. Restrepo-Parra, C. D. Acosta-Medina, D. Escobar- Rincon, and R. Ospina-Ospina, “Study of duty cycle influence on the band gap energy of TiO2/P coatings obtained by PEO process,” Surf Coat Technol, vol. 375, no. April, pp. 221–228, 2019, doi: 10.1016/j.surfcoat.2019.06.021. | |
dc.relation | [95] A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, “Plasma electrolysis for surface engineering,” Surf Coat Technol, vol. 122, no. 2–3, pp. 73–93, 1999, doi: 10.1016/S0257-8972(99)00441-7. | |
dc.relation | [96] R. a. Spurr and H. Myers, “Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer,” Anal Chem, vol. 29, no. 5, pp. 760–762, 1957, doi: 10.1021/ac60125a006. | |
dc.relation | [97] J. Pelleg, E. Elish, and D. Mogilyanski, “Evaluation of average domain size and microstrain in a silicide film by the Williamson-Hall method,” Metallurgical and Materials Transactions A, vol. 36, no. 11, pp. 3187–3194, 2005, doi: 10.1007/s11661-005-0089-0. | |
dc.relation | [98] H. W. Cho, K. L. Liao, J. S. Yang, and J. J. Wu, “Revelation of rutile phase by Raman scattering for enhanced photoelectrochemical performance of hydrothermally-grown anatase TiO2 film,” Appl Surf Sci, vol. 440, pp. 125–132, May 2018, doi: 10.1016/J.APSUSC.2018.01.139. | |
dc.relation | [99] T. Thanh Doan Nguyen et al., “In-depth understanding of the photoreduction of graphene oxide to reduced-graphene oxide on TiO2 surface: Statistical analysis of X-ray photoelectron and Raman spectroscopy data,” Appl Surf Sci, vol. 581, p. 152325, Apr. 2022, doi: 10.1016/j.apsusc.2021.152325. | |
dc.relation | [100] W. Ma, Z. Lu, and M. Zhang, “Investigation of structural transformations in nanophase titanium dioxide by Raman spectroscopy,” Appl Phys A Mater Sci Process, vol. 66, no. 6, pp. 621–627, 1998, doi: 10.1007/s003390050723. | |
dc.relation | [101] B. Kasalica et al., “Mechanisms of plasma electrolytic oxidation of aluminum at the multi-hour timescales,” Surf Coat Technol, vol. 390, p. 125681, May 2020, doi: 10.1016/J.SURFCOAT.2020.125681. | |
dc.relation | [102] V. Alexander, A. Naumkin, Kraut-Vass, W. Stephen, Gaarenstroom., and J. P.Cedric, “NIST X-ray Photoelectron Spectroscopy Database,” Measurement Services Division of the National Institute of Standards and Technology (NIST), 2012. | |
dc.relation | [103] C. Chan, S. Trigwell, and T. Duerig, “We are Nitinol. TM Oxidation of a NiTi Alloy Oxidation of an NiTi Alloy,” SURFACE AND INTERFACE ANA LYSIS, vol. 683, pp. 49–354, 2000. | |
dc.relation | [104] D. A. Torres-Ceron, S. Amaya-Roncancio, J. S. Riva, A. Vargas-Eudor, D. Escobar-Rincon, and E. Restrepo-Parra, “Incorporation of P5+ and P3− from phosphate precursor in TiO2:P coatings produced by PEO: XPS and DFT study,” Surf Coat Technol, vol. 421, p. 127437, Sep. 2021, doi: 10.1016/j.surfcoat.2021.127437. | |
dc.relation | [105] T. Singh et al., “Sulfate-Assisted Interfacial Engineering for High Yield and Efficiency of Triple Cation Perovskite Solar Cells with Alkali-Doped TiO2 Electron-Transporting Layers,” Adv Funct Mater, vol. 28, no. 14, p. 1706287, Apr. 2018, doi: 10.1002/ADFM.201706287. | |
dc.relation | [106] S. B. Patil, S. B. Patil, H. Phattepur, G. Nagaraju, B. S. Gowrishankar, and B. S. Gowrishankar, “Highly distorted mesoporous S/C/Ti3+ doped black TiO2 for simultaneous visible light degradation of multiple dyes,” New Journal of Chemistry, vol. 44, no. 23, pp. 9830–9836, Jun. 2020, doi: 10.1039/D0NJ01540G. | |
dc.relation | [107] T. Dickinson, A. F. Povey, and P. M. A. Sherwood, “Dissolution and passivation of nickel. An X-ray photoelectron spectroscopic study,” Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol. 73, no. 0, pp. 327–343, Jan. 1977, doi: 10.1039/F19777300327. | |
dc.relation | [108] V. V. Atuchin, V. G. Kesler, N. V. Pervukhina, and Z. Zhang, “Ti 2p and O 1s core levels and chemical bonding in titanium-bearing oxides,” J Electron Spectros Relat Phenomena, vol. 152, no. 1–2, pp. 18–24, Jun. 2006, doi: 10.1016/j.elspec.2006.02.004. | |
dc.relation | [109] D. A. Torres-Ceron, S. Amaya-Roncancio, J. S. Riva, A. Vargas-Eudor, D. Escobar-Rincon, and E. Restrepo-Parra, “Incorporation of P5+ and P3− from phosphate precursor in TiO2:P coatings produced by PEO: XPS and DFT study,” Surf Coat Technol, vol. 421, p. 127437, Sep. 2021, doi: 10.1016/J.SURFCOAT.2021.127437. | |
dc.relation | [110] A. Shrivastava and V. Gupta, “Methods for the determination of limit of detection and limit of quantitation of the analytical methods,” Chronicles of Young Scientists, vol. 2, no. 1, p. 21, 2011, doi: 10.4103/2229-5186.79345. | |
dc.relation | [111] L. Xu, Y. Liu, Z. Hu, and J. C. Yu, “Converting cellulose waste into a high- efficiency photocatalyst for Cr(VI) reduction via molecular oxygen activation,” Appl Catal B, vol. 295, p. 120253, Oct. 2021, doi: 10.1016/J.APCATB.2021.120253. | |
dc.relation | [112] M. I. Litter, “Last advances on TiO2-photocatalytic removal of chromium, uranium and arsenic,” Curr Opin Green Sustain Chem, vol. 6, pp. 150–158, Aug. 2017, doi: 10.1016/J.COGSC.2017.04.002. | |
dc.relation | [113] J. Threeprom, S. Purachaka, and L. Potipan, “Simultaneous determination of Cr(III)–EDTA and Cr(VI) by ion interaction chromatography using a C18 column,” J Chromatogr A, vol. 1073, no. 1–2, pp. 291–295, May 2005, doi: 10.1016/J.CHROMA.2004.09.053. | |
dc.relation | [114] J. Threeprom, S. Purachaka, and L. Potipan, “Simultaneous determination of Cr(III)–EDTA and Cr(VI) by ion interaction chromatography using a C18 column,” J Chromatogr A, vol. 1073, no. 1–2, pp. 291–295, May 2005, doi: 10.1016/J.CHROMA.2004.09.053. | |
dc.relation | [115] P. Giannozzi et al., “QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials,” Journal of Physics Condensed Matter, vol. 21, no. 39, p. 395502, Sep. 2009, doi: 10.1088/0953- 8984/21/39/395502. | |
dc.relation | [116] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys Rev Lett, vol. 77, no. 18, pp. 3865–3868, 1996, doi: 10.1103/PhysRevLett.77.3865. | |
dc.relation | [117] M. Methfessel and A. T. Paxton, “High-precision sampling for Brillouin-zone integration in metals,” Phys Rev B, vol. 40, no. 6, pp. 3616–3621, Aug. 1989, doi: 10.1103/PhysRevB.40.3616. | |
dc.relation | [118] D. C. Sorescu, “First principles calculations of the adsorption and diffusion of hydrogen on Fe(100) surface and in the bulk,” Catal Today, vol. 105, no. 1, pp. 44–65, Jul. 2005, doi: 10.1016/j.cattod.2005.04.010. | |
dc.relation | [119] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys Rev Lett, vol. 77, no. 18, pp. 3865–3868, 1996, doi: 10.1103/PhysRevLett.77.3865. | |
dc.relation | [120] A. Kokalj, “Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale,” in Computational Materials Science, Oct. 2003, vol. 28, no. 2, pp. 155–168. doi: 10.1016/S0927-0256(03)00104-6. | |
dc.relation | [121] R. Liu, X. Zhou, F. Yang, and Y. Yu, “Combination study of DFT calculation and experiment for photocatalytic properties of S-doped anatase TiO2,” Appl Surf Sci, vol. 319, pp. 50–59, Nov. 2014, doi: 10.1016/j.apsusc.2014.07.132. | |
dc.relation | [122] R. Liu, X. Zhou, F. Yang, and Y. Yu, “Combination study of DFT calculation and experiment for photocatalytic properties of S-doped anatase TiO2,” Appl Surf Sci, vol. 319, pp. 50–59, Nov. 2014, doi: 10.1016/j.apsusc.2014.07.132. | |
dc.relation | [123] H. X. Zhu, P. X. Zhou, X. Li, and J.-M. Liu, “Electronic structures and optical properties of rutile TiO2 with different point defects from DFT+U calculations,” Phys Lett A, vol. 378, no. 36, pp. 2719–2724, Jul. 2014, doi: 10.1016/j.physleta.2014.07.029. | |
dc.rights | Reconocimiento 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Producción de recubrimientos de TiO2/S obtenidos por oxidación electrolítica por plasma con el fin de reducción de Cr(VI) en medios acuosos | |
dc.type | Trabajo de grado - Maestría | |