dc.contributorPadilla Llanos, David Alberto
dc.contributorMolina Villegas, Juan Camilo
dc.contributorAcevedo Mejía, Dorian Augusto [0000-0001-6699-3058]
dc.contributorMolina Villegas, Juan Camilo [0000-0001-9546-2299]
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000185584
dc.contributorhttps://www.researchgate.net/profile/Dorian-Acevedo-Mejia
dc.creatorAcevedo Mejía, Dorian Augusto
dc.date.accessioned2023-01-24T14:44:36Z
dc.date.available2023-01-24T14:44:36Z
dc.date.created2023-01-24T14:44:36Z
dc.date.issued2020
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/83085
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractEn este proyecto se analizan los beneficios del comportamiento sísmico en estructuras de acero conectando los sistemas de resistencia a la fuerza lateral vertical con los diafragmas a través de disipadores de energía en forma de mariposa. Para ello, se llevaron a cabo análisis sobre diferentes configuraciones estructurales, comparando la simulación de elementos finitos con estructuras diseñadas con sistemas convencionales de resistencia a la fuerza lateral ("pórticos arriostrados concéntricamente" como arriostramiento X, arriostramiento en V y arriostramiento en V invertido) de acuerdo con la ASCE7 -16. Con el fin de ampliar el conocimiento para los ingenieros estructurales e investigadores del comportamiento sísmico de las estructuras de acero que utilizan elementos de disipación de energía en sus diafragmas, se generará un ejemplo de aplicación para servir como guía de análisis no lineal y además, mostrar los beneficios con respecto a la reducción del cortante basal, derivas, aceleraciones en los diafragmas y tensiones en los elementos estructurales que podrían conducir a una reducción del peso de la estructura y, en consecuencia, tener beneficios económicos. (Texto tomado de la fuente)
dc.description.abstractThe main objective of this project is to explore the benefits of the seismic behavior on steel structures by connecting the vertical lateral force resistance systems with the diaphragms through butterfly shaped energy dissipators. For this, studies on different structural configurations, will be carried out, comparing finite element simulation against structures designed with conventional lateral force resistance systems (“Special Concentrically braced frames” such as X bracing, V bracing and inverted V bracing) according to the ASCE7-16. In order to extend the knowledge to structural engineers and researchers of the seismic behavior of the steel structures using energy dissipation elements in their diaphragms, an application example will be generated to serve as an analysis guide and to show the benefits regarding the reduction of the basal shear, drifts, accelerations in the diaphragms, and stresses in the structural elements which would potentially lead to a reduction of the weight of the structure and consequently to have economic benefits.
dc.languagespa
dc.publisherMedellín - Minas - Maestría en Ingeniería - Estructuras
dc.publisherFacultad de Minas
dc.publisherMedellín, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationRedCol
dc.relationLaReferencia
dc.relationASCE, Minimum Design Loads and Associated Criteria for Buildings and Other Structures. American Society of Civil Engineers, 2017. doi: 10.1061/9780784412916.
dc.relationM. R. Eatherton, “Large-scale cyclic and hybrid simulation testing and development of a controlled-rocking steel building system with replaceable fuses,” p. 893, 2010, [Online]. Available: http://hdl.handle.net/2142/16718
dc.relationM. T. Al Harash, A. Rathore, and N. Panahshahi, “Inelastic Seismic Response of Rectangular RC Buildings with Plan Aspect Ratio of 3:1 with Floor Diaphragm Openings,” Struct. Congr. 2010, vol. 41130, no. March, pp. 1971–1980, 2010, doi: 10.1061/41130(369)179.
dc.relationR. I. Skinner, J. M. Kelly, and A. J. Heine, “Hysteretic dampers for earthquake‐resistant structures,” Earthq. Eng. Struct. Dyn., vol. 3, no. 3, pp. 287–296, 1974, doi: 10.1002/eqe.4290030307.
dc.relationG. Tsampras, R. Sause, R. B. Fleischman, and J. I. Restrepo, “An earthquake-resistant building system to reduce floor accelerations,” New Zeal. Soc. Earthq. Eng., pp. 445–453, 2015, [Online]. Available: http://www.nzsee.org.nz/db/2015/Papers/O-48_Tsampras.pdf
dc.relationD. Zhang, R. B. Fleischman, and Z. Zhang, “Analytical Investigation of Seismic Behavior of Building Structures with an Inertial Force-Limiting Floor Anchorage System,” Int. J. Eng. Technol., vol. 8, no. 4, pp. 234–240, 2016, doi: 10.7763/IJET.2016.V8.891.
dc.relationC. S. Walter Yang, R. DesRoches, and R. T. Leon, “Design and analysis of braced frames with shape memory alloy and energy-absorbing hybrid devices,” Eng. Struct., vol. 32, no. 2, pp. 498–507, 2010, doi: 10.1016/j.engstruct.2009.10.011.
dc.relationC. Zhang, T. C. Steele, and L. D. A. Wiebe, “Design-level estimation of seismic displacements for self-centering SDOF systems on stiff soil,” Eng. Struct., vol. 177, no. February 2017, pp. 431–443, 2018, doi: 10.1016/j.engstruct.2018.09.067.
dc.relationConstantin Christopoulos; Andre Filiatrault, Principles of Passive Supplemental Damping and Seismic Isolation. 2007
dc.relationR. S. Henry, S. Sritharan, and J. M. Ingham, “Recentering requirements for the seismic design of self-centering systems,” 9th Pacific Conf. Earthq. Eng. Build. an Earthquake-Resilient Soc., no. 104, 2011.
dc.relationB. Wang, S. Zhu, C. X. Qiu, and H. Jin, “High-performance self-centering steel columns with shape memory alloy bolts: Design procedure and experimental evaluation,” Eng. Struct., vol. 182, no. December 2018, pp. 446–458, 2019, doi: 10.1016/j.engstruct.2018.12.077.
dc.relationD. A. Padilla-llano and J. F. Hajjar, “Postdoctoral Research Associate Category : Engineering and Technology Abstract ID # 1953 Composite Floor Diaphragms with Energy Dissipating Fuses in the Seismic Performance of Steel Buildings Example of Energy Dissipating Fuses,” no. April, p. 20014397, 2015, doi: 10.4231/D3FQ9Q536.
dc.relationZ. Zhang et al., “Shake-table test performance of an inertial force-limiting floor anchorage system,” Earthq. Eng. Struct. Dyn., vol. 47, no. 10, pp. 1987–2011, 2018, doi: 10.1002/eqe.3047
dc.relationATC, “FEMA P-695: Quantification of building seismic performance factors.,” no. June, p. 421, 2009, [Online]. Available: http://www.fema.gov/media-library-data/20130726-1716-25045-9655/fema_p695.pdf
dc.relationN. Chancellor, M. Eatherton, D. Roke, and T. Akbaş, “Self-Centering Seismic Lateral Force Resisting Systems: High Performance Structures for the City of Tomorrow,” Buildings, vol. 4, no. 3, pp. 520–548, 2014, doi: 10.3390/buildings4030520.
dc.relationG. C. Clifton, H. Nashid, G. Ferguson, M. Hodgson, C. Seal, and G. A. Macrae, “Performance of Eccentrically Braced Framed Buildings In The Christchurch Earthquake Series of 2010 / 2011,” 15 World Conf. Earthq. Eng., no. February, 2012.
dc.relationA. S. Elnashai, FUNDAMENTALS OF EARTHQUAKE, 2008th ed. United Kingdom, 2008.
dc.relationR. Sabelli, T. a Sabol, and S. W. Easterling, “Seismic Design of Composite Steel Deck and Concrete-Filled Diaphragms - A Guide for Practicing Engineers,” NEHRP Seism. Des. Tech. Br. No. 5, no. 5, p. 38, 2011, doi: 10.1002/2015WR017408.Received
dc.relationH. Foroughi, G. Wei, S. Torabian, M. R. Eatherton, and B. W. Schafer, “Seismic Demands on Steel Diaphragms for 3D Archetype Buildings with Concentric Braced Frames,” pp. 1–8.
dc.relationG. Tsampras, R. Sause, R. B. Fleischman, J. I. Restrepo, and D. Zhang, “Deformable Connection for Earthquake-Resistant Building Systems,” no. April 2016, pp. 1–8, 2015.
dc.relationP. O’Brien, S. Florig, C. D. Moen, and M. R. Eatherton, “Characterizing the Load Deformation Behavior of Steel Deck Diaphragms,” Proc. Twentythird Int. Spec. Conf. Cold-Formed Steel Struct., pp. 1–15, 2016
dc.relationN. F. Roth, “Parametric Study of Self-Centering Concentrically- Braced Frames in Response to Earthquakes,” 2015.
dc.relationK. S. Hall, M. R. Eatherton, and J. Hajjar, “Nonlinear Behavior of Controlled Rocking Steel-Framed Building Systems with Replaceable Energy Dissipating Fuses,” Newmark Struct. Eng. Lab. Rep. Ser., no. NSEL-026, pp. 1–45, 2010, doi: 10.1080/00380768.2004.10408490.
dc.relationC. Naresh, P. S. C. Bose, and C. S. P. Rao, “Shape memory alloys: A state of art review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 149, no. 1, 2016, doi: 10.1088/1757-899X/149/1/012054
dc.relationM. S. Speicher, R. DesRoches, and R. T. Leon, “Investigation of an articulated quadrilateral bracing system utilizing shape memory alloys,” J. Constr. Steel Res., vol. 130, pp. 65–78, 2017, doi: 10.1016/j.jcsr.2016.11.022
dc.relationP. M. Clayton et al., “Self-centering steel plate shear walls for improving seismic resilience,” Front. Struct. Civ. Eng., vol. 10, no. 3, pp. 283–290, 2016, doi: 10.1007/s11709-016-0344-z.
dc.relationD. M. Dowden and M. Bruneau, “Quasi-static cyclic testing and analytical investigation of steel plate shear walls with different post-tensioned beam-to-column rocking connections,” Eng. Struct., vol. 187, no. November 2018, pp. 43–56, 2019, doi: 10.1016/j.engstruct.2019.02.048
dc.relationB. Erkmen and A. E. Schultz, “Self-centering behavior of unbonded, post-tensioned precast concrete shear walls,” J. Earthq. Eng., vol. 13, no. 7, pp. 1047–1064, 2009, doi: 10.1080/13632460902859136.
dc.relationF. J. Perez, S. Pessiki, and R. Sause, “Lateral load behavior of unbonded post-tensioned precast concrete walls with vertical joints,” PCI J., vol. 49, no. 2, pp. 48–64, 2004, doi: 10.15554/pcij.03012004.48.64.
dc.relationM. A. Eusuf, K. A. Rashid, W. M. Noor, and A. Al Hasan, “Shear wall construction in buildings: A conceptual framework on the aspect of analysis and design,” Appl. Mech. Mater., vol. 268, no. PART 1, pp. 706–711, 2013, doi: 10.4028/www.scientific.net/AMM.268-270.706
dc.relationL. Xu, S. Xiao, and Z. Li, “Hysteretic behavior and parametric studies of a self-centering RC wall with disc spring devices,” Soil Dyn. Earthq. Eng., vol. 115, no. September, pp. 476–488, 2018, doi: 10.1016/j.soildyn.2018.09.017.
dc.relationX. Geng and W. Zhou, “Cyclic experimental response of self-centering concrete frames with slotted columns,” Constr. Build. Mater., vol. 195, pp. 363–375, 2019, doi: 10.1016/j.conbuildmat.2018.11.079.
dc.relationY. Shen, X. Liu, Y. Li, and J. Li, “Cyclic tests of precast post-tensioned concrete filled steel tubular (PCFT) columns with internal energy-dissipating bars,” Eng. Struct., vol. 229, no. December 2020, p. 111651, 2021, doi: 10.1016/j.engstruct.2020.111651.
dc.relationR. Wen, O. Seker, B. Akbas, and J. Shen, “Designs of Special Concentrically Braced Frame Using AISC 341-05 and AISC 341-10,” Pract. Period. Struct. Des. Constr., vol. 21, no. 1, p. 04015011, 2015, doi: 10.1061/(asce)sc.1943-5576.0000256.
dc.relationP. O’brien, M. R. Eatherton, and W. S. Easterling, “Characterizing the load-deformation behavior of steel deck diaphragms using past test data SDII Steel Diaphragm Innovation Initiative,” 2017. [Online]. Available: https://jscholarship.library.jhu.edu/handle/1774.2/40427.
dc.relationFEMA, “NEHRP Recommended seismic provisions for new buildings and other structures,” Build. Seism. Saf. Counc., vol. II, no. September, p. 388, 2020, [Online]. Available: http://www.fema.gov/media-library-data/20130726-1730-25045-1580/femap_750.pdf
dc.relationG. Wei et al., “Development of Steel Deck Diaphragm Seismic Design Provisions for ASCE 41/AISC 342,” Cold-formed steel Res. Consort. Rep. Ser., no. January, p. 21, 2019.
dc.relationT. L. Bruce, “Behavior of post-tensioning strand systems subjected to inelastic cyclic loading,” Thesis Submitt. to Fac. Virginia Polytech. Inst. State Univ. Partial fulfillment Requir. degree Master Sci., 2014, [Online]. Available: http://weekly.cnbnews.com/news/article.html?no=124000
dc.relationM. R. Eatherton and J. F. Hajjar, “Large-Scale Cyclic and Hybrid Simulation Testing and Development of a Controlled- Rocking Steel Building System with Replaceable Fuses. Report No. NSEL-025.,” 2010.
dc.relationX. Ma, E. Borchers, A. Pena, H. Krawinkler, S. Billington, and G. G. Deierlein, “Design and Behavior of Steel Shear Plates with Openings as Energy-Dissipating Fuses,” Intern. Report, John A. Blume Earthq. Eng. Center, Stanford Univ., no. 17, 2010.
dc.relationL. Liu, J. Zhao, and S. Li, “Nonlinear displacement ratio for seismic design of self-centering buckling-restrained braced steel frame considering trilinear hysteresis behavior,” Eng. Struct., vol. 158, no. August 2017, pp. 199–222, 2018, doi: 10.1016/j.engstruct.2017.12.026.
dc.relationMatthew roy eatherton, “Large-scale cyclic and hybrid simulation testing and development of a controlled rocking steel building system with replaceable fuses,” Proc. - 2014 IEEE Int. Conf. Big Data, IEEE Big Data 2014, no. September, pp. 736–741, 2015, doi: 10.1109/BigData.2014.7004298.
dc.relationH. Gholi Pour, M. Ansari, and M. Bayat, “A new lateral load pattern for pushover analysis in structures,” Earthq. Struct., vol. 6, no. 4, pp. 437–455, 2014, doi: 10.12989/eas.2014.6.4.437.
dc.relationF. R. Rofooei, “COMPARISON OF STATIC AND DYNAMIC PUSHOVER ANALYSIS IN ASSESSMENT OF THE TARGET DISPLACEMENT,” 2006. [Online]. Available: www.SID.ir
dc.relationG. Chu, W. Wang, and Y. Zhang, “Nonlinear seismic performance of beam-through steel frames with self-centering modular panel and replaceable hysteretic dampers,” J. Constr. Steel Res., vol. 170, p. 106091, 2020, doi: 10.1016/j.jcsr.2020.106091.
dc.relationM. Xian, H. Krawinkler, and G. G. Deierlein, “Seismic Design and Behavior of Self-Centering Braced Frame with Controlled Rocking and Energy–Dissipating Fuses,” John A. Blume Earthq. Eng. Cent., no. August, p. 438, 2010, [Online]. Available: http://nees.illinois.edu/hosted/ControlledRocking/papers/Ma Xiang Dissertation 2010 Stanford University.pdf
dc.relationD. A. Padilla-Llano, C. D. Moen, and M. R. Eatherton, “Cyclic axial response and energy dissipation of cold-formed steel framing members,” Thin-Walled Struct., vol. 78, pp. 95–107, 2014, doi: 10.1016/j.tws.2013.12.011.
dc.relationS. Karimzadeh, A. Askan, A. Yakut, and G. Ameri, “Assessment of alternative simulation techniques in nonlinear time history analyses of multi-story frame buildings: A case study,” Soil Dyn. Earthq. Eng., vol. 98, pp. 38–53, Jul. 2017, doi: 10.1016/j.soildyn.2017.04.004.
dc.relationM. N. Eldin, A. J. Dereje, and J. Kim, “Seismic retrofit of RC buildings using self-centering PC frames with friction-dampers,” Eng. Struct., vol. 208, Apr. 2020, doi: 10.1016/j.engstruct.2019.109925.
dc.relationN. D. Dao, H. Nguyen-Van, T. H. A. Nguyen, and A. B. Chung, “A new statistical equation for predicting nonlinear time history displacement of seismic isolation systems,” Structures, vol. 24, pp. 177–190, Apr. 2020, doi: 10.1016/j.istruc.2020.01.019.
dc.relationG. Wei, M. R. Eatherton, H. Foroughi, S. Torabian, and B. W. Schafer, “Seismic Behavior of Steel BRBF Buildings Including Consideration of Diaphragm Inelasticity,” 2020. [Online]. Available: https://jscholarship.library.jhu.edu/handle/1774.2/40427.
dc.relationS. Mazzoni, F. McKenna, M. H. Scott, and G. L. Fenves, “Open System for Earthquake Engineering Simulation (OpenSEES) user command-language manual,” Pacific Earthq. Eng. Res. Cent., p. 465, 2006.
dc.relationD. A. Padilla-llano, A Framework for Cyclic Simulation of Thin-Walled Cold-Formed Steel Members in Structural Systems. 2015
dc.relationR. L. Iman, “Latin Hypercube Sampling,” Encycl. Quant. Risk Anal. Assess., no. January 1999, 2008, doi: 10.1002/9780470061596.risk0299.
dc.relationMcLeod, Núñez-, J. E., and J. H. Barón, “Técnicas estadísticas avanzadas en el análisis de grandes modelos computacionales,” Mecánica Comput., vol. XIX, no. 14, pp. 1–7, 1999.
dc.relationSheikholeslami, “Progressive Latin Hypercube Sampling: An efficient approach for robust sampling-based analysis of environmental models,” Environ. Model. Softw., vol. 93, pp. 109–126, 2017, doi: 10.1016/j.envsoft.2017.03.010.
dc.relationR. Sheikholeslami and S. Razavi, “Progressive Latin Hypercube Sampling: An efficient approach for robust sampling-based analysis of environmental models,” Environ. Model. Softw., vol. 93, pp. 109–126, 2017, doi: 10.1016/j.envsoft.2017.03.010.
dc.relationA. Saltelli et al., Global Sensitivity Analysis. The Primer. 2008. doi: 10.1002/9780470725184.
dc.relationA. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto, Sensitivity analysis in practice: a guide to assessing scientific models (Google eBook). 2004.
dc.relationS. Panda, A. K. Mishra, and U. C. Biswal, “Manganese induced peroxidation of thylakoid lipids and changes in chlorophyll-α fluorescence during aging of cell free chloroplasts in light,” Phytochemistry, vol. 26, no. 12, pp. 3217–3219, 1987, doi: 10.1016/S0031-9422(00)82472-3.
dc.relationE. Lahura, “El Coeficiente De Correlación Y Correlaciones Espúreas,” Univ. Catol. del Perú, pp. 1–64, 2003.
dc.relationC. Araya Alpízar, “Análisis de datos multivariantes con coordenadas paralelas,” Análisis datos multivariantes con Coord. paralelas, vol. 11, no. 16, pp. 81–91, 2011.
dc.relationS. Latinoamericana para la calidad, “Histograma,” pp. 1–7, 2000.
dc.rightsAtribución-CompartirIgual 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEvaluación del desempeño sísmico de estructuras de acero que emplean dispositivos de disipación de energía tipo mariposa en diafragmas de sección compuesta
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución