dc.contributor | Castellanos Domínguez, César Germán | |
dc.contributor | Álvarez Meza, Andrés Marino | |
dc.contributor | Signal processing and recognition group (SPRG) | |
dc.contributor | Cardona Alvarez, Yeison Nolberto [0000-0002-0425-8880] | |
dc.contributor | Cardona Alvarez, Yeison Nolberto [0000128391] | |
dc.creator | Cardona Alvarez, Yeison Nolberto | |
dc.date.accessioned | 2023-01-17T19:09:56Z | |
dc.date.accessioned | 2023-06-06T22:50:50Z | |
dc.date.available | 2023-01-17T19:09:56Z | |
dc.date.available | 2023-06-06T22:50:50Z | |
dc.date.created | 2023-01-17T19:09:56Z | |
dc.date.issued | 2022 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/82987 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6650922 | |
dc.description.abstract | The widespread use of neurophysiological signals to develop brain-computer
interface (BCI) systems has certainly varied clinical and nonclinical applications.
Main implementations in medical issues include: rehabilitation, cognitive state
analysis, diagnostics, assistive devices for communication, locomotion and
movement. By other hand, there is a bunch of researches that approaches the BCI
systems to healthy people in fields like: neuroergonomics, smart homes,
neuromarketing and advertising, games, education, entertainment and even
security and validation. Not all EEG acquisition systems are capable to use in BCIs
systems. Even if the clinic devices are highly accurate, these implementations have
a limited, or nonexistent, real-time data flow access; because they mainly use is
about diagnostic and offline analysis. Recently, and because of the cheapening
prototyping development, there is in the market a set of low-cost embedded
systems for electroencephalography (EEG) acquisition, i.e., OpenBCI, InteraXon,
Muse, NeuroSky MindWave and Emotiv. All these options usually include a high
or low-level software development kit (SDK), that could be open-source or
proprietary and will come with a different grade of flexibility (rigid or
customizable electrode placement, multiple sampling rates, transmission
protocols, wireless, etc). Many of these devices have shown capabilities to handle
BCI tasks, but they need a context-specific development to boost their base
benefits. Acquiring brain signals is only one task for a BCI system, also it is
necessary to carry out a lot of data processing and controlled experiments, concerning this have been specialized software for developers and researchers
purpose i.e., BCI2000, Neurobehavioral Systems Presentation, Psychology
Software Tools, Inc. ePrime and PsychoPy. All these systems offer greater ease of
use through experimenter interfaces, but they can be costly, require high-level
programming and technical skills, and usually do not support dedicated data
acquisition. For this reason, the acquisition involves the implementation of third
party software and drivers; consequently, losing interesting hardware features in
favor to support as many devices as possible. To implement a BCI system is an
interdisciplinary activity that requires a set of specific and outstanding
knowledges about communication systems, signals acquisition, instrumentation,
clinical protocols, experiments validation, software development, among others.
Besides, in order to perform a real-world experiment, the user must calibrate the
specific set of acquisition system, stimuli delivery and data processing stages.
Current software approaches try to converge multiple technologies and
methodologies to provide general purpose BCI systems. The most popular is the
BCI200, which comes with default paradigms but their interface has been pointed
out to be not very intuitive and its operation is difficult to understand, although, it
is possible to add new paradigms, this include software contributions using their
own libraries and do not through a built-int development interface. Other
software widely used is the OpenVIBE this one includes a graphical drag-and-drop
interface to perform data analysis with an extensive set of pre-defined algorithms.
Its synchronous acquisition system is known for not only occasionally frozen the
computer but also for adding delays to the streaming of the signals. All these
systems handle with an extensive set of compatible devices which may be good at
first glance but make that some specific hardware features are not available for
compatibility reasons. On the side of the open source hardware, we can find that
OpenBCI a flexible option, but with some important lacks. The most important
relies on the communication between the computer and the board is not always
stable and their graphical user interface (GUI) does not provide the possibility of
acquiring data under wich a particular BCI paradigm. Otherwise, their hardware base and SDK features gives to this board a huge potential to implement a
complete BCI system comparable with medical grade equipment.
With all these factors in mind, we aim to develop a standalone BCI system with
the OpenBCI Cyton board that handles the signal acquisition and the stimuli
deliver in the same interface, to reduce the needed infrastructure to perform
neurophysiological experiments. Alongside a distributed platform to improve the
performance, increase the scalability, and reduce the jitter. This software,
BCI-Framework, provides the user with a built-in development environment
enhanced with a custom API for data interactions, montage context, and markers
generation. This environment is full compatible with any Python module and is
focused in the generation of real-time visualizations, data analysis and
network-based stimuli delivery for the remote presentation of audiovisual cues.
This approach converges almost all needed components for BCI researches into a
single standalone implementation.
In a nutshell, the introduced EEG-based BCI framework comprises the following
benefits: i) A portable and cheap acquisition system (hardware) founded on the
well-known OpenBCI devices. ii) This approach includes a wireless, e.g., Wi-Fi,
communication protocol to couple the EEG data acquisition and event markers
synchronization from audiovisual stimulation paradigms. iii) A distributed system
is enhanced within this BCI framework to carry out real-time data acquisition and
visualization while favoring the inclusion of conventional or user-designed EEG
data processing libraries over a Python language environment. In addition, a
latency-based quality assessment method is carried out. (Texto tomado de la fuente) | |
dc.description.abstract | El uso generalizado de señales neurofisiológicas para desarrollar sistemas BCI
ciertamente tiene diversas aplicaciones clínicas y no clínicas. Las principales
implementaciones en temas médicos incluyen: rehabilitación, análisis del estado
cognitivo, diagnóstico, dispositivos de asistencia para la comunicación,
locomoción y movimiento. Por otro lado, hay muchas investigaciones que acercan
los sistemas BCI a personas sanas en campos como: neuroergonomía, hogares
inteligentes, neuromarketing y publicidad, juegos, educación, entretenimiento e
incluso seguridad y validación. No todos los sistemas de adquisición de EEG se
pueden usar en los sistemas BCIs. Incluso si los dispositivos clínicos son muy
precisos, estas implementaciones tienen un acceso limitado o inexistente al flujo
de datos en tiempo real; debido principalmente a que se tratan sistemas enfocados
al diagnóstico y análisis fuera de línea. Recientemente, y debido al abaratamiento
del desarrollo de prototipos, existe en el mercado un conjunto de sistemas
embebidos de bajo costo para la adquisición de EEG, algunos de ellos son:
OpenBCI, InteraXon, Muse, NeuroSky MindWave y Emotiv. Todas estas opciones
suelen incluir un SDK de nivel alto o bajo, que puede ser de código abierto o
privativo los cuales vienen con un grado diferente de flexibilidad (disposición de
electrodos rígida o personalizable, frecuencias de muestreo variable, diferentes
protocolos de transmisión, conexión inalámbrica, etc). Muchos de estos
dispositivos han demostrado capacidades para manejar tareas BCI, pero necesitan
un desarrollo específico del contexto para aumentar sus beneficios básicos. Adquirir señales cerebrales es sólo una tarea indiidual para un sistema completo
de BCI, también es necesario llevar a cabo una gran cantidad de procesamiento de
datos y experimentos controlados, con respecto a esto se ha especializado
software para desarrolladores e investigadores, por ejemplo: BCI2000,
Neurobehavioral Systems Presentación, Psychology Software Tools, Inc. ePrime y
PsychoPy. Todos estos sistemas ofrecen una mayor facilidad de uso a través de las
interfaces del sistema de experimentos, pero pueden ser costosos, requieren
habilidades técnicas y de programación de alto nivel y por lo general, no admiten
la adquisición de datos dedicada. Por esta razón, la adquisición de señales se basa
en la implementación de software y controladores de terceros; en consecuencia, se
pierden características de hardware interesantes a favor de soportar tantos
dispositivos como sea posible. Implementar un sistema BCI es una actividad
interdisciplinaria que requiere un conjunto de conocimientos específicos y
sobresalientes sobre sistemas de comunicación, adquisición de señales,
instrumentación, protocolos clínicos, validación de experimentos, desarrollo de
software, entre otros.
Además, para realizar un experimento del mundo real, el usuario debe calibrar el
conjunto específico de sistema de adquisición, entrega de estímulos y etapas de
procesamiento de datos. Los enfoques de software actuales intentan hacer
converger múltiples tecnologías y metodologías para proporcionar sistemas BCI de
propósito general. El más popular es el BCI200, que incorpora paradigmas
predeterminados pero se ha señalado que su interfaz es poco intuitiva y su
funcionamiento es difícil de entender, aunque es posible agregar nuevos
paradigmas, esto permite incluir contribuciones de software utilizando sus propias
bibliotecas. y no mediante una interfaz de desarrollo integrada. Otro software
ampliamente utilizado es OpenVIBE, este incluye una interfaz gráfica de arrastrar y
soltar para realizar análisis de datos con un amplio conjunto de algoritmos
predefinidos. Su sistema de adquisición sincrónica es conocido no sólo por
congelar ocasionalmente la computadora, sino también por agregar retrasos en la
transmisión de las señales. Todos estos sistemas manejan un amplio conjunto de dispositivos compatibles que pueden ser buenos a primera vista, pero hacen que
algunas características específicas del hardware no estén disponibles por razones
de compatibilidad. Del lado del hardware de código abierto, podemos encontrar
que OpenBCI es una opción flexible, pero con algunas carencias importantes. La
más importante se basa en que la comunicación entre la computadora y la placa no
siempre es estable y su GUI no brinda la posibilidad de adquirir datos bajo un
paradigma BCI particular. Por otro lado, su base de hardware y las características
de SDK le dan a esta placa un gran potencial para implementar un sistema BCI
completo comparable con el equipo de grado médico.
Con todos estos factores en mente, nuestro objetivo es desarrollar un sistema BCI
independiente con la placa OpenBCI Cyton que maneje la adquisición de señales y
la entrega de estímulos en la misma interfaz, para reducir la infraestructura
necesaria para realizar experimentos neurofisiológicos. Junto con una plataforma
distribuida para mejorar el rendimiento, aumentar la escalabilidad y reducir el
jitter. Este software, BCI-Framework, proporciona al usuario un entorno de
desarrollo integrado mejorado con una API personalizada para interacciones de
datos, selección de montaje y generación de marcadores. Este entorno es
totalmente compatible con cualquier módulo de Python y se centra en la
generación de visualizaciones en tiempo real, análisis de datos y entrega de
estímulos a través de conexiones de red para la presentación remota de señales
audiovisuales. Este enfoque reúne casi todos los componentes necesarios para la
investigación de BCI
En pocas palabras, el sistema BCI basado en EEG presentado comprende los
siguientes beneficios: i) Un sistema de adquisición portátil y económico
(hardware) basado en los conocidos dispositivos OpenBCI. ii) Este enfoque incluye
un protocolo de comunicación inalámbrico (Wi-Fi), para acoplar la adquisición de
datos de EEG y la sincronización de marcadores de eventos de paradigmas de
estimulación audiovisual. iii) Se implementa un sistema distribuido dentro de este
entorno BCI para llevar a cabo la adquisición y visualización de datos en tiempo real mientras se favorece la inclusión de bibliotecas de procesamiento de datos
EEG convencionales o diseñadas por el usuario sobre un entorno de lenguaje
Python. Además, se lleva a cabo método para la evaluación de la calidad basada en
la latencia. | |
dc.language | eng | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Automatización Industrial | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Manizales, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Manizales | |
dc.relation | L. F. Nicolas-Alonso and J. Gomez-Gil, “Brain computer interfaces, a review,” sensors, vol. 12, no. 2, pp. 1211–1279, 2012. | |
dc.relation | C. Tremmel, Estimating Cognitive Workload in an Interactive Virtual Reality Environment Using Electrophysiological and Kinematic Activity. PhD thesis, Old Dominion University, 2019. | |
dc.relation | M. Maleki, N. Manshouri, and T. Kayikcioglu, “Brain-computer interface systems for smart homes-a review study,” Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering), vol. 14, no. 2, pp. 144–155, 2021. | |
dc.relation | K. Polat, A. B. Aygun, and A. R. Kavsaoglu, “Eeg based brain-computer interface control applications: A comprehensive review,” Journal of Bionic Memory, vol. 1, no. 1, pp. 20–33, 2021. | |
dc.relation | G. A. M. Vasiljevic and L. C. de Miranda, “Brain–computer interface games based on consumer-grade eeg devices: A systematic literature review,” International Journal of Human–Computer Interaction, vol. 36, no. 2, pp. 105–142, 2020. | |
dc.relation | S. Taherian and T. C. Davies, “Caregiver and special education staff perspectives of a commercial brain-computer interface as access technology: a qualitative study,” Brain-Computer Interfaces, vol. 5, no. 2-3, pp. 73–87, 2018. | |
dc.relation | S. K. Mudgal, S. K. Sharma, J. Chaturvedi, and A. Sharma, “Brain computer interface advancement in neurosciences: Applications and issues,” Interdisciplinary Neurosurgery, vol. 20, p. 100694, 2020. | |
dc.relation | D. Bansal and R. Mahajan, EEG-Based Brain-Computer Interfaces: Cognitive Analysis and Control Applications. Academic Press, 2019. | |
dc.relation | S. Baillet, J. C. Mosher, and R. M. Leahy, “Electromagnetic brain mapping,” IEEE Signal processing magazine, vol. 18, no. 6, pp. 14–30, 2001. | |
dc.relation | S. Laureys, M. Boly, and G. Tononi, “Functional neuroimaging in the neurology of consciousness: cognitive neuroscience and neuropathology,” 2009. | |
dc.relation | L. F. Nicolas-Alonso and J. Gomez-Gil, “Brain Computer Interfaces, a Review,” Sensors, vol. 12, pp. 1211–1279, Jan. 2012. | |
dc.relation | K. Kostiukevych, S. Stirenko, N. Gordienko, O. Rokovyi, O. Alienin, and Y. Gordienko, “Convolutional and recurrent neural networks for physical action forecasting by brain-computer interface,” in 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), vol. 2, pp. 973–978, IEEE, 2021. | |
dc.relation | J. Wolpaw and E. W. Wolpaw, “Brain-computer interfaces: Principles and practice,” 2012. | |
dc.relation | D. Cárdenas-Peña, D. Collazos-Huertas, and G. Castellanos-Dominguez, “Enhanced data representation by kernel metric learning for dementia diagnosis,” Frontiers in neuroscience, vol. 11, p. 413, 2017. | |
dc.relation | D. Collazos-Huertas, D. Cárdenas-Peña, and G. Castellanos-Dominguez, “Instance-based representation using multiple kernel learning for predicting conversion to alzheimer disease,” International journal of neural systems, vol. 29, no. 02, p. 1850042, 2019. | |
dc.relation | J. D. Pulgarin-Giraldo, A. Ruales-Torres, A. M. Álvarez-Meza, and G. Castellanos-Dominguez, “Relevant kinematic feature selection to support human action recognition in mocap data,” in International Work-Conference on the Interplay Between Natural and Artificial Computation, pp. 501–509, Springer, 2017. | |
dc.relation | J. V. Hurtado-Rincón, J. D. Martínez-Vargas, S. Rojas-Jaramillo, E. Giraldo, and G. Castellanos-Dominguez, “Identification of relevant inter-channel eeg connectivity patterns: a kernel-based supervised approach,” in International Conference on Brain Informatics, pp. 14–23, Springer, 2016. | |
dc.relation | J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, “Brain–computer interfaces for communication and control,” Clinical neurophysiology, vol. 113, no. 6, pp. 767–791, 2002. | |
dc.relation | C. S. Nam, A. Nijholt, and F. Lotte, Brain–computer interfaces handbook: technological and theoretical advances. CRC Press, 2018. | |
dc.relation | J. R. Wessel, K. J. Gorgolewski, and P. Bellec, “Switching software in science: Motivations, challenges, and solutions,” Trends in cognitive sciences, vol. 23, no. 4, pp. 265–267, 2019. | |
dc.relation | M. Ordikhani-Seyedlar and M. A. Lebedev, “Augmenting attention with brain–computer interfaces,” in Brain–Computer Interfaces Handbook, pp. 549–560, CRC Press, 2018. | |
dc.relation | J.-A. Martinez-Leon, J.-M. Cano-Izquierdo, and J. Ibarrola, “Are low cost brain computer interface headsets ready for motor imagery applications?,” Expert Systems with Applications, vol. 49, pp. 136–144, 2016. | |
dc.relation | J. LaRocco, M. D. Le, and D.-G. Paeng, “A systemic review of available low-cost eeg headsets used for drowsiness detection,” Frontiers in neuroinformatics, vol. 14, 2020. | |
dc.relation | V. Peterson, C. Galván, H. Hernández, and R. Spies, “A feasibility study of a complete low-cost consumer-grade brain-computer interface system,” Heliyon, vol. 6, no. 3, p. e03425, 2020. | |
dc.relation | J. Frey, “Comparison of a consumer grade eeg amplifier with medical grade equipment in bci applications,” in International BCI meeting, 2016. | |
dc.relation | P. Brunner and G. Schalk, “Bci software,” in Brain–Computer Interfaces Handbook, pp. 323–340, CRC Press, 2018. | |
dc.relation | A. Lécuyer, F. Lotte, R. B. Reilly, R. Leeb, M. Hirose, and M. Slater, “Brain-computer interfaces, virtual reality, and videogames,” Computer, vol. 41, no. 10, pp. 66–72, 2008. | |
dc.relation | M. Palaus, E. M. Marron, R. Viejo-Sobera, and D. Redolar-Ripoll, “Neural basis of video gaming: A systematic review,” Frontiers in human neuroscience, p. 248, 2017. | |
dc.relation | M. Bassolino, M. Franza, J. Bello Ruiz, M. Pinardi, T. Schmidlin, M. Stephan, M. Solca, A. Serino, and O. Blanke, “Non-invasive brain stimulation of motor cortex induces embodiment when integrated with virtual reality feedback,” European Journal of Neuroscience, vol. 47, no. 7, pp. 790–799, 2018. | |
dc.relation | I. Sugiarto and I. H. Putro, “Application of distributed system in neuroscience, a case study of bci framework,” in The 1st international seminar on science and technology, 2009. | |
dc.relation | V. Alvarez and A. O. Rossetti, “Clinical use of eeg in the icu: technical setting,” Journal of clinical neurophysiology, vol. 32, no. 6, pp. 481–485, 2015. | |
dc.relation | S. Beniczky, H. Aurlien, J. C. Brøgger, L. J. Hirsch, D. L. Schomer, E. Trinka, R. M. Pressler, R. Wennberg, G. H. Visser, M. Eisermann, et al., “Standardized computer-based organized reporting of eeg: Score–second version,” Clinical Neurophysiology, vol. 128, no. 11, pp. 2334–2346, 2017. | |
dc.relation | M. Assran, A. Aytekin, H. R. Feyzmahdavian, M. Johansson, and M. G. Rabbat, “Advances in asynchronous parallel and distributed optimization,” Proceedings of the IEEE, vol. 108, no. 11, pp. 2013–2031, 2020. | |
dc.relation | S. Deshmukh, K. Thirupathi Rao, and M. Shabaz, “Collaborative learning based straggler prevention in large-scale distributed computing framework,” Security and communication networks, vol. 2021, 2021. | |
dc.relation | A. Powell, “Democratizing production through open source knowledge: from open software to open hardware,” Media, Culture & Society, vol. 34, no. 6, pp. 691–708, 2012. | |
dc.relation | H. Legenvre, P. Kauttu, M. Bos, and R. Khawand, “Is open hardware worthwhile? learning from thales’ experience with risc-v,” Research-Technology Management, vol. 63, no. 4, pp. 44–53, 2020. | |
dc.relation | F. Laport, F. J. Vazquez-Araujo, D. Iglesia, P. M. Castro, and A. Dapena, “A comparative study of low cost open source eeg devices,” in Multidisciplinary Digital Publishing Institute Proceedings, vol. 21, p. 40, 2019. | |
dc.relation | R. Martínez-Cancino, A. Delorme, D. Truong, F. Artoni, K. Kreutz-Delgado, S. Sivagnanam, K. Yoshimoto, A. Majumdar, and S. Makeig, “The open eeglab portal interface: High-performance computing with eeglab,” NeuroImage, vol. 224, p. 116778, 2021. | |
dc.relation | T. Choudhury, A. Tripathi, B. Arora, and A. Aggarwal, “Implementation of common spatial pattern algorithm using eeg in bcilab,” in International Conference on Recent Developments in Science, Engineering and Technology, pp. 288–300, Springer, 2019. | |
dc.relation | A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier, C. Brodbeck, R. Goj, M. Jas, T. Brooks, L. Parkkonen, and M. S. Hämäläinen, “MEG and EEG data analysis with MNE-Python,” Frontiers in Neuroscience, vol. 7, no. 267, pp. 1–13, 2013. | |
dc.relation | G. Schalk, D. J. McFarland, T. Hinterberger, N. Birbaumer, and J. R. Wolpaw, “Bci2000: a general-purpose brain-computer interface (bci) system,” IEEE Transactions on biomedical engineering, vol. 51, no. 6, pp. 1034–1043, 2004. | |
dc.relation | Y. Renard, F. Lotte, G. Gibert, M. Congedo, E. Maby, V. Delannoy, O. Bertrand, and A. Lécuyer, “Openvibe: An open-source software platform to design, test, and use brain–computer interfaces in real and virtual environments,” Presence: teleoperators and virtual environments, vol. 19, no. 1, pp. 35–53, 2010. | |
dc.relation | M. Madrid Sobrino, “Brain computer interface,” Master’s thesis, 2014. | |
dc.relation | J. A. Wilson, J. Mellinger, G. Schalk, and J. Williams, “A procedure for measuring latencies in brain–computer interfaces,” IEEE transactions on biomedical engineering, vol. 57, no.7, pp. 1785–1797, 2010. | |
dc.relation | S. Appelhoff and T. Stenner, “In com we trust: Feasibility of usb-based event marking,” Behavior Research Methods, vol. 53, no. 6, pp. 2450–2455, 2021. | |
dc.relation | M. Razavi, V. Janfaza, T. Yamauchi, A. Leontyev, S. Longmire-Monford, and J. Orr, “Opensync: An open-source platform for synchronizing multiple measures in neuroscience experiments,” Journal of neuroscience methods, vol. 369, p. 109458, 2022. | |
dc.relation | C. E. Davis, J. G. Martin, and S. J. Thorpe, “Stimulus onset hub: An open-source, low latency, and opto-isolated trigger box for neuroscientific research replicability and beyond,” Frontiers in Neuroinformatics, vol. 14, 2020. | |
dc.relation | E. Netzer, A. Frid, and D. Feldman, “Real-time eeg classification via coresets for bci applications,” Engineering applications of artificial intelligence, vol. 89, p. 103455, 2020. | |
dc.relation | M. A. Hasan, M. U. Khan, and D. Mishra, “A computationally efficient method for hybrid eeg-fnirs bci based on the pearson correlation,” BioMed Research International, vol. 2020, 2020. | |
dc.relation | A. Ahmadi, O. Dehzangi, and R. Jafari, “Brain-computer interface signal processing algorithms: A computational cost vs. accuracy analysis for wearable computers,” in 2012 Ninth International Conference on Wearable and Implantable Body Sensor Networks, pp. 40–45, IEEE, 2012. | |
dc.relation | V. Changoluisa, P. Varona, and F. D. B. Rodríguez, “A low-cost computational method for characterizing event-related potentials for bci applications and beyond,” IEEE Access, vol. 8, pp. 111089–111101, 2020. | |
dc.relation | T. Abe, I. Kinsella, S. Saxena, E. K. Buchanan, J. Couto, J. Briggs, S. L. Kitt, R. Glassman, J. Zhou, L. Paninski, et al., “Neuroscience cloud analysis as a service,” bioRxiv, pp. 2020–06, 2021. | |
dc.relation | S. M. Potter, A. El Hady, and E. E. Fetz, “Closed-loop neuroscience and neuroengineering,” Frontiers in neural circuits, vol. 8, p. 115, 2014. | |
dc.relation | C. Muñiz, F. d. B. Rodríguez, and P. Varona, “Rtbiomanager: a software platform to expand the applications of real-time technology in neuroscience,” BMC Neuroscience, vol. 10, no. 1, pp. 1–2, 2009. | |
dc.relation | R. Amaducci, M. Reyes-Sanchez, I. Elices, F. B. Rodriguez, and P. Varona, “Rthybrid: a standardized and open-source real-time software model library for experimental neuroscience,” Frontiers in Neuroinformatics, vol. 13, p. 11, 2019. | |
dc.relation | “Welcome to pytables’ documentation! — pytables 3.7.0 documentation.” https://www.pytables.org/. (Accessed on 03/29/2022). | |
dc.relation | H. S. Kisakye, “Brain computer interfaces: Openvibe as a platform for a p300 speller,” 2013. | |
dc.relation | R. K. Soni, Full Stack AngularJS for Java Developers: Build a Full-Featured Web Application from Scratch Using AngularJS with Spring RESTful. Apress, 2017. | |
dc.relation | E. Muller, J. A. Bednar, M. Diesmann, M.-O. Gewaltig, M. Hines, and A. P. Davison, “Python in neuroscience,” Frontiers in neuroinformatics, vol. 9, p. 11, 2015. | |
dc.relation | F.-B. Vialatte, J. Solé-Casals, and A. Cichocki, “Eeg windowed statistical wavelet scoring for evaluation and discrimination of muscular artifacts,” Physiological Measurement, vol. 29, no. 12, p. 1435, 2008. | |
dc.relation | G. Gómez-Herrero, W. De Clercq, H. Anwar, O. Kara, K. Egiazarian, S. Van Huffel, and W. Van Paesschen, “Automatic removal of ocular artifacts in the eeg without an eog reference channel,” in Proceedings of the 7th Nordic signal processing symposium-NORSIG 2006, pp. 130–133, IEEE, 2006. | |
dc.relation | P. T. Wang, C. E. King, C. M. McCrimmon, J. J. Lin, M. Sazgar, F. P. Hsu, S. J. Shaw, D. E. Millet, L. A. Chui, C. Y. Liu, et al., “Comparison of decoding resolution of standard and high-density electrocorticogram electrodes,” Journal of neural engineering, vol. 13, no. 2, p. 026016, 2016. | |
dc.relation | L. Guo, “Principles of functional neural mapping using an intracortical ultra-density microelectrode array (ultra-density mea),” Journal of Neural Engineering, vol. 17, no. 3, p. 036018, 2020. | |
dc.relation | Q. Liu, M. Ganzetti, N. Wenderoth, and D. Mantini, “Detecting large-scale brain networks using eeg: impact of electrode density, head modeling and source localization,” Frontiers in neuroinformatics, vol. 12, p. 4, 2018. | |
dc.relation | “daemon.” https://www.freedesktop.org/software/systemd/man/ daemon.html. (Accessed on 06/04/2022). | |
dc.relation | “systemd.” https://www.freedesktop.org/software/systemd/man/ systemd.html#. (Accessed on 06/04/2022). | |
dc.relation | C. Xu, C. Sun, G. Jiang, X. Chen, Q. He, and P. Xie, “Two-level multi-domain feature extraction on sparse representation for motor imagery classification,” Biomedical Signal Processing and Control, vol. 62, p. 102160, 2020. | |
dc.relation | D. G. García-Murillo, A. Alvarez-Meza, and G. Castellanos-Dominguez, “Single-trial kernel-based functional connectivity for enhanced feature extraction in motor-related tasks,” Sensors, vol. 21, no. 8, p. 2750, 2021 | |
dc.relation | M. Matsuo, N. Iso, K. Fujiwara, T. Moriuchi, D. Matsuda, W. Mitsunaga, A. Nakashima, and T. Higashi, “Comparison of cerebral activation between motor execution and motor imagery of self-feeding activity,” Neural regeneration research, vol. 16, no. 4, p. 778, 2021. | |
dc.relation | D. F. Collazos-Huertas, A. M. Álvarez-Meza, C. D. Acosta-Medina, G. Castaño-Duque, and G. Castellanos-Domínguez, “Cnn-based framework using spatial dropping for enhanced interpretation of neural activity in motor imagery classification,” Brain Informatics, vol. 7, no. 1, pp. 1–13, 2020. | |
dc.relation | S. Galindo-Noreña, D. Cárdenas-Peña, and Á. Orozco-Gutierrez, “Multiple kernel stein spatial patterns for the multiclass discrimination of motor imagery tasks,” Applied Sciences, vol. 10, no. 23, p. 8628, 2020. | |
dc.relation | K. Choi, “Electroencephalography (eeg)-based neurofeedback training for brain–computer interface (bci),” Experimental brain research, vol. 231, no. 3, pp. 351–365, 2013. | |
dc.relation | C. Llanos, M. Rodriguez, C. Rodriguez-Sabate, I. Morales, and M. Sabate, “Mu-rhythm changes during the planning of motor and motor imagery actions,” Neuropsychologia, vol. 51, no. 6, pp. 1019–1026, 2013. | |
dc.relation | S. Perdikis, R. Leeb, and J. d. R. Millán, “Subject-oriented training for motor imagery brain-computer interfaces,” in 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1259–1262, IEEE, 2014 | |
dc.relation | A. D. Baddeley, “Working memory: theories, models, and controversies,” Exploring Working Memory, pp. 332–369, 2017. | |
dc.relation | Y. G. Pavlov and B. Kotchoubey, “Oscillatory brain activity and maintenance of verbal and visual working memory: A systematic review,” Psychophysiology, vol. 59, no. 5, p. e13735, 2022. | |
dc.relation | E. L. Johnson, D. King-Stephens, P. B. Weber, K. D. Laxer, J. J. Lin, and R. T. Knight, “Spectral imprints of working memory for everyday associations in the frontoparietal network,” Frontiers in Systems Neuroscience, vol. 12, p. 65, 2019. | |
dc.relation | D. Zhang, H. Zhao, W. Bai, and X. Tian, “Functional connectivity among multi-channel eegs when working memory load reaches the capacity,” Brain research, vol. 1631, pp. 101–112, 2016. | |
dc.relation | Z. Dai, J. De Souza, J. Lim, P. M. Ho, Y. Chen, J. Li, N. Thakor, A. Bezerianos, and Y. Sun, “Eeg cortical connectivity analysis of working memory reveals topological reorganization in theta and alpha bands,” Frontiers in human neuroscience, p. 237, 2017. | |
dc.relation | E. L. Johnson, J. N. Adams, A.-K. Solbakk, T. Endestad, P. G. Larsson, J. Ivanovic, T. R. Meling, J. J. Lin, and R. T. Knight, “Dynamic frontotemporal systems process space and time in working memory,” PLoS biology, vol. 16, no. 3, p. e2004274, 2018. | |
dc.relation | E. K. Vogel and M. G. Machizawa, “Neural activity predicts individual differences in visual working memory capacity,” Nature, vol. 428, no. 6984, pp. 748–751, 2004. | |
dc.relation | L. Newsome, “Visual angle and apparent size of objects in peripheral vision,” Perception & Psychophysics, vol. 12, no. 3, pp. 300–304, 1972. | |
dc.relation | R. Haeuslschmid, S. Forster, K. Vierheilig, D. Buschek, and A. Butz, “Recognition of text and shapes on a large-sized head-up display,” in Proceedings of the 2017 Conference on Designing Interactive Systems, pp. 821–831, 2017. | |
dc.relation | M. Villena-González, I. Rubio-Venegas, and V. López, “Data from brain activity during visual working memory replicates the correlation between contralateral delay activity and memory capacity,” Data in brief, vol. 28, p. 105042, 2020. | |
dc.relation | S. Enriquez-Geppert, R. J. Huster, and C. S. Herrmann, “Eeg-neurofeedback as a tool to modulate cognition and behavior: a review tutorial,” Frontiers in human neuroscience, vol. 11, p. 51, 2017. | |
dc.relation | A. R. Aron, P. C. Fletcher, E. T. Bullmore, B. J. Sahakian, and T. W. Robbins, “Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans,” Nature neuroscience, vol. 6, no. 2, pp. 115–116, 2003. | |
dc.relation | F. N. Dempster, “The rise and fall of the inhibitory mechanism: Toward a unified theory of cognitive development and aging,” Developmental review, vol. 12, no. 1, pp. 45–75, 1992. | |
dc.relation | A. Bari and T. W. Robbins, “Inhibition and impulsivity: behavioral and neural basis of response control,” Progress in neurobiology, vol. 108, pp. 44–79, 2013. | |
dc.relation | J. S. Ide, P. Shenoy, J. Y. Angela, and R. L. Chiang-Shan, “Bayesian prediction and evaluation in the anterior cingulate cortex,” Journal of Neuroscience, vol. 33, no. 5, pp. 2039–2047, 2013. | |
dc.relation | K. Rubia, A. B. Smith, M. J. Brammer, and E. Taylor, “Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection,” Neuroimage, vol. 20, no. 1, pp. 351–358, 2003. | |
dc.relation | G. D. Logan and W. B. Cowan, “On the ability to inhibit thought and action: A theory of an act of control.,” Psychological review, vol. 91, no. 3, p. 295, 1984. | |
dc.relation | P. M. Herrera, A. V. Van Meerbeke, M. Speranza, C. L. Cabra, M. Bonilla, M. Canu, and T. A. Bekinschtein, “Expectation of reward differentially modulates executive inhibition,” BMC psychology, vol. 7, no. 1, pp. 1–10, 2019 | |
dc.rights | Atribución-CompartirIgual 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-sa/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | EEG-based BCI monitoring framework: Real-time acquisition and visualization from audiovisual stimulation paradigms | |
dc.type | Trabajo de grado - Maestría | |