dc.contributor | Barato Gómez, Paola Andrea | |
dc.contributor | Pardo Carrasco, Sandra Clemencia | |
dc.contributor | Biodiversidad y Génetica Molecular \'BIOGEM\' | |
dc.creator | Gutiérrez Arboleda, Jesed | |
dc.date.accessioned | 2021-10-19T18:48:25Z | |
dc.date.available | 2021-10-19T18:48:25Z | |
dc.date.created | 2021-10-19T18:48:25Z | |
dc.date.issued | 2020 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/80579 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | La salud de la tilapia es un tema primordial para conseguir buenos resultados productivos y el ambiente donde residen los peces influye sustancialmente en ello. El RAS (sistema de recirculación acuícola) y BFT (tecnología biofloc) son dos sistemas de producción intensiva y biotecnológicos por beneficiarse de microorganismos para su buen funcionamiento, pero esta microbiota puede estar en contacto con los peces (especialmente en el BFT) produciendo cierta incertidumbre en cuanto a la bioseguridad. Por eso el objetivo de esta investigación fue evaluar el efecto de los sistemas de producción RAS y BFT sobre parámetros productivos y sanitarios (recuento leucocitario y evaluación histológica de branquias e intestino) y la microbiota intestinal en tilapia roja Oreochromis spp. Para ejecutarlo se realizó un diseño completamente al azar en el laboratorio LAMA de la Universidad Nacional de Colombia, Sede Medellín, con seis tanques de 500 L (tres por tratamiento), donde fueron distribuidos 360 juveniles de tilapia roja (12,4 ± 1,2 g), que fueron muestreados los días de recepción, 15, 30, 45 y 60 del experimento. La biomasa fue mayor (P<0,05) en BFT y el factor de conversión alimenticia fue 40 % menor en el BFT con respecto al RAS. Los monocitos fueron mayores (P<0,05) en BFT sin salir del rango normal. Fue mejor la salud branquial en el BFT y no hubo diferencia significativa en el microbioma intestinal entre tratamientos. En conclusión, la tilapia mostró mejores parámetros zootécnicos y condiciones sanitarias aceptables para su producción en el BFT. (Texto tomado de la fuente) | |
dc.description.abstract | The health of tilapia is a primary issue to achieve good productive results and the environment where the fish reside has a substantial influence on this. The RAS (aquaculture recirculation system) and BFT (biofloc technology) are two intensive and biotechnological production systems because they benefit from microorganisms for their proper functioning, but this microbiota may be in contact with the fish (especially in the BFT) producing some uncertainty in terms of biosecurity. Therefore, the objective of this research was to evaluate the effect of the RAS and BFT production systems on productive and health parameters (leukocyte count and histological evaluation of gills and intestine) and the intestinal microbiota in red tilapia Oreochromis spp. To execute it, a completely randomized design was carried out in the LAMA laboratory of the National University of Colombia, Medellín campus, with six 500 L tanks (three per treatment), where 360 juvenile red tilapia (12.4 ± 1, 2 g), which were sampled on reception day, 15, 30, 45 and 60 of the experiment. The biomass was higher (P <0.05) and the feed conversion factor was 40% lower in the BFT concerning the RAS respectively. Monocytes were higher (P <0.05) in BFT without leaving the normal range. Gill health was better in BFT, and there was no significant difference in gut microbiome between treatments. In conclusion, tilapia showed better zootechnical performance and acceptable sanitary conditions for its production in the BFT. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Medellín - Ciencias - Maestría en Ciencias - Biotecnología | |
dc.publisher | Escuela de biociencias | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Medellín, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | Adeoye, A. A., Yomla, R., Merrifield, D. L., Jaramillo-Torres, A., Rodiles, A., & Davies, S. J. (2016). Combined effects of exogenous enzymes and probiotic on Nile tilapia (Oreochromis niloticus) growth, intestinal morphology and microbiom. Aquaculture, 463, 61-70. doi:http://dx.doi.org/10.1016/j.aquaculture.2016.05.028 | |
dc.relation | Aguilera, E., Yany, G., & Romero, J. (2013). Cultivable intestinal microbiota of yellowtail juveniles (Seriola lalandi) in an aquaculture system. Latin american journal of aquatic research, 41 (3), 395-403. doi: 103856/vol41-issue3-fulltext-3 | |
dc.relation | Ahmad, Verma, Babitha, Rathore, Saharan, & Gora. (20 de Abril de 2016). Growth, nonspecific immunity and disease resistance of Labeo rohita against Aeromonas hydrophila in biofloc systems using different carbon sources. Aquaculture, 457, 61-67. doi:10.1016/j.aquaculture.2016.02.011 | |
dc.relation | Avnimelech, Y. (1999). Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176, 227–235. | |
dc.relation | Avnimelech, Y., De-Shryver, P., Emmerenciano, M., Dave, K., Andrew, R., & Nyan, T. (2015). Biofloc Technology - A Practical Guidebook (Vol. 3rd Edition). Louisiana, United States: The World Aquaculture Society. | |
dc.relation | Bailone, Bailone, R., ML Martins, J. M., Vieira, F., Pedrotti, F., Nunes, G., & Silva, B. (2010). Hematology and agglutination titer after polyvalent immunization and subsequent challenge with Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus). Arch Med Vet, 42, 221-
227. | |
dc.relation | Bebak-Williams, J., & Noble, A. (2009). Manejo Sanitario de Peces. En M. Timmons, J. Ebeling, & R. Piedrahita, acuicultura en sistemas de recirculación. Cayuga Aqua Ventures, Llc, 640-688. | |
dc.relation | Birg, A., Ritz, N. L., & Lin, H. C. (2019). Chapter 20 - The Unknown Effect of AntibioticInduced Dysbiosis on the Gut Microbiota. En J. Faintuch, & S. Faintuch, Microbiome and Metabolome in Diagnosis, Therapy, and other Strategic Applications (págs. 195-200). Academic Press. | |
dc.relation | Boutin, S., Bernatchez, L., Audet, C., & Derôme, N. (2013). Network Analysis Highlights Complex Interactions between Pathogen, Host and Commensal Microbiota. PLOS ONE, 8(12), e84772. doi:https://doi.org/10.1371/journal.pone.0084772 | |
dc.relation | Bryan Wilson & Bret, D. &. (April de 2008). The Diversity of Bacterial Communities Associated with Atlantic Cod Gadus morhua. Microbial Ecology, 55(3), 425–434. doi: 10.1007/s00248-007-9288-0 | |
dc.relation | Campisano, A., Ometto, L., Compant, S., Pancher, M., Antonielli, L., Yousa, S., . . . RotaStabelli, O. ( 2014). Interkingdom transfer of the acne-causing agent, Propionibacterium acnes, from human to grapevine. Molecular biology and evolution, 31(5), 1059-1065.
doi:10.1093/molbev/msu075 | |
dc.relation | Cavalcante, R. B., Telli, G. S., Tachibana, L., Dias, D. C., Oshiro, E., Natori, M. M., . . . Ranzani-Paiva, M. J. (2020). Probiotics, Prebiotics and Synbiotics for Nile tilapia: Growth performance and protection against Aeromonas hydrophila infection. Aquaculture Reports,
17(100343). doi:https://doi.org/10.1016/j.aqrep.2020.100343 | |
dc.relation | Claesson, M. J., Cusack, S., O'Sullivan, O., Greene-Diniz, R., Weerd, H. d., Flannery, E., . . . O', K. (2011). Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Academy of sciences, 108 (1), 4586-4591.
doi:https://doi.org/10.1073/pnas.1000097107 | |
dc.relation | Dawood, M. A., Zommara, M., Eweedah, N. M., & Helal, A. I. (2020). The evaluation of growth performance, blood health, oxidative status and immune-related gene expression in Nile tilapia (Oreochromis niloticus) fed dietary nanoselenium spheres produced by lactic
acid bacteria. Aquaculture, 515(15), 734571. doi:https://doi.org/10.1016/j.aquaculture.2019.734571 | |
dc.relation | Eichmiller, J. J., Hamilton, M. J., Staley, C., Sadowsky, M. J., & Sorensen, P. W. (2016). Environment shapes the fecal microbiome of invasive carp species. Microbiome, 4(44), 1- 13. doi: 10.1186/s40168-016-0190-1 | |
dc.relation | Elsabagh, M., Mohamed, R., Moustafa, E. M., Hamza, A., Farrag, F., Decamp, O., . . . Eltholth, M. (2018). Assessing the impact of Bacillus strains mixture probiotic on water quality, growth performance, blood profile and intestinal morphology of Nile tilapia,
Oreochromis niloticus. Aquaculture Nutrition, 24, 1613-1622. doi:https://doi.org/10.1111/anu.12797 24:6 1613-1622 | |
dc.relation | Espinosa, & Bermúdez. (2011). La acuicultura y su impacto al medio ambiente. México. Fan, L., Chen, J., Meng, S., Song, C., Qiu, L., Hu, G., & Xu, P. (2015). Characterization of microbial communities in intensive GIFT tilapia (Oreochromis niloticus) pond systems
during the peak period of breeding. Aquaculture Research, 1-14. doi:10.1111/are.12894 | |
dc.relation | FranciscoVargas-Albores, Martínez-Córdova, L. R., Gollas-Galván, T., Garibay-Valdez, E., Coelho-Emerenciano, M., Lago-Leston, A., . . . Martínez-Porchas, M. (2019). Inferring the functional properties of bacterial communities in shrimp-culture bioflocs produced with
amaranth and wheat seeds as fouler promoters. Aquaculture, 500, 107-117. doi:https://doi.org/10.1016/j.aquaculture.2018.10.005 | |
dc.relation | Gaikwad, S. S., Shouche, Y. S., & Gade, W. N. (2017). Deep Sequencing Reveals Highly Variable Gut Microbial Composition of Invasive Fish Mossambicus Tilapia (Oreochromis mossambicus) Collected from Two Different Habitats. Indian Journal of Microbiology, 57, 235–240. doi:https://doiorg.ezproxy.unal.edu.co/10.1007/s12088-017-0641-9 | |
dc.relation | Giatsis, C., Abernathy, J., Sipkema, D., Ramiro-Garcia, J., Bacanu, G. M., Verreth, J., . . . Verdegem, M. (2016). Probiotic legacy effects on gut microbial assembly in tilapia larvae. Scientific RepoRts, 6:33965, 1-11. doi: 10.1038/srep33965 | |
dc.relation | Gibson, L., Woodworth, J., & George, A. (1998). Probiotic activity of Aeromonas media on the Pacific oyster, Crassostrea gigas, when challenged with Vibrio tubiashii. Aquaculture, 169 (1–2), 111-120. doi:https://doi.org/10.1016/S0044-8486(98)00369-X | |
dc.relation | Gomez, D., Sunye, O., & Salinas, I. (2013). The mucosal immune system of fish: The evolution of tolerating commensals while fighting pathogens. Fish & Shellfish Immunology, 35(6), 1729-1739. doi:https://doi.org/10.1016/j.fsi.2013.09.032 | |
dc.relation | Gunanti, M., Wulansari, P., & Kinzella, K. (2019). The erythrocyte and leucocyte profile of saline tilapia (Oreochromis Niloticus) in a cultivation system with nanobubbles. OP Conf. Series: Earth and Environmental Science 236 012089, 1-7. doi:10.1088/1755-
1315/236/1/012089I | |
dc.relation | Hahn-von-Hessberg, C., Quiroz-Bucheli, A., & Grajales-Quintero, A. (2014). Caracteres hematológicos en individuos de tilapia nilótica (Oreochromis niloticus, trewavas 1983) con pesos entre 50-150 g y 150-250 g, estación piscícola, Universidad de Caldas, Colombia.
18(1), 142-157. | |
dc.relation | Han, S., Liu, Y., Zhou, Z., He, S., Cao, Y., Shi, P., . . . Ringø, E. (2010). Analysis of bacterial diversity in the intestine of grass carp (Ctenopharyngodon idellus) based on 16S rDNA gene sequences. Aquaculture Research, 42(1), 47-56. doi: https://doi.org/10.1111/j.1365-
2109.2010.02543.x | |
dc.relation | Haridas, H., Verma, A. K., Rathore, G., Prakash, C., Sawant, P. B., & Rani, A. M. (Agosto de 2017). Enhanced growth and immuno-physiological response of Genetically Improved Farmed Tilapia in indoor biofloc units at different stocking densities. Aquaculture Research,
48(8), 4346–4355. doi:10.1111/are.13256 | |
dc.relation | gerslev, H., Jørgensen, L. v., Strube, M. L., Larsen, N., Dalsgaard, I., M.Boye, & Madsen, L. (2014). The development of the gut microbiota in rainbow trout (Oncorhynchus mykiss) is affected by first feeding and diet type. Aquaculture, 424-425, 24-34. doi:
http://dx.doi.org/10.1016/j.aquaculture.2013.12.032 | |
dc.relation | Jiménez, A., Rey, A., Penagos, L., Ariza, M., Figueroa, J., & CA, I. (2007). Streptococcus agalactiae: up to date the only pathogenous Streptococcus of cultured tilapias in Colombia. Rev. Med. Vet. Zoo, 54, 285-294. Obtenido de http://bdigital.unal.edu.co/15896/1/10628-
38445-1-PB.pdf | |
dc.relation | Knief, C., Ramette, A., Frances, L., Alonso-Blanco, C., & Vorholt, J. A. (2010). Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. The ISME journal, 4(6), 719-728. doi: 10.1038/ismej.2010.9 | |
dc.relation | Larsen, A. M., Mohammed, H. H., & Arias., C. R. (2014). Characterization of the gut microbiota of three commercially valuable warmwater fish species. J Appl Microbiol, 116(6), 1396-1404. doi: 10.1111/jam.12475 | |
dc.relation | Llewellyn, M. S., Boutin, S., Hoseinifar, S. H., & Derome, N. (2014). Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Frontiers Mycrobiology, 5 (207). doi: 10.3389/fmicb.2014.00207 | |
dc.relation | challenge with Aeromonas salmonicida ssp. Salmonicida. Aquaculture Research, 32(12), 935-945. doi:https://doi.org/10.1046/j.1365-2109.2001.00621.xLoh, J.-Y. (20 de March de 2017). The Role of Probiotics and Their Mechanisms of Action:
An Aquaculture Perspective. WORLD AQUACULTURE, 19-23. | |
dc.relation | Lowrey, L., Woodhams, D. C., Tacchi, L., & Salinas, I. (2015). Topographical mapping of the rainbow trout (Oncorhynchus mykiss) microbiome reveals a diverse bacterial community with antifungal properties in the skin. Applied and Environmental Microbiology,
81(19), 6915-6925. doi: 10.1128/AEM.01826-15 | |
dc.relation | Makarenkov, V., & Lapointe, F.-J. (2004). A weighted least-squares approach for inferring phylogenies from incomplete distance matrices. Bioinformatics, 20(13), 2113-2121. doi.org/10.1093/bioinformatics/bth211 | |
dc.relation | Martin-Gallausiaux, C., Béguet-Crespel, F., Marinelli, L., Jamet, A., Ledue, F., Blottière, H. M., & Lapaque., N. (2018). Butyrate produced by gut commensal bacteria activates TGFbeta1 expression through the transcription factor SP1 in human intestinal epithelial cells.
Scientific Reports, 8(9742). doi: https://doi.org/10.1038/s41598-018-28048-y | |
dc.relation | Melo-Bolívar, J., Pardo, R., Hume, N., Nisbet, D., Rodriguez-Villamizar, F., Alzate, J., . . . Diaz, L. (2019). Establishment and characterization of a competitive exclusion bacterial culture derived from Nile tilapia (Oreochromis niloticus) gut microbiomes showing antibacterial activity against pathogenic Streptococcus agalactiae. PloS one, 14(5), 215375. doi:https://doi.org/10.1371/journal.pone.0215375 | |
dc.relation | Mu, L., Yin, X., Bian, X., Wu, L., Yang, Y., Wei, X., & Ye, Z. G. (2018). Expression and functional characterization of collection-K1 from Nile tilapia (Oreochromis niloticus) in host innate immune defense. Molecular Immunology, 103, 21-34. doi:https://doi.org/10.1016/j.molimm.2018.08.012 | |
dc.relation | Muiswinkel, W. V., & Nakao, M. (2014). A short history of research on immunity to infectious diseases in fish. Developmental and Comparative Immunology, 43, 130–150. doi:http://dx.doi.org/10.1016/j.dci.2013.08.016 | |
dc.relation | Nutsch, K., & Hsieh, C.-S. (2012). T cell tolerance and immunity to commensal bacteria. Current Opinion in Immunology, 24, 385–391.
doi:http://dx.doi.org/10.1016/j.coi.2012.04.009 | |
dc.relation | Ottman, N., Smidt, H., Vos, W. M., & Belzer, C. (2012). The function of our microbiota: who is out there and what do they do? Frontiers in Cellular and Infection Microbiology, 2, 104. doi: https://doi.org/10.3389/fcimb.2012.00104 | |
dc.relation | Rawls, S. G. (March de 2004). Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proceedings of the National Academy of Sciences, 101(13), 4596-4601. doi:DOI:10.1073/pnas.0400706101 | |
dc.relation | Rhodes, L., Johnson, R., & Myers, M. (2016). Effects of alternative plant-based feeds on hepatic and gastrointestinal histology and the gastrointestinal microbiome of sablefish (Anoplopoma fimbria). Aquaculture, 464, 683-691. doi: http://dx.doi.org/10.1016/j.aquaculture.2016.05.010 | |
dc.relation | Rocha, C. M., Pascuas, A. J., & Pianeta, A. (2017). Respuestas hematológicas, hepáticas y esplénicas al estrés de tilapias en jaulas y libres en el embalse de Betania, Colombia. Revista científica de la Sociedad Española de Acuicultura, 49, 8-20. Obtenido de
http://www.revistaaquatic.com/ojs/index.php/aquatic/article/view/305/304 | |
dc.relation | Romano, N., Caccia, E., Piergentili, R., Rossi, F., Ficca, A., Ceccariglia, S., & Mastrolia, L. (2011). Antigen-dependent T lymphocytes (TcRβ+) are primarily differentiated in the thymus rather than in other lymphoid tissues in sea bass (Dicentrarchus labrax, L.). Fish
Shellfish Immunology, 30(3), 773-82. doi: 10.1016/j.fsi.2010.12.032. | |
dc.relation | Sakyi, M. E., Cai, J., Tang, J., Abarike, E. D., Xia, L., Li, P., . . . Jian, J. (2020). Effects of starvation and subsequent re-feeding on intestinal microbiota, and metabolic responses in Nile tilapia, Oreochromis niloticus. Aquaculture Reports, 17(100370).
doi:https://doi.org/10.1016/j.aqrep.2020.100370 | |
dc.relation | Shizuo, M., Alves, G. F., Cardoso, L., Martins, N. B., & Mouriño, J. P. (2020). Can histology and haematology explain inapparent Streptococcus agalactiae infections and asymptomatic mortalities on Nile tilapia farms? Research in Veterinary Science, 129, 13-
20. doi:https://doi.org/10.1016/j.rvsc.2019.12.018 | |
dc.relation | Smith, C. J., & Osborn, A. M. (2009). Advantages and limitations of quantitative PCR (QPCR)-based approaches in microbial ecology. FEMS Microbiology Ecology, 67(1), 6–20. doi:https://doi.org/10.1111/j.1574-6941.2008.00629.x Smriga, S., Sandin, S. A., & Azam, F. (2010). Abundance, diversity, and activity of microbial assemblages associated with coral reef fish guts and feces. FEMS Microbiol Ecol. , 1, 31-
42. doi: 10.1111/j.1574-6941.2010.00879.x. | |
dc.relation | Tseng, D.-Y., Ho, P.-L., Huang, S.-Y., Cheng, S.-C., Shiu, Y.-L., Chiu, C.-S., & Liu, C.-H. (2009). Enhancement of immunity and disease resistance in the white shrimp, Litopenaeus vannamei, by the probiotic, Bacillus subtilis E20. Fish & Shellfish Immunology, 26(2), 339-
344. doi:https://doi.org/10.1016/j.fsi.2008.12.003 | |
dc.relation | Uribe, C., Folch, H., Enriquez, R., & Moran, G. (2011). Innate and adaptive immunity in teleost fish: a review. Veterinarni Medicina, 56(10), 486–503. | |
dc.relation | Vargas-Albores, F., Garibay-Valdez, E., Martínez-Córdova, L. R., Gollas-Galván, T., Mazorra-Manzano, M., Emerenciano, M. C., . . . Martínez-Porchas, M. (2019). Inferring the functional properties of bacterial communities in shrimpculture bioflocs produced with
amaranth and wheat seeds as fouler promoters. Aquaculture, 500, 107-117. doi: https://doi.org/10.1016/j.aquaculture.2018.10.005 | |
dc.relation | Ventura, M., Canchaya, C., Tauch, A., Chandra, G., Fitzgerald, G. F., Chater, K. F., & Sinderen., D. v. (2007). Genomics of Actinobacteria: Tracing the Evolutionary History of an Ancient Phylum. Microbiology and Molecular Biology Reviews, 71(3), 495-548. doi:
10.1128/MMBR.00005-07 | |
dc.relation | Villegas-Plazas, M., Wos-Oxley, M. L., Sanchez, J. A., Pieper, D. H., Thomas, O. P., & Junca, H. (2019). Variations in Microbial Diversity and Metabolite Profiles of the Tropical Marine Sponge Xestospongia muta with Season and Depth. Microbial Ecology, 78, 243-
256. doi:https://doi.org/10.1007/s00248-018-1285-y | |
dc.relation | Vine, L. K. (2004). Competition for attachment of aquaculture candidate probiotic and pathogenic bacteria on fish intestinal mucus. Journal of Fish Diseases, 27, 319–326. Obtenido de https://doi-org.ezproxy.unal.edu.co/10.1111/j.1365-2761.2004.00542.x | |
dc.relation | Wang, L., Liu, L., Liu, X., Xiang, M., Zhou, L., Huang, C., . . . Miao, L. (2020). The gut microbes, Enterococcus and Escherichia-Shigella, affect the responses of heart valve replacement patients to the anticoagulant warfarin Author links open overlay panel.
Pharmacological Research, 159(104979). doi:https://doi.org/10.1016/j.phrs.2020.104979 | |
dc.relation | Widanarni, Ekasari, J., & Maryam, S. (2012). Evaluation of Biofloc Technology Application on Water Quality and Production Performance of Red Tilapia Oreochromis sp. Cultured at Different Stocking Densities. HAYATI Journal of Biosciences, 19(2), 73-80. doi:
10.4308/hjb.19.2.73 | |
dc.relation | Wu, S.-G., Tian, J.-Y., Gatesoupe, F.-J., W.-X. L., Zou, H., Yang, B.-J., & Wang, G.-T. (2013). Intestinal microbiota of gibel carp (Carassius auratus gibelio) and its origin as revealed by 454 pyrosequencing. World J Microbiol Biotechnol, 29(9), 1585-1595. doi:
10.1007/s11274-013-1322-4. | |
dc.relation | Zhang, X., Ding, L., Yu, Y., Kong, W., Yin, Y., Huang, Z., . . . Xu, Z. (2018). The Change of Teleost Skin Commensal Microbiota Is Associated With Skin Mucosal Transcriptomic Responses During Parasitic Infection by Ichthyophthirius multifillis. Frontiers in Immunology, 9(2972). doi: 10.3389/fimmu.2018.02972 | |
dc.relation | Zhu, L.-y., Nie, L., Zhu, G., Xiang, L.-x., & Shao, J.-z. (2013). Advances in research of fish immune-relevant genes: A comparative overview of innate and adaptive immunity in teleosts. Developmental and Comparative Immunology, 39-62. doi:http://dx.doi.org/10.1016/j.dci.2012.04.001 | |
dc.relation | Zühlke, D., López-Mondéjar, R., Becher, D., Riedel, K., & Baldrian, P. (2016). Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Scientific Reports, 6(25279). | |
dc.rights | Reconocimiento 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Evaluación de la microbiota intestinal, parámetros productivos y sanitarios de tilapia Oreochromis spp. cultivada en sistemas biofloc y recirculación acuícola. | |
dc.type | Trabajo de grado - Maestría | |